1da326c335
* (c-decl.c, c-semantics.c, calls.c, cgraph.c, cgraphunit.c, function.c, integrate.c, print-tree.c, toplev.c, tree-optimize.c, tree.h): Replace DECL_SAVED_INSNS with DECL_STRUCT_FUNCTION. * ada/utils.c: Likewise. * cp/decl.c: Likewise. * f/com.c: Likewise. * java/class.c: Likewise. From-SVN: r77985
4804 lines
154 KiB
C
4804 lines
154 KiB
C
/* Convert function calls to rtl insns, for GNU C compiler.
|
||
Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "expr.h"
|
||
#include "optabs.h"
|
||
#include "libfuncs.h"
|
||
#include "function.h"
|
||
#include "regs.h"
|
||
#include "toplev.h"
|
||
#include "output.h"
|
||
#include "tm_p.h"
|
||
#include "timevar.h"
|
||
#include "sbitmap.h"
|
||
#include "langhooks.h"
|
||
#include "target.h"
|
||
#include "cgraph.h"
|
||
#include "except.h"
|
||
|
||
/* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
|
||
#define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
|
||
|
||
/* Data structure and subroutines used within expand_call. */
|
||
|
||
struct arg_data
|
||
{
|
||
/* Tree node for this argument. */
|
||
tree tree_value;
|
||
/* Mode for value; TYPE_MODE unless promoted. */
|
||
enum machine_mode mode;
|
||
/* Current RTL value for argument, or 0 if it isn't precomputed. */
|
||
rtx value;
|
||
/* Initially-compute RTL value for argument; only for const functions. */
|
||
rtx initial_value;
|
||
/* Register to pass this argument in, 0 if passed on stack, or an
|
||
PARALLEL if the arg is to be copied into multiple non-contiguous
|
||
registers. */
|
||
rtx reg;
|
||
/* Register to pass this argument in when generating tail call sequence.
|
||
This is not the same register as for normal calls on machines with
|
||
register windows. */
|
||
rtx tail_call_reg;
|
||
/* If REG was promoted from the actual mode of the argument expression,
|
||
indicates whether the promotion is sign- or zero-extended. */
|
||
int unsignedp;
|
||
/* Number of registers to use. 0 means put the whole arg in registers.
|
||
Also 0 if not passed in registers. */
|
||
int partial;
|
||
/* Nonzero if argument must be passed on stack.
|
||
Note that some arguments may be passed on the stack
|
||
even though pass_on_stack is zero, just because FUNCTION_ARG says so.
|
||
pass_on_stack identifies arguments that *cannot* go in registers. */
|
||
int pass_on_stack;
|
||
/* Some fields packaged up for locate_and_pad_parm. */
|
||
struct locate_and_pad_arg_data locate;
|
||
/* Location on the stack at which parameter should be stored. The store
|
||
has already been done if STACK == VALUE. */
|
||
rtx stack;
|
||
/* Location on the stack of the start of this argument slot. This can
|
||
differ from STACK if this arg pads downward. This location is known
|
||
to be aligned to FUNCTION_ARG_BOUNDARY. */
|
||
rtx stack_slot;
|
||
/* Place that this stack area has been saved, if needed. */
|
||
rtx save_area;
|
||
/* If an argument's alignment does not permit direct copying into registers,
|
||
copy in smaller-sized pieces into pseudos. These are stored in a
|
||
block pointed to by this field. The next field says how many
|
||
word-sized pseudos we made. */
|
||
rtx *aligned_regs;
|
||
int n_aligned_regs;
|
||
};
|
||
|
||
/* A vector of one char per byte of stack space. A byte if nonzero if
|
||
the corresponding stack location has been used.
|
||
This vector is used to prevent a function call within an argument from
|
||
clobbering any stack already set up. */
|
||
static char *stack_usage_map;
|
||
|
||
/* Size of STACK_USAGE_MAP. */
|
||
static int highest_outgoing_arg_in_use;
|
||
|
||
/* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
|
||
stack location's tail call argument has been already stored into the stack.
|
||
This bitmap is used to prevent sibling call optimization if function tries
|
||
to use parent's incoming argument slots when they have been already
|
||
overwritten with tail call arguments. */
|
||
static sbitmap stored_args_map;
|
||
|
||
/* stack_arg_under_construction is nonzero when an argument may be
|
||
initialized with a constructor call (including a C function that
|
||
returns a BLKmode struct) and expand_call must take special action
|
||
to make sure the object being constructed does not overlap the
|
||
argument list for the constructor call. */
|
||
int stack_arg_under_construction;
|
||
|
||
static int calls_function (tree, int);
|
||
static int calls_function_1 (tree, int);
|
||
|
||
static void emit_call_1 (rtx, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
|
||
HOST_WIDE_INT, rtx, rtx, int, rtx, int,
|
||
CUMULATIVE_ARGS *);
|
||
static void precompute_register_parameters (int, struct arg_data *, int *);
|
||
static int store_one_arg (struct arg_data *, rtx, int, int, int);
|
||
static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
|
||
static int finalize_must_preallocate (int, int, struct arg_data *,
|
||
struct args_size *);
|
||
static void precompute_arguments (int, int, struct arg_data *);
|
||
static int compute_argument_block_size (int, struct args_size *, int);
|
||
static void initialize_argument_information (int, struct arg_data *,
|
||
struct args_size *, int, tree,
|
||
tree, CUMULATIVE_ARGS *, int,
|
||
rtx *, int *, int *, int *,
|
||
bool);
|
||
static void compute_argument_addresses (struct arg_data *, rtx, int);
|
||
static rtx rtx_for_function_call (tree, tree);
|
||
static void load_register_parameters (struct arg_data *, int, rtx *, int,
|
||
int, int *);
|
||
static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
|
||
enum machine_mode, int, va_list);
|
||
static int special_function_p (tree, int);
|
||
static rtx try_to_integrate (tree, tree, rtx, int, tree, rtx);
|
||
static int check_sibcall_argument_overlap_1 (rtx);
|
||
static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
|
||
|
||
static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
|
||
int);
|
||
static tree fix_unsafe_tree (tree);
|
||
static bool shift_returned_value (tree, rtx *);
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
static rtx save_fixed_argument_area (int, rtx, int *, int *);
|
||
static void restore_fixed_argument_area (rtx, rtx, int, int);
|
||
#endif
|
||
|
||
/* If WHICH is 1, return 1 if EXP contains a call to the built-in function
|
||
`alloca'.
|
||
|
||
If WHICH is 0, return 1 if EXP contains a call to any function.
|
||
Actually, we only need return 1 if evaluating EXP would require pushing
|
||
arguments on the stack, but that is too difficult to compute, so we just
|
||
assume any function call might require the stack. */
|
||
|
||
static tree calls_function_save_exprs;
|
||
|
||
static int
|
||
calls_function (tree exp, int which)
|
||
{
|
||
int val;
|
||
|
||
calls_function_save_exprs = 0;
|
||
val = calls_function_1 (exp, which);
|
||
calls_function_save_exprs = 0;
|
||
return val;
|
||
}
|
||
|
||
/* Recursive function to do the work of above function. */
|
||
|
||
static int
|
||
calls_function_1 (tree exp, int which)
|
||
{
|
||
int i;
|
||
enum tree_code code = TREE_CODE (exp);
|
||
int class = TREE_CODE_CLASS (code);
|
||
int length = first_rtl_op (code);
|
||
|
||
/* If this code is language-specific, we don't know what it will do. */
|
||
if ((int) code >= NUM_TREE_CODES)
|
||
return 1;
|
||
|
||
switch (code)
|
||
{
|
||
case CALL_EXPR:
|
||
if (which == 0)
|
||
return 1;
|
||
else if ((TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
== FUNCTION_TYPE)
|
||
&& (TYPE_RETURNS_STACK_DEPRESSED
|
||
(TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))))
|
||
return 1;
|
||
else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
|
||
&& (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
||
== FUNCTION_DECL)
|
||
&& (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
|
||
0)
|
||
& ECF_MAY_BE_ALLOCA))
|
||
return 1;
|
||
|
||
break;
|
||
|
||
case CONSTRUCTOR:
|
||
{
|
||
tree tem;
|
||
|
||
for (tem = CONSTRUCTOR_ELTS (exp); tem != 0; tem = TREE_CHAIN (tem))
|
||
if (calls_function_1 (TREE_VALUE (tem), which))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
|
||
case SAVE_EXPR:
|
||
if (SAVE_EXPR_RTL (exp) != 0)
|
||
return 0;
|
||
if (value_member (exp, calls_function_save_exprs))
|
||
return 0;
|
||
calls_function_save_exprs = tree_cons (NULL_TREE, exp,
|
||
calls_function_save_exprs);
|
||
return (TREE_OPERAND (exp, 0) != 0
|
||
&& calls_function_1 (TREE_OPERAND (exp, 0), which));
|
||
|
||
case BLOCK:
|
||
{
|
||
tree local;
|
||
tree subblock;
|
||
|
||
for (local = BLOCK_VARS (exp); local; local = TREE_CHAIN (local))
|
||
if (DECL_INITIAL (local) != 0
|
||
&& calls_function_1 (DECL_INITIAL (local), which))
|
||
return 1;
|
||
|
||
for (subblock = BLOCK_SUBBLOCKS (exp);
|
||
subblock;
|
||
subblock = TREE_CHAIN (subblock))
|
||
if (calls_function_1 (subblock, which))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
|
||
case TREE_LIST:
|
||
for (; exp != 0; exp = TREE_CHAIN (exp))
|
||
if (calls_function_1 (TREE_VALUE (exp), which))
|
||
return 1;
|
||
return 0;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Only expressions and blocks can contain calls. */
|
||
if (! IS_EXPR_CODE_CLASS (class) && class != 'b')
|
||
return 0;
|
||
|
||
for (i = 0; i < length; i++)
|
||
if (TREE_OPERAND (exp, i) != 0
|
||
&& calls_function_1 (TREE_OPERAND (exp, i), which))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Force FUNEXP into a form suitable for the address of a CALL,
|
||
and return that as an rtx. Also load the static chain register
|
||
if FNDECL is a nested function.
|
||
|
||
CALL_FUSAGE points to a variable holding the prospective
|
||
CALL_INSN_FUNCTION_USAGE information. */
|
||
|
||
rtx
|
||
prepare_call_address (rtx funexp, tree fndecl, rtx *call_fusage,
|
||
int reg_parm_seen, int sibcallp)
|
||
{
|
||
rtx static_chain_value = 0;
|
||
|
||
funexp = protect_from_queue (funexp, 0);
|
||
|
||
if (fndecl != 0)
|
||
/* Get possible static chain value for nested function in C. */
|
||
static_chain_value = lookup_static_chain (fndecl);
|
||
|
||
/* Make a valid memory address and copy constants through pseudo-regs,
|
||
but not for a constant address if -fno-function-cse. */
|
||
if (GET_CODE (funexp) != SYMBOL_REF)
|
||
/* If we are using registers for parameters, force the
|
||
function address into a register now. */
|
||
funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
|
||
? force_not_mem (memory_address (FUNCTION_MODE, funexp))
|
||
: memory_address (FUNCTION_MODE, funexp));
|
||
else if (! sibcallp)
|
||
{
|
||
#ifndef NO_FUNCTION_CSE
|
||
if (optimize && ! flag_no_function_cse)
|
||
#ifdef NO_RECURSIVE_FUNCTION_CSE
|
||
if (fndecl != current_function_decl)
|
||
#endif
|
||
funexp = force_reg (Pmode, funexp);
|
||
#endif
|
||
}
|
||
|
||
if (static_chain_value != 0)
|
||
{
|
||
emit_move_insn (static_chain_rtx, static_chain_value);
|
||
|
||
if (GET_CODE (static_chain_rtx) == REG)
|
||
use_reg (call_fusage, static_chain_rtx);
|
||
}
|
||
|
||
return funexp;
|
||
}
|
||
|
||
/* Generate instructions to call function FUNEXP,
|
||
and optionally pop the results.
|
||
The CALL_INSN is the first insn generated.
|
||
|
||
FNDECL is the declaration node of the function. This is given to the
|
||
macro RETURN_POPS_ARGS to determine whether this function pops its own args.
|
||
|
||
FUNTYPE is the data type of the function. This is given to the macro
|
||
RETURN_POPS_ARGS to determine whether this function pops its own args.
|
||
We used to allow an identifier for library functions, but that doesn't
|
||
work when the return type is an aggregate type and the calling convention
|
||
says that the pointer to this aggregate is to be popped by the callee.
|
||
|
||
STACK_SIZE is the number of bytes of arguments on the stack,
|
||
ROUNDED_STACK_SIZE is that number rounded up to
|
||
PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
|
||
both to put into the call insn and to generate explicit popping
|
||
code if necessary.
|
||
|
||
STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
|
||
It is zero if this call doesn't want a structure value.
|
||
|
||
NEXT_ARG_REG is the rtx that results from executing
|
||
FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
|
||
just after all the args have had their registers assigned.
|
||
This could be whatever you like, but normally it is the first
|
||
arg-register beyond those used for args in this call,
|
||
or 0 if all the arg-registers are used in this call.
|
||
It is passed on to `gen_call' so you can put this info in the call insn.
|
||
|
||
VALREG is a hard register in which a value is returned,
|
||
or 0 if the call does not return a value.
|
||
|
||
OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
|
||
the args to this call were processed.
|
||
We restore `inhibit_defer_pop' to that value.
|
||
|
||
CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
|
||
denote registers used by the called function. */
|
||
|
||
static void
|
||
emit_call_1 (rtx funexp, tree fndecl ATTRIBUTE_UNUSED, tree funtype ATTRIBUTE_UNUSED,
|
||
HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
|
||
HOST_WIDE_INT rounded_stack_size,
|
||
HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
|
||
rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
|
||
int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
|
||
CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
|
||
{
|
||
rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
|
||
rtx call_insn;
|
||
int already_popped = 0;
|
||
HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
|
||
#if defined (HAVE_call) && defined (HAVE_call_value)
|
||
rtx struct_value_size_rtx;
|
||
struct_value_size_rtx = GEN_INT (struct_value_size);
|
||
#endif
|
||
|
||
#ifdef CALL_POPS_ARGS
|
||
n_popped += CALL_POPS_ARGS (* args_so_far);
|
||
#endif
|
||
|
||
/* Ensure address is valid. SYMBOL_REF is already valid, so no need,
|
||
and we don't want to load it into a register as an optimization,
|
||
because prepare_call_address already did it if it should be done. */
|
||
if (GET_CODE (funexp) != SYMBOL_REF)
|
||
funexp = memory_address (FUNCTION_MODE, funexp);
|
||
|
||
#if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
|
||
if ((ecf_flags & ECF_SIBCALL)
|
||
&& HAVE_sibcall_pop && HAVE_sibcall_value_pop
|
||
&& (n_popped > 0 || stack_size == 0))
|
||
{
|
||
rtx n_pop = GEN_INT (n_popped);
|
||
rtx pat;
|
||
|
||
/* If this subroutine pops its own args, record that in the call insn
|
||
if possible, for the sake of frame pointer elimination. */
|
||
|
||
if (valreg)
|
||
pat = GEN_SIBCALL_VALUE_POP (valreg,
|
||
gen_rtx_MEM (FUNCTION_MODE, funexp),
|
||
rounded_stack_size_rtx, next_arg_reg,
|
||
n_pop);
|
||
else
|
||
pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
|
||
rounded_stack_size_rtx, next_arg_reg, n_pop);
|
||
|
||
emit_call_insn (pat);
|
||
already_popped = 1;
|
||
}
|
||
else
|
||
#endif
|
||
|
||
#if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
|
||
/* If the target has "call" or "call_value" insns, then prefer them
|
||
if no arguments are actually popped. If the target does not have
|
||
"call" or "call_value" insns, then we must use the popping versions
|
||
even if the call has no arguments to pop. */
|
||
#if defined (HAVE_call) && defined (HAVE_call_value)
|
||
if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
|
||
&& n_popped > 0 && ! (ecf_flags & ECF_SP_DEPRESSED))
|
||
#else
|
||
if (HAVE_call_pop && HAVE_call_value_pop)
|
||
#endif
|
||
{
|
||
rtx n_pop = GEN_INT (n_popped);
|
||
rtx pat;
|
||
|
||
/* If this subroutine pops its own args, record that in the call insn
|
||
if possible, for the sake of frame pointer elimination. */
|
||
|
||
if (valreg)
|
||
pat = GEN_CALL_VALUE_POP (valreg,
|
||
gen_rtx_MEM (FUNCTION_MODE, funexp),
|
||
rounded_stack_size_rtx, next_arg_reg, n_pop);
|
||
else
|
||
pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
|
||
rounded_stack_size_rtx, next_arg_reg, n_pop);
|
||
|
||
emit_call_insn (pat);
|
||
already_popped = 1;
|
||
}
|
||
else
|
||
#endif
|
||
|
||
#if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
|
||
if ((ecf_flags & ECF_SIBCALL)
|
||
&& HAVE_sibcall && HAVE_sibcall_value)
|
||
{
|
||
if (valreg)
|
||
emit_call_insn (GEN_SIBCALL_VALUE (valreg,
|
||
gen_rtx_MEM (FUNCTION_MODE, funexp),
|
||
rounded_stack_size_rtx,
|
||
next_arg_reg, NULL_RTX));
|
||
else
|
||
emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
|
||
rounded_stack_size_rtx, next_arg_reg,
|
||
struct_value_size_rtx));
|
||
}
|
||
else
|
||
#endif
|
||
|
||
#if defined (HAVE_call) && defined (HAVE_call_value)
|
||
if (HAVE_call && HAVE_call_value)
|
||
{
|
||
if (valreg)
|
||
emit_call_insn (GEN_CALL_VALUE (valreg,
|
||
gen_rtx_MEM (FUNCTION_MODE, funexp),
|
||
rounded_stack_size_rtx, next_arg_reg,
|
||
NULL_RTX));
|
||
else
|
||
emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
|
||
rounded_stack_size_rtx, next_arg_reg,
|
||
struct_value_size_rtx));
|
||
}
|
||
else
|
||
#endif
|
||
abort ();
|
||
|
||
/* Find the call we just emitted. */
|
||
call_insn = last_call_insn ();
|
||
|
||
/* Mark memory as used for "pure" function call. */
|
||
if (ecf_flags & ECF_PURE)
|
||
call_fusage
|
||
= gen_rtx_EXPR_LIST
|
||
(VOIDmode,
|
||
gen_rtx_USE (VOIDmode,
|
||
gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))),
|
||
call_fusage);
|
||
|
||
/* Put the register usage information there. */
|
||
add_function_usage_to (call_insn, call_fusage);
|
||
|
||
/* If this is a const call, then set the insn's unchanging bit. */
|
||
if (ecf_flags & (ECF_CONST | ECF_PURE))
|
||
CONST_OR_PURE_CALL_P (call_insn) = 1;
|
||
|
||
/* If this call can't throw, attach a REG_EH_REGION reg note to that
|
||
effect. */
|
||
if (ecf_flags & ECF_NOTHROW)
|
||
REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, const0_rtx,
|
||
REG_NOTES (call_insn));
|
||
else
|
||
note_eh_region_may_contain_throw ();
|
||
|
||
if (ecf_flags & ECF_NORETURN)
|
||
REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_NORETURN, const0_rtx,
|
||
REG_NOTES (call_insn));
|
||
if (ecf_flags & ECF_ALWAYS_RETURN)
|
||
REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_ALWAYS_RETURN, const0_rtx,
|
||
REG_NOTES (call_insn));
|
||
|
||
if (ecf_flags & ECF_RETURNS_TWICE)
|
||
{
|
||
REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_SETJMP, const0_rtx,
|
||
REG_NOTES (call_insn));
|
||
current_function_calls_setjmp = 1;
|
||
}
|
||
|
||
SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
|
||
|
||
/* Restore this now, so that we do defer pops for this call's args
|
||
if the context of the call as a whole permits. */
|
||
inhibit_defer_pop = old_inhibit_defer_pop;
|
||
|
||
if (n_popped > 0)
|
||
{
|
||
if (!already_popped)
|
||
CALL_INSN_FUNCTION_USAGE (call_insn)
|
||
= gen_rtx_EXPR_LIST (VOIDmode,
|
||
gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
|
||
CALL_INSN_FUNCTION_USAGE (call_insn));
|
||
rounded_stack_size -= n_popped;
|
||
rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
|
||
stack_pointer_delta -= n_popped;
|
||
}
|
||
|
||
if (!ACCUMULATE_OUTGOING_ARGS)
|
||
{
|
||
/* If returning from the subroutine does not automatically pop the args,
|
||
we need an instruction to pop them sooner or later.
|
||
Perhaps do it now; perhaps just record how much space to pop later.
|
||
|
||
If returning from the subroutine does pop the args, indicate that the
|
||
stack pointer will be changed. */
|
||
|
||
if (rounded_stack_size != 0)
|
||
{
|
||
if (ecf_flags & (ECF_SP_DEPRESSED | ECF_NORETURN | ECF_LONGJMP))
|
||
/* Just pretend we did the pop. */
|
||
stack_pointer_delta -= rounded_stack_size;
|
||
else if (flag_defer_pop && inhibit_defer_pop == 0
|
||
&& ! (ecf_flags & (ECF_CONST | ECF_PURE)))
|
||
pending_stack_adjust += rounded_stack_size;
|
||
else
|
||
adjust_stack (rounded_stack_size_rtx);
|
||
}
|
||
}
|
||
/* When we accumulate outgoing args, we must avoid any stack manipulations.
|
||
Restore the stack pointer to its original value now. Usually
|
||
ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
|
||
On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
|
||
popping variants of functions exist as well.
|
||
|
||
??? We may optimize similar to defer_pop above, but it is
|
||
probably not worthwhile.
|
||
|
||
??? It will be worthwhile to enable combine_stack_adjustments even for
|
||
such machines. */
|
||
else if (n_popped)
|
||
anti_adjust_stack (GEN_INT (n_popped));
|
||
}
|
||
|
||
/* Determine if the function identified by NAME and FNDECL is one with
|
||
special properties we wish to know about.
|
||
|
||
For example, if the function might return more than one time (setjmp), then
|
||
set RETURNS_TWICE to a nonzero value.
|
||
|
||
Similarly set LONGJMP for if the function is in the longjmp family.
|
||
|
||
Set MAY_BE_ALLOCA for any memory allocation function that might allocate
|
||
space from the stack such as alloca. */
|
||
|
||
static int
|
||
special_function_p (tree fndecl, int flags)
|
||
{
|
||
if (! (flags & ECF_MALLOC)
|
||
&& fndecl && DECL_NAME (fndecl)
|
||
&& IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
|
||
/* Exclude functions not at the file scope, or not `extern',
|
||
since they are not the magic functions we would otherwise
|
||
think they are.
|
||
FIXME: this should be handled with attributes, not with this
|
||
hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
|
||
because you can declare fork() inside a function if you
|
||
wish. */
|
||
&& (DECL_CONTEXT (fndecl) == NULL_TREE
|
||
|| TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
|
||
&& TREE_PUBLIC (fndecl))
|
||
{
|
||
const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
|
||
const char *tname = name;
|
||
|
||
/* We assume that alloca will always be called by name. It
|
||
makes no sense to pass it as a pointer-to-function to
|
||
anything that does not understand its behavior. */
|
||
if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
|
||
&& name[0] == 'a'
|
||
&& ! strcmp (name, "alloca"))
|
||
|| (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
|
||
&& name[0] == '_'
|
||
&& ! strcmp (name, "__builtin_alloca"))))
|
||
flags |= ECF_MAY_BE_ALLOCA;
|
||
|
||
/* Disregard prefix _, __ or __x. */
|
||
if (name[0] == '_')
|
||
{
|
||
if (name[1] == '_' && name[2] == 'x')
|
||
tname += 3;
|
||
else if (name[1] == '_')
|
||
tname += 2;
|
||
else
|
||
tname += 1;
|
||
}
|
||
|
||
if (tname[0] == 's')
|
||
{
|
||
if ((tname[1] == 'e'
|
||
&& (! strcmp (tname, "setjmp")
|
||
|| ! strcmp (tname, "setjmp_syscall")))
|
||
|| (tname[1] == 'i'
|
||
&& ! strcmp (tname, "sigsetjmp"))
|
||
|| (tname[1] == 'a'
|
||
&& ! strcmp (tname, "savectx")))
|
||
flags |= ECF_RETURNS_TWICE;
|
||
|
||
if (tname[1] == 'i'
|
||
&& ! strcmp (tname, "siglongjmp"))
|
||
flags |= ECF_LONGJMP;
|
||
}
|
||
else if ((tname[0] == 'q' && tname[1] == 's'
|
||
&& ! strcmp (tname, "qsetjmp"))
|
||
|| (tname[0] == 'v' && tname[1] == 'f'
|
||
&& ! strcmp (tname, "vfork")))
|
||
flags |= ECF_RETURNS_TWICE;
|
||
|
||
else if (tname[0] == 'l' && tname[1] == 'o'
|
||
&& ! strcmp (tname, "longjmp"))
|
||
flags |= ECF_LONGJMP;
|
||
|
||
else if ((tname[0] == 'f' && tname[1] == 'o'
|
||
&& ! strcmp (tname, "fork"))
|
||
/* Linux specific: __clone. check NAME to insist on the
|
||
leading underscores, to avoid polluting the ISO / POSIX
|
||
namespace. */
|
||
|| (name[0] == '_' && name[1] == '_'
|
||
&& ! strcmp (tname, "clone"))
|
||
|| (tname[0] == 'e' && tname[1] == 'x' && tname[2] == 'e'
|
||
&& tname[3] == 'c' && (tname[4] == 'l' || tname[4] == 'v')
|
||
&& (tname[5] == '\0'
|
||
|| ((tname[5] == 'p' || tname[5] == 'e')
|
||
&& tname[6] == '\0'))))
|
||
flags |= ECF_FORK_OR_EXEC;
|
||
}
|
||
return flags;
|
||
}
|
||
|
||
/* Return nonzero when tree represent call to longjmp. */
|
||
|
||
int
|
||
setjmp_call_p (tree fndecl)
|
||
{
|
||
return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
|
||
}
|
||
|
||
/* Return true when exp contains alloca call. */
|
||
bool
|
||
alloca_call_p (tree exp)
|
||
{
|
||
if (TREE_CODE (exp) == CALL_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
|
||
&& (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
||
== FUNCTION_DECL)
|
||
&& (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
|
||
0) & ECF_MAY_BE_ALLOCA))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Detect flags (function attributes) from the function decl or type node. */
|
||
|
||
int
|
||
flags_from_decl_or_type (tree exp)
|
||
{
|
||
int flags = 0;
|
||
tree type = exp;
|
||
|
||
if (DECL_P (exp))
|
||
{
|
||
struct cgraph_rtl_info *i = cgraph_rtl_info (exp);
|
||
type = TREE_TYPE (exp);
|
||
|
||
if (i)
|
||
{
|
||
if (i->pure_function)
|
||
flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
|
||
if (i->const_function)
|
||
flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
|
||
}
|
||
|
||
/* The function exp may have the `malloc' attribute. */
|
||
if (DECL_IS_MALLOC (exp))
|
||
flags |= ECF_MALLOC;
|
||
|
||
/* The function exp may have the `pure' attribute. */
|
||
if (DECL_IS_PURE (exp))
|
||
flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
|
||
|
||
if (TREE_NOTHROW (exp))
|
||
flags |= ECF_NOTHROW;
|
||
|
||
if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
|
||
flags |= ECF_LIBCALL_BLOCK;
|
||
}
|
||
|
||
if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
|
||
flags |= ECF_CONST;
|
||
|
||
if (TREE_THIS_VOLATILE (exp))
|
||
flags |= ECF_NORETURN;
|
||
|
||
/* Mark if the function returns with the stack pointer depressed. We
|
||
cannot consider it pure or constant in that case. */
|
||
if (TREE_CODE (type) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (type))
|
||
{
|
||
flags |= ECF_SP_DEPRESSED;
|
||
flags &= ~(ECF_PURE | ECF_CONST | ECF_LIBCALL_BLOCK);
|
||
}
|
||
|
||
return flags;
|
||
}
|
||
|
||
/* Detect flags from a CALL_EXPR. */
|
||
|
||
int
|
||
call_expr_flags (tree t)
|
||
{
|
||
int flags;
|
||
tree decl = get_callee_fndecl (t);
|
||
|
||
if (decl)
|
||
flags = flags_from_decl_or_type (decl);
|
||
else
|
||
{
|
||
t = TREE_TYPE (TREE_OPERAND (t, 0));
|
||
if (t && TREE_CODE (t) == POINTER_TYPE)
|
||
flags = flags_from_decl_or_type (TREE_TYPE (t));
|
||
else
|
||
flags = 0;
|
||
}
|
||
|
||
return flags;
|
||
}
|
||
|
||
/* Precompute all register parameters as described by ARGS, storing values
|
||
into fields within the ARGS array.
|
||
|
||
NUM_ACTUALS indicates the total number elements in the ARGS array.
|
||
|
||
Set REG_PARM_SEEN if we encounter a register parameter. */
|
||
|
||
static void
|
||
precompute_register_parameters (int num_actuals, struct arg_data *args, int *reg_parm_seen)
|
||
{
|
||
int i;
|
||
|
||
*reg_parm_seen = 0;
|
||
|
||
for (i = 0; i < num_actuals; i++)
|
||
if (args[i].reg != 0 && ! args[i].pass_on_stack)
|
||
{
|
||
*reg_parm_seen = 1;
|
||
|
||
if (args[i].value == 0)
|
||
{
|
||
push_temp_slots ();
|
||
args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
|
||
VOIDmode, 0);
|
||
preserve_temp_slots (args[i].value);
|
||
pop_temp_slots ();
|
||
|
||
/* ANSI doesn't require a sequence point here,
|
||
but PCC has one, so this will avoid some problems. */
|
||
emit_queue ();
|
||
}
|
||
|
||
/* If the value is a non-legitimate constant, force it into a
|
||
pseudo now. TLS symbols sometimes need a call to resolve. */
|
||
if (CONSTANT_P (args[i].value)
|
||
&& !LEGITIMATE_CONSTANT_P (args[i].value))
|
||
args[i].value = force_reg (args[i].mode, args[i].value);
|
||
|
||
/* If we are to promote the function arg to a wider mode,
|
||
do it now. */
|
||
|
||
if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
|
||
args[i].value
|
||
= convert_modes (args[i].mode,
|
||
TYPE_MODE (TREE_TYPE (args[i].tree_value)),
|
||
args[i].value, args[i].unsignedp);
|
||
|
||
/* If the value is expensive, and we are inside an appropriately
|
||
short loop, put the value into a pseudo and then put the pseudo
|
||
into the hard reg.
|
||
|
||
For small register classes, also do this if this call uses
|
||
register parameters. This is to avoid reload conflicts while
|
||
loading the parameters registers. */
|
||
|
||
if ((! (GET_CODE (args[i].value) == REG
|
||
|| (GET_CODE (args[i].value) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (args[i].value)) == REG)))
|
||
&& args[i].mode != BLKmode
|
||
&& rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1)
|
||
&& ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
|
||
|| preserve_subexpressions_p ()))
|
||
args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
|
||
}
|
||
}
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
|
||
/* The argument list is the property of the called routine and it
|
||
may clobber it. If the fixed area has been used for previous
|
||
parameters, we must save and restore it. */
|
||
|
||
static rtx
|
||
save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
|
||
{
|
||
int low;
|
||
int high;
|
||
|
||
/* Compute the boundary of the area that needs to be saved, if any. */
|
||
high = reg_parm_stack_space;
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
high += 1;
|
||
#endif
|
||
if (high > highest_outgoing_arg_in_use)
|
||
high = highest_outgoing_arg_in_use;
|
||
|
||
for (low = 0; low < high; low++)
|
||
if (stack_usage_map[low] != 0)
|
||
{
|
||
int num_to_save;
|
||
enum machine_mode save_mode;
|
||
int delta;
|
||
rtx stack_area;
|
||
rtx save_area;
|
||
|
||
while (stack_usage_map[--high] == 0)
|
||
;
|
||
|
||
*low_to_save = low;
|
||
*high_to_save = high;
|
||
|
||
num_to_save = high - low + 1;
|
||
save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
|
||
|
||
/* If we don't have the required alignment, must do this
|
||
in BLKmode. */
|
||
if ((low & (MIN (GET_MODE_SIZE (save_mode),
|
||
BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
|
||
save_mode = BLKmode;
|
||
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
delta = -high;
|
||
#else
|
||
delta = low;
|
||
#endif
|
||
stack_area = gen_rtx_MEM (save_mode,
|
||
memory_address (save_mode,
|
||
plus_constant (argblock,
|
||
delta)));
|
||
|
||
set_mem_align (stack_area, PARM_BOUNDARY);
|
||
if (save_mode == BLKmode)
|
||
{
|
||
save_area = assign_stack_temp (BLKmode, num_to_save, 0);
|
||
emit_block_move (validize_mem (save_area), stack_area,
|
||
GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
|
||
}
|
||
else
|
||
{
|
||
save_area = gen_reg_rtx (save_mode);
|
||
emit_move_insn (save_area, stack_area);
|
||
}
|
||
|
||
return save_area;
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
static void
|
||
restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
|
||
{
|
||
enum machine_mode save_mode = GET_MODE (save_area);
|
||
int delta;
|
||
rtx stack_area;
|
||
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
delta = -high_to_save;
|
||
#else
|
||
delta = low_to_save;
|
||
#endif
|
||
stack_area = gen_rtx_MEM (save_mode,
|
||
memory_address (save_mode,
|
||
plus_constant (argblock, delta)));
|
||
set_mem_align (stack_area, PARM_BOUNDARY);
|
||
|
||
if (save_mode != BLKmode)
|
||
emit_move_insn (stack_area, save_area);
|
||
else
|
||
emit_block_move (stack_area, validize_mem (save_area),
|
||
GEN_INT (high_to_save - low_to_save + 1),
|
||
BLOCK_OP_CALL_PARM);
|
||
}
|
||
#endif /* REG_PARM_STACK_SPACE */
|
||
|
||
/* If any elements in ARGS refer to parameters that are to be passed in
|
||
registers, but not in memory, and whose alignment does not permit a
|
||
direct copy into registers. Copy the values into a group of pseudos
|
||
which we will later copy into the appropriate hard registers.
|
||
|
||
Pseudos for each unaligned argument will be stored into the array
|
||
args[argnum].aligned_regs. The caller is responsible for deallocating
|
||
the aligned_regs array if it is nonzero. */
|
||
|
||
static void
|
||
store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = 0; i < num_actuals; i++)
|
||
if (args[i].reg != 0 && ! args[i].pass_on_stack
|
||
&& args[i].mode == BLKmode
|
||
&& (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
|
||
< (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
|
||
{
|
||
int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
|
||
int nregs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
||
int endian_correction = 0;
|
||
|
||
args[i].n_aligned_regs = args[i].partial ? args[i].partial : nregs;
|
||
args[i].aligned_regs = xmalloc (sizeof (rtx) * args[i].n_aligned_regs);
|
||
|
||
/* Structures smaller than a word are normally aligned to the
|
||
least significant byte. On a BYTES_BIG_ENDIAN machine,
|
||
this means we must skip the empty high order bytes when
|
||
calculating the bit offset. */
|
||
if (bytes < UNITS_PER_WORD
|
||
#ifdef BLOCK_REG_PADDING
|
||
&& (BLOCK_REG_PADDING (args[i].mode,
|
||
TREE_TYPE (args[i].tree_value), 1)
|
||
== downward)
|
||
#else
|
||
&& BYTES_BIG_ENDIAN
|
||
#endif
|
||
)
|
||
endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
|
||
|
||
for (j = 0; j < args[i].n_aligned_regs; j++)
|
||
{
|
||
rtx reg = gen_reg_rtx (word_mode);
|
||
rtx word = operand_subword_force (args[i].value, j, BLKmode);
|
||
int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
|
||
|
||
args[i].aligned_regs[j] = reg;
|
||
word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
|
||
word_mode, word_mode, BITS_PER_WORD);
|
||
|
||
/* There is no need to restrict this code to loading items
|
||
in TYPE_ALIGN sized hunks. The bitfield instructions can
|
||
load up entire word sized registers efficiently.
|
||
|
||
??? This may not be needed anymore.
|
||
We use to emit a clobber here but that doesn't let later
|
||
passes optimize the instructions we emit. By storing 0 into
|
||
the register later passes know the first AND to zero out the
|
||
bitfield being set in the register is unnecessary. The store
|
||
of 0 will be deleted as will at least the first AND. */
|
||
|
||
emit_move_insn (reg, const0_rtx);
|
||
|
||
bytes -= bitsize / BITS_PER_UNIT;
|
||
store_bit_field (reg, bitsize, endian_correction, word_mode,
|
||
word, BITS_PER_WORD);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Fill in ARGS_SIZE and ARGS array based on the parameters found in
|
||
ACTPARMS.
|
||
|
||
NUM_ACTUALS is the total number of parameters.
|
||
|
||
N_NAMED_ARGS is the total number of named arguments.
|
||
|
||
FNDECL is the tree code for the target of this call (if known)
|
||
|
||
ARGS_SO_FAR holds state needed by the target to know where to place
|
||
the next argument.
|
||
|
||
REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
|
||
for arguments which are passed in registers.
|
||
|
||
OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
|
||
and may be modified by this routine.
|
||
|
||
OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
|
||
flags which may may be modified by this routine.
|
||
|
||
CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
|
||
the thunked-to function. */
|
||
|
||
static void
|
||
initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
|
||
struct arg_data *args,
|
||
struct args_size *args_size,
|
||
int n_named_args ATTRIBUTE_UNUSED,
|
||
tree actparms, tree fndecl,
|
||
CUMULATIVE_ARGS *args_so_far,
|
||
int reg_parm_stack_space,
|
||
rtx *old_stack_level, int *old_pending_adj,
|
||
int *must_preallocate, int *ecf_flags,
|
||
bool call_from_thunk_p)
|
||
{
|
||
/* 1 if scanning parms front to back, -1 if scanning back to front. */
|
||
int inc;
|
||
|
||
/* Count arg position in order args appear. */
|
||
int argpos;
|
||
|
||
int i;
|
||
tree p;
|
||
|
||
args_size->constant = 0;
|
||
args_size->var = 0;
|
||
|
||
/* In this loop, we consider args in the order they are written.
|
||
We fill up ARGS from the front or from the back if necessary
|
||
so that in any case the first arg to be pushed ends up at the front. */
|
||
|
||
if (PUSH_ARGS_REVERSED)
|
||
{
|
||
i = num_actuals - 1, inc = -1;
|
||
/* In this case, must reverse order of args
|
||
so that we compute and push the last arg first. */
|
||
}
|
||
else
|
||
{
|
||
i = 0, inc = 1;
|
||
}
|
||
|
||
/* I counts args in order (to be) pushed; ARGPOS counts in order written. */
|
||
for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
|
||
{
|
||
tree type = TREE_TYPE (TREE_VALUE (p));
|
||
int unsignedp;
|
||
enum machine_mode mode;
|
||
|
||
args[i].tree_value = TREE_VALUE (p);
|
||
|
||
/* Replace erroneous argument with constant zero. */
|
||
if (type == error_mark_node || !COMPLETE_TYPE_P (type))
|
||
args[i].tree_value = integer_zero_node, type = integer_type_node;
|
||
|
||
/* If TYPE is a transparent union, pass things the way we would
|
||
pass the first field of the union. We have already verified that
|
||
the modes are the same. */
|
||
if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
|
||
type = TREE_TYPE (TYPE_FIELDS (type));
|
||
|
||
/* Decide where to pass this arg.
|
||
|
||
args[i].reg is nonzero if all or part is passed in registers.
|
||
|
||
args[i].partial is nonzero if part but not all is passed in registers,
|
||
and the exact value says how many words are passed in registers.
|
||
|
||
args[i].pass_on_stack is nonzero if the argument must at least be
|
||
computed on the stack. It may then be loaded back into registers
|
||
if args[i].reg is nonzero.
|
||
|
||
These decisions are driven by the FUNCTION_... macros and must agree
|
||
with those made by function.c. */
|
||
|
||
/* See if this argument should be passed by invisible reference. */
|
||
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
|
||
|| TREE_ADDRESSABLE (type)
|
||
#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
|
||
|| FUNCTION_ARG_PASS_BY_REFERENCE (*args_so_far, TYPE_MODE (type),
|
||
type, argpos < n_named_args)
|
||
#endif
|
||
)
|
||
{
|
||
/* If we're compiling a thunk, pass through invisible
|
||
references instead of making a copy. */
|
||
if (call_from_thunk_p
|
||
#ifdef FUNCTION_ARG_CALLEE_COPIES
|
||
|| (FUNCTION_ARG_CALLEE_COPIES (*args_so_far, TYPE_MODE (type),
|
||
type, argpos < n_named_args)
|
||
/* If it's in a register, we must make a copy of it too. */
|
||
/* ??? Is this a sufficient test? Is there a better one? */
|
||
&& !(TREE_CODE (args[i].tree_value) == VAR_DECL
|
||
&& REG_P (DECL_RTL (args[i].tree_value)))
|
||
&& ! TREE_ADDRESSABLE (type))
|
||
#endif
|
||
)
|
||
{
|
||
/* C++ uses a TARGET_EXPR to indicate that we want to make a
|
||
new object from the argument. If we are passing by
|
||
invisible reference, the callee will do that for us, so we
|
||
can strip off the TARGET_EXPR. This is not always safe,
|
||
but it is safe in the only case where this is a useful
|
||
optimization; namely, when the argument is a plain object.
|
||
In that case, the frontend is just asking the backend to
|
||
make a bitwise copy of the argument. */
|
||
|
||
if (TREE_CODE (args[i].tree_value) == TARGET_EXPR
|
||
&& (DECL_P (TREE_OPERAND (args[i].tree_value, 1)))
|
||
&& ! REG_P (DECL_RTL (TREE_OPERAND (args[i].tree_value, 1))))
|
||
args[i].tree_value = TREE_OPERAND (args[i].tree_value, 1);
|
||
|
||
args[i].tree_value = build1 (ADDR_EXPR,
|
||
build_pointer_type (type),
|
||
args[i].tree_value);
|
||
type = build_pointer_type (type);
|
||
}
|
||
else if (TREE_CODE (args[i].tree_value) == TARGET_EXPR)
|
||
{
|
||
/* In the V3 C++ ABI, parameters are destroyed in the caller.
|
||
We implement this by passing the address of the temporary
|
||
rather than expanding it into another allocated slot. */
|
||
args[i].tree_value = build1 (ADDR_EXPR,
|
||
build_pointer_type (type),
|
||
args[i].tree_value);
|
||
type = build_pointer_type (type);
|
||
}
|
||
else
|
||
{
|
||
/* We make a copy of the object and pass the address to the
|
||
function being called. */
|
||
rtx copy;
|
||
|
||
if (!COMPLETE_TYPE_P (type)
|
||
|| TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
|
||
|| (flag_stack_check && ! STACK_CHECK_BUILTIN
|
||
&& (0 < compare_tree_int (TYPE_SIZE_UNIT (type),
|
||
STACK_CHECK_MAX_VAR_SIZE))))
|
||
{
|
||
/* This is a variable-sized object. Make space on the stack
|
||
for it. */
|
||
rtx size_rtx = expr_size (TREE_VALUE (p));
|
||
|
||
if (*old_stack_level == 0)
|
||
{
|
||
emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
|
||
*old_pending_adj = pending_stack_adjust;
|
||
pending_stack_adjust = 0;
|
||
}
|
||
|
||
copy = gen_rtx_MEM (BLKmode,
|
||
allocate_dynamic_stack_space
|
||
(size_rtx, NULL_RTX, TYPE_ALIGN (type)));
|
||
set_mem_attributes (copy, type, 1);
|
||
}
|
||
else
|
||
copy = assign_temp (type, 0, 1, 0);
|
||
|
||
store_expr (args[i].tree_value, copy, 0);
|
||
*ecf_flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
|
||
|
||
args[i].tree_value = build1 (ADDR_EXPR,
|
||
build_pointer_type (type),
|
||
make_tree (type, copy));
|
||
type = build_pointer_type (type);
|
||
}
|
||
}
|
||
|
||
mode = TYPE_MODE (type);
|
||
unsignedp = TREE_UNSIGNED (type);
|
||
|
||
if (targetm.calls.promote_function_args (fndecl ? TREE_TYPE (fndecl) : 0))
|
||
mode = promote_mode (type, mode, &unsignedp, 1);
|
||
|
||
args[i].unsignedp = unsignedp;
|
||
args[i].mode = mode;
|
||
|
||
args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
|
||
argpos < n_named_args);
|
||
#ifdef FUNCTION_INCOMING_ARG
|
||
/* If this is a sibling call and the machine has register windows, the
|
||
register window has to be unwinded before calling the routine, so
|
||
arguments have to go into the incoming registers. */
|
||
args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
|
||
argpos < n_named_args);
|
||
#else
|
||
args[i].tail_call_reg = args[i].reg;
|
||
#endif
|
||
|
||
#ifdef FUNCTION_ARG_PARTIAL_NREGS
|
||
if (args[i].reg)
|
||
args[i].partial
|
||
= FUNCTION_ARG_PARTIAL_NREGS (*args_so_far, mode, type,
|
||
argpos < n_named_args);
|
||
#endif
|
||
|
||
args[i].pass_on_stack = MUST_PASS_IN_STACK (mode, type);
|
||
|
||
/* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
|
||
it means that we are to pass this arg in the register(s) designated
|
||
by the PARALLEL, but also to pass it in the stack. */
|
||
if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
|
||
&& XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
|
||
args[i].pass_on_stack = 1;
|
||
|
||
/* If this is an addressable type, we must preallocate the stack
|
||
since we must evaluate the object into its final location.
|
||
|
||
If this is to be passed in both registers and the stack, it is simpler
|
||
to preallocate. */
|
||
if (TREE_ADDRESSABLE (type)
|
||
|| (args[i].pass_on_stack && args[i].reg != 0))
|
||
*must_preallocate = 1;
|
||
|
||
/* If this is an addressable type, we cannot pre-evaluate it. Thus,
|
||
we cannot consider this function call constant. */
|
||
if (TREE_ADDRESSABLE (type))
|
||
*ecf_flags &= ~ECF_LIBCALL_BLOCK;
|
||
|
||
/* Compute the stack-size of this argument. */
|
||
if (args[i].reg == 0 || args[i].partial != 0
|
||
|| reg_parm_stack_space > 0
|
||
|| args[i].pass_on_stack)
|
||
locate_and_pad_parm (mode, type,
|
||
#ifdef STACK_PARMS_IN_REG_PARM_AREA
|
||
1,
|
||
#else
|
||
args[i].reg != 0,
|
||
#endif
|
||
args[i].pass_on_stack ? 0 : args[i].partial,
|
||
fndecl, args_size, &args[i].locate);
|
||
#ifdef BLOCK_REG_PADDING
|
||
else
|
||
/* The argument is passed entirely in registers. See at which
|
||
end it should be padded. */
|
||
args[i].locate.where_pad =
|
||
BLOCK_REG_PADDING (mode, type,
|
||
int_size_in_bytes (type) <= UNITS_PER_WORD);
|
||
#endif
|
||
|
||
/* Update ARGS_SIZE, the total stack space for args so far. */
|
||
|
||
args_size->constant += args[i].locate.size.constant;
|
||
if (args[i].locate.size.var)
|
||
ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
|
||
|
||
/* Increment ARGS_SO_FAR, which has info about which arg-registers
|
||
have been used, etc. */
|
||
|
||
FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
|
||
argpos < n_named_args);
|
||
}
|
||
}
|
||
|
||
/* Update ARGS_SIZE to contain the total size for the argument block.
|
||
Return the original constant component of the argument block's size.
|
||
|
||
REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
|
||
for arguments passed in registers. */
|
||
|
||
static int
|
||
compute_argument_block_size (int reg_parm_stack_space,
|
||
struct args_size *args_size,
|
||
int preferred_stack_boundary ATTRIBUTE_UNUSED)
|
||
{
|
||
int unadjusted_args_size = args_size->constant;
|
||
|
||
/* For accumulate outgoing args mode we don't need to align, since the frame
|
||
will be already aligned. Align to STACK_BOUNDARY in order to prevent
|
||
backends from generating misaligned frame sizes. */
|
||
if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
|
||
preferred_stack_boundary = STACK_BOUNDARY;
|
||
|
||
/* Compute the actual size of the argument block required. The variable
|
||
and constant sizes must be combined, the size may have to be rounded,
|
||
and there may be a minimum required size. */
|
||
|
||
if (args_size->var)
|
||
{
|
||
args_size->var = ARGS_SIZE_TREE (*args_size);
|
||
args_size->constant = 0;
|
||
|
||
preferred_stack_boundary /= BITS_PER_UNIT;
|
||
if (preferred_stack_boundary > 1)
|
||
{
|
||
/* We don't handle this case yet. To handle it correctly we have
|
||
to add the delta, round and subtract the delta.
|
||
Currently no machine description requires this support. */
|
||
if (stack_pointer_delta & (preferred_stack_boundary - 1))
|
||
abort ();
|
||
args_size->var = round_up (args_size->var, preferred_stack_boundary);
|
||
}
|
||
|
||
if (reg_parm_stack_space > 0)
|
||
{
|
||
args_size->var
|
||
= size_binop (MAX_EXPR, args_size->var,
|
||
ssize_int (reg_parm_stack_space));
|
||
|
||
#ifndef OUTGOING_REG_PARM_STACK_SPACE
|
||
/* The area corresponding to register parameters is not to count in
|
||
the size of the block we need. So make the adjustment. */
|
||
args_size->var
|
||
= size_binop (MINUS_EXPR, args_size->var,
|
||
ssize_int (reg_parm_stack_space));
|
||
#endif
|
||
}
|
||
}
|
||
else
|
||
{
|
||
preferred_stack_boundary /= BITS_PER_UNIT;
|
||
if (preferred_stack_boundary < 1)
|
||
preferred_stack_boundary = 1;
|
||
args_size->constant = (((args_size->constant
|
||
+ stack_pointer_delta
|
||
+ preferred_stack_boundary - 1)
|
||
/ preferred_stack_boundary
|
||
* preferred_stack_boundary)
|
||
- stack_pointer_delta);
|
||
|
||
args_size->constant = MAX (args_size->constant,
|
||
reg_parm_stack_space);
|
||
|
||
#ifdef MAYBE_REG_PARM_STACK_SPACE
|
||
if (reg_parm_stack_space == 0)
|
||
args_size->constant = 0;
|
||
#endif
|
||
|
||
#ifndef OUTGOING_REG_PARM_STACK_SPACE
|
||
args_size->constant -= reg_parm_stack_space;
|
||
#endif
|
||
}
|
||
return unadjusted_args_size;
|
||
}
|
||
|
||
/* Precompute parameters as needed for a function call.
|
||
|
||
FLAGS is mask of ECF_* constants.
|
||
|
||
NUM_ACTUALS is the number of arguments.
|
||
|
||
ARGS is an array containing information for each argument; this
|
||
routine fills in the INITIAL_VALUE and VALUE fields for each
|
||
precomputed argument. */
|
||
|
||
static void
|
||
precompute_arguments (int flags, int num_actuals, struct arg_data *args)
|
||
{
|
||
int i;
|
||
|
||
/* If this function call is cse'able, precompute all the parameters.
|
||
Note that if the parameter is constructed into a temporary, this will
|
||
cause an additional copy because the parameter will be constructed
|
||
into a temporary location and then copied into the outgoing arguments.
|
||
If a parameter contains a call to alloca and this function uses the
|
||
stack, precompute the parameter. */
|
||
|
||
/* If we preallocated the stack space, and some arguments must be passed
|
||
on the stack, then we must precompute any parameter which contains a
|
||
function call which will store arguments on the stack.
|
||
Otherwise, evaluating the parameter may clobber previous parameters
|
||
which have already been stored into the stack. (we have code to avoid
|
||
such case by saving the outgoing stack arguments, but it results in
|
||
worse code) */
|
||
|
||
for (i = 0; i < num_actuals; i++)
|
||
if ((flags & ECF_LIBCALL_BLOCK)
|
||
|| calls_function (args[i].tree_value, !ACCUMULATE_OUTGOING_ARGS))
|
||
{
|
||
enum machine_mode mode;
|
||
|
||
/* If this is an addressable type, we cannot pre-evaluate it. */
|
||
if (TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)))
|
||
abort ();
|
||
|
||
args[i].value
|
||
= expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);
|
||
|
||
/* ANSI doesn't require a sequence point here,
|
||
but PCC has one, so this will avoid some problems. */
|
||
emit_queue ();
|
||
|
||
args[i].initial_value = args[i].value
|
||
= protect_from_queue (args[i].value, 0);
|
||
|
||
mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
|
||
if (mode != args[i].mode)
|
||
{
|
||
args[i].value
|
||
= convert_modes (args[i].mode, mode,
|
||
args[i].value, args[i].unsignedp);
|
||
#ifdef PROMOTE_FOR_CALL_ONLY
|
||
/* CSE will replace this only if it contains args[i].value
|
||
pseudo, so convert it down to the declared mode using
|
||
a SUBREG. */
|
||
if (GET_CODE (args[i].value) == REG
|
||
&& GET_MODE_CLASS (args[i].mode) == MODE_INT)
|
||
{
|
||
args[i].initial_value
|
||
= gen_lowpart_SUBREG (mode, args[i].value);
|
||
SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
|
||
SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
|
||
args[i].unsignedp);
|
||
}
|
||
#endif
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Given the current state of MUST_PREALLOCATE and information about
|
||
arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
|
||
compute and return the final value for MUST_PREALLOCATE. */
|
||
|
||
static int
|
||
finalize_must_preallocate (int must_preallocate, int num_actuals, struct arg_data *args, struct args_size *args_size)
|
||
{
|
||
/* See if we have or want to preallocate stack space.
|
||
|
||
If we would have to push a partially-in-regs parm
|
||
before other stack parms, preallocate stack space instead.
|
||
|
||
If the size of some parm is not a multiple of the required stack
|
||
alignment, we must preallocate.
|
||
|
||
If the total size of arguments that would otherwise create a copy in
|
||
a temporary (such as a CALL) is more than half the total argument list
|
||
size, preallocation is faster.
|
||
|
||
Another reason to preallocate is if we have a machine (like the m88k)
|
||
where stack alignment is required to be maintained between every
|
||
pair of insns, not just when the call is made. However, we assume here
|
||
that such machines either do not have push insns (and hence preallocation
|
||
would occur anyway) or the problem is taken care of with
|
||
PUSH_ROUNDING. */
|
||
|
||
if (! must_preallocate)
|
||
{
|
||
int partial_seen = 0;
|
||
int copy_to_evaluate_size = 0;
|
||
int i;
|
||
|
||
for (i = 0; i < num_actuals && ! must_preallocate; i++)
|
||
{
|
||
if (args[i].partial > 0 && ! args[i].pass_on_stack)
|
||
partial_seen = 1;
|
||
else if (partial_seen && args[i].reg == 0)
|
||
must_preallocate = 1;
|
||
|
||
if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
|
||
&& (TREE_CODE (args[i].tree_value) == CALL_EXPR
|
||
|| TREE_CODE (args[i].tree_value) == TARGET_EXPR
|
||
|| TREE_CODE (args[i].tree_value) == COND_EXPR
|
||
|| TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
|
||
copy_to_evaluate_size
|
||
+= int_size_in_bytes (TREE_TYPE (args[i].tree_value));
|
||
}
|
||
|
||
if (copy_to_evaluate_size * 2 >= args_size->constant
|
||
&& args_size->constant > 0)
|
||
must_preallocate = 1;
|
||
}
|
||
return must_preallocate;
|
||
}
|
||
|
||
/* If we preallocated stack space, compute the address of each argument
|
||
and store it into the ARGS array.
|
||
|
||
We need not ensure it is a valid memory address here; it will be
|
||
validized when it is used.
|
||
|
||
ARGBLOCK is an rtx for the address of the outgoing arguments. */
|
||
|
||
static void
|
||
compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
|
||
{
|
||
if (argblock)
|
||
{
|
||
rtx arg_reg = argblock;
|
||
int i, arg_offset = 0;
|
||
|
||
if (GET_CODE (argblock) == PLUS)
|
||
arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
|
||
|
||
for (i = 0; i < num_actuals; i++)
|
||
{
|
||
rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
|
||
rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
|
||
rtx addr;
|
||
|
||
/* Skip this parm if it will not be passed on the stack. */
|
||
if (! args[i].pass_on_stack && args[i].reg != 0)
|
||
continue;
|
||
|
||
if (GET_CODE (offset) == CONST_INT)
|
||
addr = plus_constant (arg_reg, INTVAL (offset));
|
||
else
|
||
addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
|
||
|
||
addr = plus_constant (addr, arg_offset);
|
||
args[i].stack = gen_rtx_MEM (args[i].mode, addr);
|
||
set_mem_align (args[i].stack, PARM_BOUNDARY);
|
||
set_mem_attributes (args[i].stack,
|
||
TREE_TYPE (args[i].tree_value), 1);
|
||
|
||
if (GET_CODE (slot_offset) == CONST_INT)
|
||
addr = plus_constant (arg_reg, INTVAL (slot_offset));
|
||
else
|
||
addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
|
||
|
||
addr = plus_constant (addr, arg_offset);
|
||
args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
|
||
set_mem_align (args[i].stack_slot, PARM_BOUNDARY);
|
||
set_mem_attributes (args[i].stack_slot,
|
||
TREE_TYPE (args[i].tree_value), 1);
|
||
|
||
/* Function incoming arguments may overlap with sibling call
|
||
outgoing arguments and we cannot allow reordering of reads
|
||
from function arguments with stores to outgoing arguments
|
||
of sibling calls. */
|
||
set_mem_alias_set (args[i].stack, 0);
|
||
set_mem_alias_set (args[i].stack_slot, 0);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Given a FNDECL and EXP, return an rtx suitable for use as a target address
|
||
in a call instruction.
|
||
|
||
FNDECL is the tree node for the target function. For an indirect call
|
||
FNDECL will be NULL_TREE.
|
||
|
||
ADDR is the operand 0 of CALL_EXPR for this call. */
|
||
|
||
static rtx
|
||
rtx_for_function_call (tree fndecl, tree addr)
|
||
{
|
||
rtx funexp;
|
||
|
||
/* Get the function to call, in the form of RTL. */
|
||
if (fndecl)
|
||
{
|
||
/* If this is the first use of the function, see if we need to
|
||
make an external definition for it. */
|
||
if (! TREE_USED (fndecl))
|
||
{
|
||
assemble_external (fndecl);
|
||
TREE_USED (fndecl) = 1;
|
||
}
|
||
|
||
/* Get a SYMBOL_REF rtx for the function address. */
|
||
funexp = XEXP (DECL_RTL (fndecl), 0);
|
||
}
|
||
else
|
||
/* Generate an rtx (probably a pseudo-register) for the address. */
|
||
{
|
||
push_temp_slots ();
|
||
funexp = expand_expr (addr, NULL_RTX, VOIDmode, 0);
|
||
pop_temp_slots (); /* FUNEXP can't be BLKmode. */
|
||
emit_queue ();
|
||
}
|
||
return funexp;
|
||
}
|
||
|
||
/* Do the register loads required for any wholly-register parms or any
|
||
parms which are passed both on the stack and in a register. Their
|
||
expressions were already evaluated.
|
||
|
||
Mark all register-parms as living through the call, putting these USE
|
||
insns in the CALL_INSN_FUNCTION_USAGE field.
|
||
|
||
When IS_SIBCALL, perform the check_sibcall_overlap_argument_overlap
|
||
checking, setting *SIBCALL_FAILURE if appropriate. */
|
||
|
||
static void
|
||
load_register_parameters (struct arg_data *args, int num_actuals,
|
||
rtx *call_fusage, int flags, int is_sibcall,
|
||
int *sibcall_failure)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = 0; i < num_actuals; i++)
|
||
{
|
||
rtx reg = ((flags & ECF_SIBCALL)
|
||
? args[i].tail_call_reg : args[i].reg);
|
||
if (reg)
|
||
{
|
||
int partial = args[i].partial;
|
||
int nregs;
|
||
int size = 0;
|
||
rtx before_arg = get_last_insn ();
|
||
/* Set to non-negative if must move a word at a time, even if just
|
||
one word (e.g, partial == 1 && mode == DFmode). Set to -1 if
|
||
we just use a normal move insn. This value can be zero if the
|
||
argument is a zero size structure with no fields. */
|
||
nregs = -1;
|
||
if (partial)
|
||
nregs = partial;
|
||
else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
|
||
{
|
||
size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
|
||
nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
|
||
}
|
||
else
|
||
size = GET_MODE_SIZE (args[i].mode);
|
||
|
||
/* Handle calls that pass values in multiple non-contiguous
|
||
locations. The Irix 6 ABI has examples of this. */
|
||
|
||
if (GET_CODE (reg) == PARALLEL)
|
||
{
|
||
tree type = TREE_TYPE (args[i].tree_value);
|
||
emit_group_load (reg, args[i].value, type,
|
||
int_size_in_bytes (type));
|
||
}
|
||
|
||
/* If simple case, just do move. If normal partial, store_one_arg
|
||
has already loaded the register for us. In all other cases,
|
||
load the register(s) from memory. */
|
||
|
||
else if (nregs == -1)
|
||
{
|
||
emit_move_insn (reg, args[i].value);
|
||
#ifdef BLOCK_REG_PADDING
|
||
/* Handle case where we have a value that needs shifting
|
||
up to the msb. eg. a QImode value and we're padding
|
||
upward on a BYTES_BIG_ENDIAN machine. */
|
||
if (size < UNITS_PER_WORD
|
||
&& (args[i].locate.where_pad
|
||
== (BYTES_BIG_ENDIAN ? upward : downward)))
|
||
{
|
||
rtx x;
|
||
int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
|
||
|
||
/* Assigning REG here rather than a temp makes CALL_FUSAGE
|
||
report the whole reg as used. Strictly speaking, the
|
||
call only uses SIZE bytes at the msb end, but it doesn't
|
||
seem worth generating rtl to say that. */
|
||
reg = gen_rtx_REG (word_mode, REGNO (reg));
|
||
x = expand_binop (word_mode, ashl_optab, reg,
|
||
GEN_INT (shift), reg, 1, OPTAB_WIDEN);
|
||
if (x != reg)
|
||
emit_move_insn (reg, x);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* If we have pre-computed the values to put in the registers in
|
||
the case of non-aligned structures, copy them in now. */
|
||
|
||
else if (args[i].n_aligned_regs != 0)
|
||
for (j = 0; j < args[i].n_aligned_regs; j++)
|
||
emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
|
||
args[i].aligned_regs[j]);
|
||
|
||
else if (partial == 0 || args[i].pass_on_stack)
|
||
{
|
||
rtx mem = validize_mem (args[i].value);
|
||
|
||
#ifdef BLOCK_REG_PADDING
|
||
/* Handle a BLKmode that needs shifting. */
|
||
if (nregs == 1 && size < UNITS_PER_WORD
|
||
&& args[i].locate.where_pad == downward)
|
||
{
|
||
rtx tem = operand_subword_force (mem, 0, args[i].mode);
|
||
rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
|
||
rtx x = gen_reg_rtx (word_mode);
|
||
int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
|
||
optab dir = BYTES_BIG_ENDIAN ? lshr_optab : ashl_optab;
|
||
|
||
emit_move_insn (x, tem);
|
||
x = expand_binop (word_mode, dir, x, GEN_INT (shift),
|
||
ri, 1, OPTAB_WIDEN);
|
||
if (x != ri)
|
||
emit_move_insn (ri, x);
|
||
}
|
||
else
|
||
#endif
|
||
move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
|
||
}
|
||
|
||
/* When a parameter is a block, and perhaps in other cases, it is
|
||
possible that it did a load from an argument slot that was
|
||
already clobbered. */
|
||
if (is_sibcall
|
||
&& check_sibcall_argument_overlap (before_arg, &args[i], 0))
|
||
*sibcall_failure = 1;
|
||
|
||
/* Handle calls that pass values in multiple non-contiguous
|
||
locations. The Irix 6 ABI has examples of this. */
|
||
if (GET_CODE (reg) == PARALLEL)
|
||
use_group_regs (call_fusage, reg);
|
||
else if (nregs == -1)
|
||
use_reg (call_fusage, reg);
|
||
else
|
||
use_regs (call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Try to integrate function. See expand_inline_function for documentation
|
||
about the parameters. */
|
||
|
||
static rtx
|
||
try_to_integrate (tree fndecl, tree actparms, rtx target, int ignore,
|
||
tree type, rtx structure_value_addr)
|
||
{
|
||
rtx temp;
|
||
rtx before_call;
|
||
int i;
|
||
rtx old_stack_level = 0;
|
||
int reg_parm_stack_space = 0;
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
#ifdef MAYBE_REG_PARM_STACK_SPACE
|
||
reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
|
||
#else
|
||
reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
|
||
#endif
|
||
#endif
|
||
|
||
before_call = get_last_insn ();
|
||
|
||
timevar_push (TV_INTEGRATION);
|
||
|
||
temp = expand_inline_function (fndecl, actparms, target,
|
||
ignore, type,
|
||
structure_value_addr);
|
||
|
||
timevar_pop (TV_INTEGRATION);
|
||
|
||
/* If inlining succeeded, return. */
|
||
if (temp != (rtx) (size_t) - 1)
|
||
{
|
||
if (ACCUMULATE_OUTGOING_ARGS)
|
||
{
|
||
/* If the outgoing argument list must be preserved, push
|
||
the stack before executing the inlined function if it
|
||
makes any calls. */
|
||
|
||
i = reg_parm_stack_space;
|
||
if (i > highest_outgoing_arg_in_use)
|
||
i = highest_outgoing_arg_in_use;
|
||
while (--i >= 0 && stack_usage_map[i] == 0)
|
||
;
|
||
|
||
if (stack_arg_under_construction || i >= 0)
|
||
{
|
||
rtx first_insn
|
||
= before_call ? NEXT_INSN (before_call) : get_insns ();
|
||
rtx insn = NULL_RTX, seq;
|
||
|
||
/* Look for a call in the inline function code.
|
||
If DECL_STRUCT_FUNCTION (fndecl)->outgoing_args_size is
|
||
nonzero then there is a call and it is not necessary
|
||
to scan the insns. */
|
||
|
||
if (DECL_STRUCT_FUNCTION (fndecl)->outgoing_args_size == 0)
|
||
for (insn = first_insn; insn; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
break;
|
||
|
||
if (insn)
|
||
{
|
||
/* Reserve enough stack space so that the largest
|
||
argument list of any function call in the inline
|
||
function does not overlap the argument list being
|
||
evaluated. This is usually an overestimate because
|
||
allocate_dynamic_stack_space reserves space for an
|
||
outgoing argument list in addition to the requested
|
||
space, but there is no way to ask for stack space such
|
||
that an argument list of a certain length can be
|
||
safely constructed.
|
||
|
||
Add the stack space reserved for register arguments, if
|
||
any, in the inline function. What is really needed is the
|
||
largest value of reg_parm_stack_space in the inline
|
||
function, but that is not available. Using the current
|
||
value of reg_parm_stack_space is wrong, but gives
|
||
correct results on all supported machines. */
|
||
|
||
int adjust =
|
||
(DECL_STRUCT_FUNCTION (fndecl)->outgoing_args_size
|
||
+ reg_parm_stack_space);
|
||
|
||
start_sequence ();
|
||
emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
|
||
allocate_dynamic_stack_space (GEN_INT (adjust),
|
||
NULL_RTX, BITS_PER_UNIT);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
emit_insn_before (seq, first_insn);
|
||
emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If the result is equivalent to TARGET, return TARGET to simplify
|
||
checks in store_expr. They can be equivalent but not equal in the
|
||
case of a function that returns BLKmode. */
|
||
if (temp != target && rtx_equal_p (temp, target))
|
||
return target;
|
||
return temp;
|
||
}
|
||
|
||
/* If inlining failed, mark FNDECL as needing to be compiled
|
||
separately after all. If function was declared inline,
|
||
give a warning. */
|
||
if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline
|
||
&& optimize > 0 && !TREE_ADDRESSABLE (fndecl))
|
||
{
|
||
warning ("%Jinlining failed in call to '%F'", fndecl, fndecl);
|
||
warning ("called from here");
|
||
}
|
||
(*lang_hooks.mark_addressable) (fndecl);
|
||
return (rtx) (size_t) - 1;
|
||
}
|
||
|
||
/* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
|
||
wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
|
||
bytes, then we would need to push some additional bytes to pad the
|
||
arguments. So, we compute an adjust to the stack pointer for an
|
||
amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
|
||
bytes. Then, when the arguments are pushed the stack will be perfectly
|
||
aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
|
||
be popped after the call. Returns the adjustment. */
|
||
|
||
static int
|
||
combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
|
||
struct args_size *args_size,
|
||
int preferred_unit_stack_boundary)
|
||
{
|
||
/* The number of bytes to pop so that the stack will be
|
||
under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
|
||
HOST_WIDE_INT adjustment;
|
||
/* The alignment of the stack after the arguments are pushed, if we
|
||
just pushed the arguments without adjust the stack here. */
|
||
HOST_WIDE_INT unadjusted_alignment;
|
||
|
||
unadjusted_alignment
|
||
= ((stack_pointer_delta + unadjusted_args_size)
|
||
% preferred_unit_stack_boundary);
|
||
|
||
/* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
|
||
as possible -- leaving just enough left to cancel out the
|
||
UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
|
||
PENDING_STACK_ADJUST is non-negative, and congruent to
|
||
-UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
|
||
|
||
/* Begin by trying to pop all the bytes. */
|
||
unadjusted_alignment
|
||
= (unadjusted_alignment
|
||
- (pending_stack_adjust % preferred_unit_stack_boundary));
|
||
adjustment = pending_stack_adjust;
|
||
/* Push enough additional bytes that the stack will be aligned
|
||
after the arguments are pushed. */
|
||
if (preferred_unit_stack_boundary > 1)
|
||
{
|
||
if (unadjusted_alignment > 0)
|
||
adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
|
||
else
|
||
adjustment += unadjusted_alignment;
|
||
}
|
||
|
||
/* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
|
||
bytes after the call. The right number is the entire
|
||
PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
|
||
by the arguments in the first place. */
|
||
args_size->constant
|
||
= pending_stack_adjust - adjustment + unadjusted_args_size;
|
||
|
||
return adjustment;
|
||
}
|
||
|
||
/* Scan X expression if it does not dereference any argument slots
|
||
we already clobbered by tail call arguments (as noted in stored_args_map
|
||
bitmap).
|
||
Return nonzero if X expression dereferences such argument slots,
|
||
zero otherwise. */
|
||
|
||
static int
|
||
check_sibcall_argument_overlap_1 (rtx x)
|
||
{
|
||
RTX_CODE code;
|
||
int i, j;
|
||
unsigned int k;
|
||
const char *fmt;
|
||
|
||
if (x == NULL_RTX)
|
||
return 0;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
if (code == MEM)
|
||
{
|
||
if (XEXP (x, 0) == current_function_internal_arg_pointer)
|
||
i = 0;
|
||
else if (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& XEXP (XEXP (x, 0), 0) ==
|
||
current_function_internal_arg_pointer
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
|
||
i = INTVAL (XEXP (XEXP (x, 0), 1));
|
||
else
|
||
return 0;
|
||
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
i = -i - GET_MODE_SIZE (GET_MODE (x));
|
||
#endif
|
||
|
||
for (k = 0; k < GET_MODE_SIZE (GET_MODE (x)); k++)
|
||
if (i + k < stored_args_map->n_bits
|
||
&& TEST_BIT (stored_args_map, i + k))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Scan all subexpressions. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
||
{
|
||
if (*fmt == 'e')
|
||
{
|
||
if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
|
||
return 1;
|
||
}
|
||
else if (*fmt == 'E')
|
||
{
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Scan sequence after INSN if it does not dereference any argument slots
|
||
we already clobbered by tail call arguments (as noted in stored_args_map
|
||
bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
|
||
stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
|
||
should be 0). Return nonzero if sequence after INSN dereferences such argument
|
||
slots, zero otherwise. */
|
||
|
||
static int
|
||
check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
|
||
{
|
||
int low, high;
|
||
|
||
if (insn == NULL_RTX)
|
||
insn = get_insns ();
|
||
else
|
||
insn = NEXT_INSN (insn);
|
||
|
||
for (; insn; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn)
|
||
&& check_sibcall_argument_overlap_1 (PATTERN (insn)))
|
||
break;
|
||
|
||
if (mark_stored_args_map)
|
||
{
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
|
||
#else
|
||
low = arg->locate.slot_offset.constant;
|
||
#endif
|
||
|
||
for (high = low + arg->locate.size.constant; low < high; low++)
|
||
SET_BIT (stored_args_map, low);
|
||
}
|
||
return insn != NULL_RTX;
|
||
}
|
||
|
||
static tree
|
||
fix_unsafe_tree (tree t)
|
||
{
|
||
switch (unsafe_for_reeval (t))
|
||
{
|
||
case 0: /* Safe. */
|
||
break;
|
||
|
||
case 1: /* Mildly unsafe. */
|
||
t = unsave_expr (t);
|
||
break;
|
||
|
||
case 2: /* Wildly unsafe. */
|
||
{
|
||
tree var = build_decl (VAR_DECL, NULL_TREE,
|
||
TREE_TYPE (t));
|
||
SET_DECL_RTL (var,
|
||
expand_expr (t, NULL_RTX, VOIDmode, EXPAND_NORMAL));
|
||
t = var;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
return t;
|
||
}
|
||
|
||
|
||
/* If function value *VALUE was returned at the most significant end of a
|
||
register, shift it towards the least significant end and convert it to
|
||
TYPE's mode. Return true and update *VALUE if some action was needed.
|
||
|
||
TYPE is the type of the function's return value, which is known not
|
||
to have mode BLKmode. */
|
||
|
||
static bool
|
||
shift_returned_value (tree type, rtx *value)
|
||
{
|
||
if (targetm.calls.return_in_msb (type))
|
||
{
|
||
HOST_WIDE_INT shift;
|
||
|
||
shift = (GET_MODE_BITSIZE (GET_MODE (*value))
|
||
- BITS_PER_UNIT * int_size_in_bytes (type));
|
||
if (shift > 0)
|
||
{
|
||
*value = expand_binop (GET_MODE (*value), lshr_optab, *value,
|
||
GEN_INT (shift), 0, 1, OPTAB_WIDEN);
|
||
*value = convert_to_mode (TYPE_MODE (type), *value, 0);
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Generate all the code for a function call
|
||
and return an rtx for its value.
|
||
Store the value in TARGET (specified as an rtx) if convenient.
|
||
If the value is stored in TARGET then TARGET is returned.
|
||
If IGNORE is nonzero, then we ignore the value of the function call. */
|
||
|
||
rtx
|
||
expand_call (tree exp, rtx target, int ignore)
|
||
{
|
||
/* Nonzero if we are currently expanding a call. */
|
||
static int currently_expanding_call = 0;
|
||
|
||
/* List of actual parameters. */
|
||
tree actparms = TREE_OPERAND (exp, 1);
|
||
/* RTX for the function to be called. */
|
||
rtx funexp;
|
||
/* Sequence of insns to perform a tail recursive "call". */
|
||
rtx tail_recursion_insns = NULL_RTX;
|
||
/* Sequence of insns to perform a normal "call". */
|
||
rtx normal_call_insns = NULL_RTX;
|
||
/* Sequence of insns to perform a tail recursive "call". */
|
||
rtx tail_call_insns = NULL_RTX;
|
||
/* Data type of the function. */
|
||
tree funtype;
|
||
tree type_arg_types;
|
||
/* Declaration of the function being called,
|
||
or 0 if the function is computed (not known by name). */
|
||
tree fndecl = 0;
|
||
/* The type of the function being called. */
|
||
tree fntype;
|
||
rtx insn;
|
||
int try_tail_call = 1;
|
||
int try_tail_recursion = 1;
|
||
int pass;
|
||
|
||
/* Register in which non-BLKmode value will be returned,
|
||
or 0 if no value or if value is BLKmode. */
|
||
rtx valreg;
|
||
/* Address where we should return a BLKmode value;
|
||
0 if value not BLKmode. */
|
||
rtx structure_value_addr = 0;
|
||
/* Nonzero if that address is being passed by treating it as
|
||
an extra, implicit first parameter. Otherwise,
|
||
it is passed by being copied directly into struct_value_rtx. */
|
||
int structure_value_addr_parm = 0;
|
||
/* Size of aggregate value wanted, or zero if none wanted
|
||
or if we are using the non-reentrant PCC calling convention
|
||
or expecting the value in registers. */
|
||
HOST_WIDE_INT struct_value_size = 0;
|
||
/* Nonzero if called function returns an aggregate in memory PCC style,
|
||
by returning the address of where to find it. */
|
||
int pcc_struct_value = 0;
|
||
rtx struct_value = 0;
|
||
|
||
/* Number of actual parameters in this call, including struct value addr. */
|
||
int num_actuals;
|
||
/* Number of named args. Args after this are anonymous ones
|
||
and they must all go on the stack. */
|
||
int n_named_args;
|
||
|
||
/* Vector of information about each argument.
|
||
Arguments are numbered in the order they will be pushed,
|
||
not the order they are written. */
|
||
struct arg_data *args;
|
||
|
||
/* Total size in bytes of all the stack-parms scanned so far. */
|
||
struct args_size args_size;
|
||
struct args_size adjusted_args_size;
|
||
/* Size of arguments before any adjustments (such as rounding). */
|
||
int unadjusted_args_size;
|
||
/* Data on reg parms scanned so far. */
|
||
CUMULATIVE_ARGS args_so_far;
|
||
/* Nonzero if a reg parm has been scanned. */
|
||
int reg_parm_seen;
|
||
/* Nonzero if this is an indirect function call. */
|
||
|
||
/* Nonzero if we must avoid push-insns in the args for this call.
|
||
If stack space is allocated for register parameters, but not by the
|
||
caller, then it is preallocated in the fixed part of the stack frame.
|
||
So the entire argument block must then be preallocated (i.e., we
|
||
ignore PUSH_ROUNDING in that case). */
|
||
|
||
int must_preallocate = !PUSH_ARGS;
|
||
|
||
/* Size of the stack reserved for parameter registers. */
|
||
int reg_parm_stack_space = 0;
|
||
|
||
/* Address of space preallocated for stack parms
|
||
(on machines that lack push insns), or 0 if space not preallocated. */
|
||
rtx argblock = 0;
|
||
|
||
/* Mask of ECF_ flags. */
|
||
int flags = 0;
|
||
/* Nonzero if this is a call to an inline function. */
|
||
int is_integrable = 0;
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
/* Define the boundary of the register parm stack space that needs to be
|
||
saved, if any. */
|
||
int low_to_save, high_to_save;
|
||
rtx save_area = 0; /* Place that it is saved */
|
||
#endif
|
||
|
||
int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
|
||
rtx temp_target = 0;
|
||
char *initial_stack_usage_map = stack_usage_map;
|
||
|
||
int old_stack_allocated;
|
||
|
||
/* State variables to track stack modifications. */
|
||
rtx old_stack_level = 0;
|
||
int old_stack_arg_under_construction = 0;
|
||
int old_pending_adj = 0;
|
||
int old_inhibit_defer_pop = inhibit_defer_pop;
|
||
|
||
/* Some stack pointer alterations we make are performed via
|
||
allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
|
||
which we then also need to save/restore along the way. */
|
||
int old_stack_pointer_delta = 0;
|
||
|
||
rtx call_fusage;
|
||
tree p = TREE_OPERAND (exp, 0);
|
||
tree addr = TREE_OPERAND (exp, 0);
|
||
int i;
|
||
/* The alignment of the stack, in bits. */
|
||
HOST_WIDE_INT preferred_stack_boundary;
|
||
/* The alignment of the stack, in bytes. */
|
||
HOST_WIDE_INT preferred_unit_stack_boundary;
|
||
|
||
/* See if this is "nothrow" function call. */
|
||
if (TREE_NOTHROW (exp))
|
||
flags |= ECF_NOTHROW;
|
||
|
||
/* See if we can find a DECL-node for the actual function.
|
||
As a result, decide whether this is a call to an integrable function. */
|
||
|
||
fndecl = get_callee_fndecl (exp);
|
||
if (fndecl)
|
||
{
|
||
fntype = TREE_TYPE (fndecl);
|
||
if (!flag_no_inline
|
||
&& fndecl != current_function_decl
|
||
&& DECL_INLINE (fndecl)
|
||
&& DECL_STRUCT_FUNCTION (fndecl)
|
||
&& DECL_STRUCT_FUNCTION (fndecl)->inlinable)
|
||
is_integrable = 1;
|
||
else if (! TREE_ADDRESSABLE (fndecl))
|
||
{
|
||
/* In case this function later becomes inlinable,
|
||
record that there was already a non-inline call to it.
|
||
|
||
Use abstraction instead of setting TREE_ADDRESSABLE
|
||
directly. */
|
||
if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline
|
||
&& optimize > 0)
|
||
{
|
||
warning ("%Jcan't inline call to '%F'", fndecl, fndecl);
|
||
warning ("called from here");
|
||
}
|
||
(*lang_hooks.mark_addressable) (fndecl);
|
||
}
|
||
|
||
if (ignore
|
||
&& lookup_attribute ("warn_unused_result",
|
||
TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
|
||
warning ("ignoring return value of `%D', "
|
||
"declared with attribute warn_unused_result", fndecl);
|
||
|
||
flags |= flags_from_decl_or_type (fndecl);
|
||
}
|
||
|
||
/* If we don't have specific function to call, see if we have a
|
||
attributes set in the type. */
|
||
else
|
||
{
|
||
fntype = TREE_TYPE (TREE_TYPE (p));
|
||
if (ignore
|
||
&& lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (fntype)))
|
||
warning ("ignoring return value of function "
|
||
"declared with attribute warn_unused_result");
|
||
flags |= flags_from_decl_or_type (fntype);
|
||
}
|
||
|
||
struct_value = targetm.calls.struct_value_rtx (fntype, 0);
|
||
|
||
/* Warn if this value is an aggregate type,
|
||
regardless of which calling convention we are using for it. */
|
||
if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
|
||
warning ("function call has aggregate value");
|
||
|
||
/* If the result of a pure or const function call is ignored (or void),
|
||
and none of its arguments are volatile, we can avoid expanding the
|
||
call and just evaluate the arguments for side-effects. */
|
||
if ((flags & (ECF_CONST | ECF_PURE))
|
||
&& (ignore || target == const0_rtx
|
||
|| TYPE_MODE (TREE_TYPE (exp)) == VOIDmode))
|
||
{
|
||
bool volatilep = false;
|
||
tree arg;
|
||
|
||
for (arg = actparms; arg; arg = TREE_CHAIN (arg))
|
||
if (TREE_THIS_VOLATILE (TREE_VALUE (arg)))
|
||
{
|
||
volatilep = true;
|
||
break;
|
||
}
|
||
|
||
if (! volatilep)
|
||
{
|
||
for (arg = actparms; arg; arg = TREE_CHAIN (arg))
|
||
expand_expr (TREE_VALUE (arg), const0_rtx,
|
||
VOIDmode, EXPAND_NORMAL);
|
||
return const0_rtx;
|
||
}
|
||
}
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
#ifdef MAYBE_REG_PARM_STACK_SPACE
|
||
reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
|
||
#else
|
||
reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
|
||
#endif
|
||
#endif
|
||
|
||
#ifndef OUTGOING_REG_PARM_STACK_SPACE
|
||
if (reg_parm_stack_space > 0 && PUSH_ARGS)
|
||
must_preallocate = 1;
|
||
#endif
|
||
|
||
/* Set up a place to return a structure. */
|
||
|
||
/* Cater to broken compilers. */
|
||
if (aggregate_value_p (exp, fndecl))
|
||
{
|
||
/* This call returns a big structure. */
|
||
flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
|
||
|
||
#ifdef PCC_STATIC_STRUCT_RETURN
|
||
{
|
||
pcc_struct_value = 1;
|
||
/* Easier than making that case work right. */
|
||
if (is_integrable)
|
||
{
|
||
/* In case this is a static function, note that it has been
|
||
used. */
|
||
if (! TREE_ADDRESSABLE (fndecl))
|
||
(*lang_hooks.mark_addressable) (fndecl);
|
||
is_integrable = 0;
|
||
}
|
||
}
|
||
#else /* not PCC_STATIC_STRUCT_RETURN */
|
||
{
|
||
struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
|
||
|
||
if (CALL_EXPR_HAS_RETURN_SLOT_ADDR (exp))
|
||
{
|
||
/* The structure value address arg is already in actparms.
|
||
Pull it out. It might be nice to just leave it there, but
|
||
we need to set structure_value_addr. */
|
||
tree return_arg = TREE_VALUE (actparms);
|
||
actparms = TREE_CHAIN (actparms);
|
||
structure_value_addr = expand_expr (return_arg, NULL_RTX,
|
||
VOIDmode, EXPAND_NORMAL);
|
||
}
|
||
else if (target && GET_CODE (target) == MEM)
|
||
structure_value_addr = XEXP (target, 0);
|
||
else
|
||
{
|
||
/* For variable-sized objects, we must be called with a target
|
||
specified. If we were to allocate space on the stack here,
|
||
we would have no way of knowing when to free it. */
|
||
rtx d = assign_temp (TREE_TYPE (exp), 1, 1, 1);
|
||
|
||
mark_temp_addr_taken (d);
|
||
structure_value_addr = XEXP (d, 0);
|
||
target = 0;
|
||
}
|
||
}
|
||
#endif /* not PCC_STATIC_STRUCT_RETURN */
|
||
}
|
||
|
||
/* If called function is inline, try to integrate it. */
|
||
|
||
if (is_integrable)
|
||
{
|
||
rtx temp = try_to_integrate (fndecl, actparms, target,
|
||
ignore, TREE_TYPE (exp),
|
||
structure_value_addr);
|
||
if (temp != (rtx) (size_t) - 1)
|
||
return temp;
|
||
}
|
||
|
||
/* Figure out the amount to which the stack should be aligned. */
|
||
preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
|
||
if (fndecl)
|
||
{
|
||
struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
|
||
if (i && i->preferred_incoming_stack_boundary)
|
||
preferred_stack_boundary = i->preferred_incoming_stack_boundary;
|
||
}
|
||
|
||
/* Operand 0 is a pointer-to-function; get the type of the function. */
|
||
funtype = TREE_TYPE (addr);
|
||
if (! POINTER_TYPE_P (funtype))
|
||
abort ();
|
||
funtype = TREE_TYPE (funtype);
|
||
|
||
/* Munge the tree to split complex arguments into their imaginary
|
||
and real parts. */
|
||
if (SPLIT_COMPLEX_ARGS)
|
||
{
|
||
type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
|
||
actparms = split_complex_values (actparms);
|
||
}
|
||
else
|
||
type_arg_types = TYPE_ARG_TYPES (funtype);
|
||
|
||
/* See if this is a call to a function that can return more than once
|
||
or a call to longjmp or malloc. */
|
||
flags |= special_function_p (fndecl, flags);
|
||
|
||
if (flags & ECF_MAY_BE_ALLOCA)
|
||
current_function_calls_alloca = 1;
|
||
|
||
/* If struct_value_rtx is 0, it means pass the address
|
||
as if it were an extra parameter. */
|
||
if (structure_value_addr && struct_value == 0)
|
||
{
|
||
/* If structure_value_addr is a REG other than
|
||
virtual_outgoing_args_rtx, we can use always use it. If it
|
||
is not a REG, we must always copy it into a register.
|
||
If it is virtual_outgoing_args_rtx, we must copy it to another
|
||
register in some cases. */
|
||
rtx temp = (GET_CODE (structure_value_addr) != REG
|
||
|| (ACCUMULATE_OUTGOING_ARGS
|
||
&& stack_arg_under_construction
|
||
&& structure_value_addr == virtual_outgoing_args_rtx)
|
||
? copy_addr_to_reg (convert_memory_address
|
||
(Pmode, structure_value_addr))
|
||
: structure_value_addr);
|
||
|
||
actparms
|
||
= tree_cons (error_mark_node,
|
||
make_tree (build_pointer_type (TREE_TYPE (funtype)),
|
||
temp),
|
||
actparms);
|
||
structure_value_addr_parm = 1;
|
||
}
|
||
|
||
/* Count the arguments and set NUM_ACTUALS. */
|
||
for (p = actparms, num_actuals = 0; p; p = TREE_CHAIN (p))
|
||
num_actuals++;
|
||
|
||
/* Compute number of named args.
|
||
Normally, don't include the last named arg if anonymous args follow.
|
||
We do include the last named arg if
|
||
targetm.calls.strict_argument_naming() returns nonzero.
|
||
(If no anonymous args follow, the result of list_length is actually
|
||
one too large. This is harmless.)
|
||
|
||
If targetm.calls.pretend_outgoing_varargs_named() returns
|
||
nonzero, and targetm.calls.strict_argument_naming() returns zero,
|
||
this machine will be able to place unnamed args that were passed
|
||
in registers into the stack. So treat all args as named. This
|
||
allows the insns emitting for a specific argument list to be
|
||
independent of the function declaration.
|
||
|
||
If targetm.calls.pretend_outgoing_varargs_named() returns zero,
|
||
we do not have any reliable way to pass unnamed args in
|
||
registers, so we must force them into memory. */
|
||
|
||
if ((targetm.calls.strict_argument_naming (&args_so_far)
|
||
|| ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
|
||
&& type_arg_types != 0)
|
||
n_named_args
|
||
= (list_length (type_arg_types)
|
||
/* Don't include the last named arg. */
|
||
- (targetm.calls.strict_argument_naming (&args_so_far) ? 0 : 1)
|
||
/* Count the struct value address, if it is passed as a parm. */
|
||
+ structure_value_addr_parm);
|
||
else
|
||
/* If we know nothing, treat all args as named. */
|
||
n_named_args = num_actuals;
|
||
|
||
/* Start updating where the next arg would go.
|
||
|
||
On some machines (such as the PA) indirect calls have a different
|
||
calling convention than normal calls. The fourth argument in
|
||
INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
|
||
or not. */
|
||
INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
|
||
|
||
/* Make a vector to hold all the information about each arg. */
|
||
args = alloca (num_actuals * sizeof (struct arg_data));
|
||
memset (args, 0, num_actuals * sizeof (struct arg_data));
|
||
|
||
/* Build up entries in the ARGS array, compute the size of the
|
||
arguments into ARGS_SIZE, etc. */
|
||
initialize_argument_information (num_actuals, args, &args_size,
|
||
n_named_args, actparms, fndecl,
|
||
&args_so_far, reg_parm_stack_space,
|
||
&old_stack_level, &old_pending_adj,
|
||
&must_preallocate, &flags,
|
||
CALL_FROM_THUNK_P (exp));
|
||
|
||
if (args_size.var)
|
||
{
|
||
/* If this function requires a variable-sized argument list, don't
|
||
try to make a cse'able block for this call. We may be able to
|
||
do this eventually, but it is too complicated to keep track of
|
||
what insns go in the cse'able block and which don't. */
|
||
|
||
flags &= ~ECF_LIBCALL_BLOCK;
|
||
must_preallocate = 1;
|
||
}
|
||
|
||
/* Now make final decision about preallocating stack space. */
|
||
must_preallocate = finalize_must_preallocate (must_preallocate,
|
||
num_actuals, args,
|
||
&args_size);
|
||
|
||
/* If the structure value address will reference the stack pointer, we
|
||
must stabilize it. We don't need to do this if we know that we are
|
||
not going to adjust the stack pointer in processing this call. */
|
||
|
||
if (structure_value_addr
|
||
&& (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
|
||
|| reg_mentioned_p (virtual_outgoing_args_rtx,
|
||
structure_value_addr))
|
||
&& (args_size.var
|
||
|| (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
|
||
structure_value_addr = copy_to_reg (structure_value_addr);
|
||
|
||
/* Tail calls can make things harder to debug, and we're traditionally
|
||
pushed these optimizations into -O2. Don't try if we're already
|
||
expanding a call, as that means we're an argument. Don't try if
|
||
there's cleanups, as we know there's code to follow the call.
|
||
|
||
If rtx_equal_function_value_matters is false, that means we've
|
||
finished with regular parsing. Which means that some of the
|
||
machinery we use to generate tail-calls is no longer in place.
|
||
This is most often true of sjlj-exceptions, which we couldn't
|
||
tail-call to anyway.
|
||
|
||
If current_nesting_level () == 0, we're being called after
|
||
the function body has been expanded. This can happen when
|
||
setting up trampolines in expand_function_end. */
|
||
if (currently_expanding_call++ != 0
|
||
|| !flag_optimize_sibling_calls
|
||
|| !rtx_equal_function_value_matters
|
||
|| current_nesting_level () == 0
|
||
|| any_pending_cleanups ()
|
||
|| args_size.var)
|
||
try_tail_call = try_tail_recursion = 0;
|
||
|
||
/* Tail recursion fails, when we are not dealing with recursive calls. */
|
||
if (!try_tail_recursion
|
||
|| TREE_CODE (addr) != ADDR_EXPR
|
||
|| TREE_OPERAND (addr, 0) != current_function_decl)
|
||
try_tail_recursion = 0;
|
||
|
||
/* Rest of purposes for tail call optimizations to fail. */
|
||
if (
|
||
#ifdef HAVE_sibcall_epilogue
|
||
!HAVE_sibcall_epilogue
|
||
#else
|
||
1
|
||
#endif
|
||
|| !try_tail_call
|
||
/* Doing sibling call optimization needs some work, since
|
||
structure_value_addr can be allocated on the stack.
|
||
It does not seem worth the effort since few optimizable
|
||
sibling calls will return a structure. */
|
||
|| structure_value_addr != NULL_RTX
|
||
/* Check whether the target is able to optimize the call
|
||
into a sibcall. */
|
||
|| !(*targetm.function_ok_for_sibcall) (fndecl, exp)
|
||
/* Functions that do not return exactly once may not be sibcall
|
||
optimized. */
|
||
|| (flags & (ECF_RETURNS_TWICE | ECF_LONGJMP | ECF_NORETURN))
|
||
|| TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
|
||
/* If the called function is nested in the current one, it might access
|
||
some of the caller's arguments, but could clobber them beforehand if
|
||
the argument areas are shared. */
|
||
|| (fndecl && decl_function_context (fndecl) == current_function_decl)
|
||
/* If this function requires more stack slots than the current
|
||
function, we cannot change it into a sibling call. */
|
||
|| args_size.constant > current_function_args_size
|
||
/* If the callee pops its own arguments, then it must pop exactly
|
||
the same number of arguments as the current function. */
|
||
|| (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
|
||
!= RETURN_POPS_ARGS (current_function_decl,
|
||
TREE_TYPE (current_function_decl),
|
||
current_function_args_size))
|
||
|| !(*lang_hooks.decls.ok_for_sibcall) (fndecl))
|
||
try_tail_call = 0;
|
||
|
||
if (try_tail_call || try_tail_recursion)
|
||
{
|
||
int end, inc;
|
||
actparms = NULL_TREE;
|
||
/* Ok, we're going to give the tail call the old college try.
|
||
This means we're going to evaluate the function arguments
|
||
up to three times. There are two degrees of badness we can
|
||
encounter, those that can be unsaved and those that can't.
|
||
(See unsafe_for_reeval commentary for details.)
|
||
|
||
Generate a new argument list. Pass safe arguments through
|
||
unchanged. For the easy badness wrap them in UNSAVE_EXPRs.
|
||
For hard badness, evaluate them now and put their resulting
|
||
rtx in a temporary VAR_DECL.
|
||
|
||
initialize_argument_information has ordered the array for the
|
||
order to be pushed, and we must remember this when reconstructing
|
||
the original argument order. */
|
||
|
||
if (PUSH_ARGS_REVERSED)
|
||
{
|
||
inc = 1;
|
||
i = 0;
|
||
end = num_actuals;
|
||
}
|
||
else
|
||
{
|
||
inc = -1;
|
||
i = num_actuals - 1;
|
||
end = -1;
|
||
}
|
||
|
||
for (; i != end; i += inc)
|
||
{
|
||
args[i].tree_value = fix_unsafe_tree (args[i].tree_value);
|
||
/* We need to build actparms for optimize_tail_recursion. We can
|
||
safely trash away TREE_PURPOSE, since it is unused by this
|
||
function. */
|
||
if (try_tail_recursion)
|
||
actparms = tree_cons (NULL_TREE, args[i].tree_value, actparms);
|
||
}
|
||
/* Do the same for the function address if it is an expression. */
|
||
if (!fndecl)
|
||
addr = fix_unsafe_tree (addr);
|
||
/* Expanding one of those dangerous arguments could have added
|
||
cleanups, but otherwise give it a whirl. */
|
||
if (any_pending_cleanups ())
|
||
try_tail_call = try_tail_recursion = 0;
|
||
}
|
||
|
||
/* Generate a tail recursion sequence when calling ourselves. */
|
||
|
||
if (try_tail_recursion)
|
||
{
|
||
/* We want to emit any pending stack adjustments before the tail
|
||
recursion "call". That way we know any adjustment after the tail
|
||
recursion call can be ignored if we indeed use the tail recursion
|
||
call expansion. */
|
||
int save_pending_stack_adjust = pending_stack_adjust;
|
||
int save_stack_pointer_delta = stack_pointer_delta;
|
||
|
||
/* Emit any queued insns now; otherwise they would end up in
|
||
only one of the alternates. */
|
||
emit_queue ();
|
||
|
||
/* Use a new sequence to hold any RTL we generate. We do not even
|
||
know if we will use this RTL yet. The final decision can not be
|
||
made until after RTL generation for the entire function is
|
||
complete. */
|
||
start_sequence ();
|
||
/* If expanding any of the arguments creates cleanups, we can't
|
||
do a tailcall. So, we'll need to pop the pending cleanups
|
||
list. If, however, all goes well, and there are no cleanups
|
||
then the call to expand_start_target_temps will have no
|
||
effect. */
|
||
expand_start_target_temps ();
|
||
if (optimize_tail_recursion (actparms, get_last_insn ()))
|
||
{
|
||
if (any_pending_cleanups ())
|
||
try_tail_call = try_tail_recursion = 0;
|
||
else
|
||
tail_recursion_insns = get_insns ();
|
||
}
|
||
expand_end_target_temps ();
|
||
end_sequence ();
|
||
|
||
/* Restore the original pending stack adjustment for the sibling and
|
||
normal call cases below. */
|
||
pending_stack_adjust = save_pending_stack_adjust;
|
||
stack_pointer_delta = save_stack_pointer_delta;
|
||
}
|
||
|
||
if (profile_arc_flag && (flags & ECF_FORK_OR_EXEC))
|
||
{
|
||
/* A fork duplicates the profile information, and an exec discards
|
||
it. We can't rely on fork/exec to be paired. So write out the
|
||
profile information we have gathered so far, and clear it. */
|
||
/* ??? When Linux's __clone is called with CLONE_VM set, profiling
|
||
is subject to race conditions, just as with multithreaded
|
||
programs. */
|
||
|
||
emit_library_call (gcov_flush_libfunc, LCT_ALWAYS_RETURN, VOIDmode, 0);
|
||
}
|
||
|
||
/* Ensure current function's preferred stack boundary is at least
|
||
what we need. We don't have to increase alignment for recursive
|
||
functions. */
|
||
if (cfun->preferred_stack_boundary < preferred_stack_boundary
|
||
&& fndecl != current_function_decl)
|
||
cfun->preferred_stack_boundary = preferred_stack_boundary;
|
||
if (fndecl == current_function_decl)
|
||
cfun->recursive_call_emit = true;
|
||
|
||
preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
|
||
|
||
function_call_count++;
|
||
|
||
/* We want to make two insn chains; one for a sibling call, the other
|
||
for a normal call. We will select one of the two chains after
|
||
initial RTL generation is complete. */
|
||
for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
|
||
{
|
||
int sibcall_failure = 0;
|
||
/* We want to emit any pending stack adjustments before the tail
|
||
recursion "call". That way we know any adjustment after the tail
|
||
recursion call can be ignored if we indeed use the tail recursion
|
||
call expansion. */
|
||
int save_pending_stack_adjust = 0;
|
||
int save_stack_pointer_delta = 0;
|
||
rtx insns;
|
||
rtx before_call, next_arg_reg;
|
||
|
||
if (pass == 0)
|
||
{
|
||
/* Emit any queued insns now; otherwise they would end up in
|
||
only one of the alternates. */
|
||
emit_queue ();
|
||
|
||
/* State variables we need to save and restore between
|
||
iterations. */
|
||
save_pending_stack_adjust = pending_stack_adjust;
|
||
save_stack_pointer_delta = stack_pointer_delta;
|
||
}
|
||
if (pass)
|
||
flags &= ~ECF_SIBCALL;
|
||
else
|
||
flags |= ECF_SIBCALL;
|
||
|
||
/* Other state variables that we must reinitialize each time
|
||
through the loop (that are not initialized by the loop itself). */
|
||
argblock = 0;
|
||
call_fusage = 0;
|
||
|
||
/* Start a new sequence for the normal call case.
|
||
|
||
From this point on, if the sibling call fails, we want to set
|
||
sibcall_failure instead of continuing the loop. */
|
||
start_sequence ();
|
||
|
||
if (pass == 0)
|
||
{
|
||
/* We know at this point that there are not currently any
|
||
pending cleanups. If, however, in the process of evaluating
|
||
the arguments we were to create some, we'll need to be
|
||
able to get rid of them. */
|
||
expand_start_target_temps ();
|
||
}
|
||
|
||
/* Don't let pending stack adjusts add up to too much.
|
||
Also, do all pending adjustments now if there is any chance
|
||
this might be a call to alloca or if we are expanding a sibling
|
||
call sequence or if we are calling a function that is to return
|
||
with stack pointer depressed. */
|
||
if (pending_stack_adjust >= 32
|
||
|| (pending_stack_adjust > 0
|
||
&& (flags & (ECF_MAY_BE_ALLOCA | ECF_SP_DEPRESSED)))
|
||
|| pass == 0)
|
||
do_pending_stack_adjust ();
|
||
|
||
/* When calling a const function, we must pop the stack args right away,
|
||
so that the pop is deleted or moved with the call. */
|
||
if (pass && (flags & ECF_LIBCALL_BLOCK))
|
||
NO_DEFER_POP;
|
||
|
||
#ifdef FINAL_REG_PARM_STACK_SPACE
|
||
reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant,
|
||
args_size.var);
|
||
#endif
|
||
/* Precompute any arguments as needed. */
|
||
if (pass)
|
||
precompute_arguments (flags, num_actuals, args);
|
||
|
||
/* Now we are about to start emitting insns that can be deleted
|
||
if a libcall is deleted. */
|
||
if (pass && (flags & (ECF_LIBCALL_BLOCK | ECF_MALLOC)))
|
||
start_sequence ();
|
||
|
||
adjusted_args_size = args_size;
|
||
/* Compute the actual size of the argument block required. The variable
|
||
and constant sizes must be combined, the size may have to be rounded,
|
||
and there may be a minimum required size. When generating a sibcall
|
||
pattern, do not round up, since we'll be re-using whatever space our
|
||
caller provided. */
|
||
unadjusted_args_size
|
||
= compute_argument_block_size (reg_parm_stack_space,
|
||
&adjusted_args_size,
|
||
(pass == 0 ? 0
|
||
: preferred_stack_boundary));
|
||
|
||
old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
|
||
|
||
/* The argument block when performing a sibling call is the
|
||
incoming argument block. */
|
||
if (pass == 0)
|
||
{
|
||
argblock = virtual_incoming_args_rtx;
|
||
argblock
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
= plus_constant (argblock, current_function_pretend_args_size);
|
||
#else
|
||
= plus_constant (argblock, -current_function_pretend_args_size);
|
||
#endif
|
||
stored_args_map = sbitmap_alloc (args_size.constant);
|
||
sbitmap_zero (stored_args_map);
|
||
}
|
||
|
||
/* If we have no actual push instructions, or shouldn't use them,
|
||
make space for all args right now. */
|
||
else if (adjusted_args_size.var != 0)
|
||
{
|
||
if (old_stack_level == 0)
|
||
{
|
||
emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
|
||
old_stack_pointer_delta = stack_pointer_delta;
|
||
old_pending_adj = pending_stack_adjust;
|
||
pending_stack_adjust = 0;
|
||
/* stack_arg_under_construction says whether a stack arg is
|
||
being constructed at the old stack level. Pushing the stack
|
||
gets a clean outgoing argument block. */
|
||
old_stack_arg_under_construction = stack_arg_under_construction;
|
||
stack_arg_under_construction = 0;
|
||
}
|
||
argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
|
||
}
|
||
else
|
||
{
|
||
/* Note that we must go through the motions of allocating an argument
|
||
block even if the size is zero because we may be storing args
|
||
in the area reserved for register arguments, which may be part of
|
||
the stack frame. */
|
||
|
||
int needed = adjusted_args_size.constant;
|
||
|
||
/* Store the maximum argument space used. It will be pushed by
|
||
the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
|
||
checking). */
|
||
|
||
if (needed > current_function_outgoing_args_size)
|
||
current_function_outgoing_args_size = needed;
|
||
|
||
if (must_preallocate)
|
||
{
|
||
if (ACCUMULATE_OUTGOING_ARGS)
|
||
{
|
||
/* Since the stack pointer will never be pushed, it is
|
||
possible for the evaluation of a parm to clobber
|
||
something we have already written to the stack.
|
||
Since most function calls on RISC machines do not use
|
||
the stack, this is uncommon, but must work correctly.
|
||
|
||
Therefore, we save any area of the stack that was already
|
||
written and that we are using. Here we set up to do this
|
||
by making a new stack usage map from the old one. The
|
||
actual save will be done by store_one_arg.
|
||
|
||
Another approach might be to try to reorder the argument
|
||
evaluations to avoid this conflicting stack usage. */
|
||
|
||
#ifndef OUTGOING_REG_PARM_STACK_SPACE
|
||
/* Since we will be writing into the entire argument area,
|
||
the map must be allocated for its entire size, not just
|
||
the part that is the responsibility of the caller. */
|
||
needed += reg_parm_stack_space;
|
||
#endif
|
||
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
|
||
needed + 1);
|
||
#else
|
||
highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
|
||
needed);
|
||
#endif
|
||
stack_usage_map = alloca (highest_outgoing_arg_in_use);
|
||
|
||
if (initial_highest_arg_in_use)
|
||
memcpy (stack_usage_map, initial_stack_usage_map,
|
||
initial_highest_arg_in_use);
|
||
|
||
if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
|
||
memset (&stack_usage_map[initial_highest_arg_in_use], 0,
|
||
(highest_outgoing_arg_in_use
|
||
- initial_highest_arg_in_use));
|
||
needed = 0;
|
||
|
||
/* The address of the outgoing argument list must not be
|
||
copied to a register here, because argblock would be left
|
||
pointing to the wrong place after the call to
|
||
allocate_dynamic_stack_space below. */
|
||
|
||
argblock = virtual_outgoing_args_rtx;
|
||
}
|
||
else
|
||
{
|
||
if (inhibit_defer_pop == 0)
|
||
{
|
||
/* Try to reuse some or all of the pending_stack_adjust
|
||
to get this space. */
|
||
needed
|
||
= (combine_pending_stack_adjustment_and_call
|
||
(unadjusted_args_size,
|
||
&adjusted_args_size,
|
||
preferred_unit_stack_boundary));
|
||
|
||
/* combine_pending_stack_adjustment_and_call computes
|
||
an adjustment before the arguments are allocated.
|
||
Account for them and see whether or not the stack
|
||
needs to go up or down. */
|
||
needed = unadjusted_args_size - needed;
|
||
|
||
if (needed < 0)
|
||
{
|
||
/* We're releasing stack space. */
|
||
/* ??? We can avoid any adjustment at all if we're
|
||
already aligned. FIXME. */
|
||
pending_stack_adjust = -needed;
|
||
do_pending_stack_adjust ();
|
||
needed = 0;
|
||
}
|
||
else
|
||
/* We need to allocate space. We'll do that in
|
||
push_block below. */
|
||
pending_stack_adjust = 0;
|
||
}
|
||
|
||
/* Special case this because overhead of `push_block' in
|
||
this case is non-trivial. */
|
||
if (needed == 0)
|
||
argblock = virtual_outgoing_args_rtx;
|
||
else
|
||
{
|
||
argblock = push_block (GEN_INT (needed), 0, 0);
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
argblock = plus_constant (argblock, needed);
|
||
#endif
|
||
}
|
||
|
||
/* We only really need to call `copy_to_reg' in the case
|
||
where push insns are going to be used to pass ARGBLOCK
|
||
to a function call in ARGS. In that case, the stack
|
||
pointer changes value from the allocation point to the
|
||
call point, and hence the value of
|
||
VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
|
||
as well always do it. */
|
||
argblock = copy_to_reg (argblock);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (ACCUMULATE_OUTGOING_ARGS)
|
||
{
|
||
/* The save/restore code in store_one_arg handles all
|
||
cases except one: a constructor call (including a C
|
||
function returning a BLKmode struct) to initialize
|
||
an argument. */
|
||
if (stack_arg_under_construction)
|
||
{
|
||
#ifndef OUTGOING_REG_PARM_STACK_SPACE
|
||
rtx push_size = GEN_INT (reg_parm_stack_space
|
||
+ adjusted_args_size.constant);
|
||
#else
|
||
rtx push_size = GEN_INT (adjusted_args_size.constant);
|
||
#endif
|
||
if (old_stack_level == 0)
|
||
{
|
||
emit_stack_save (SAVE_BLOCK, &old_stack_level,
|
||
NULL_RTX);
|
||
old_stack_pointer_delta = stack_pointer_delta;
|
||
old_pending_adj = pending_stack_adjust;
|
||
pending_stack_adjust = 0;
|
||
/* stack_arg_under_construction says whether a stack
|
||
arg is being constructed at the old stack level.
|
||
Pushing the stack gets a clean outgoing argument
|
||
block. */
|
||
old_stack_arg_under_construction
|
||
= stack_arg_under_construction;
|
||
stack_arg_under_construction = 0;
|
||
/* Make a new map for the new argument list. */
|
||
stack_usage_map = alloca (highest_outgoing_arg_in_use);
|
||
memset (stack_usage_map, 0, highest_outgoing_arg_in_use);
|
||
highest_outgoing_arg_in_use = 0;
|
||
}
|
||
allocate_dynamic_stack_space (push_size, NULL_RTX,
|
||
BITS_PER_UNIT);
|
||
}
|
||
|
||
/* If argument evaluation might modify the stack pointer,
|
||
copy the address of the argument list to a register. */
|
||
for (i = 0; i < num_actuals; i++)
|
||
if (args[i].pass_on_stack)
|
||
{
|
||
argblock = copy_addr_to_reg (argblock);
|
||
break;
|
||
}
|
||
}
|
||
|
||
compute_argument_addresses (args, argblock, num_actuals);
|
||
|
||
/* If we push args individually in reverse order, perform stack alignment
|
||
before the first push (the last arg). */
|
||
if (PUSH_ARGS_REVERSED && argblock == 0
|
||
&& adjusted_args_size.constant != unadjusted_args_size)
|
||
{
|
||
/* When the stack adjustment is pending, we get better code
|
||
by combining the adjustments. */
|
||
if (pending_stack_adjust
|
||
&& ! (flags & ECF_LIBCALL_BLOCK)
|
||
&& ! inhibit_defer_pop)
|
||
{
|
||
pending_stack_adjust
|
||
= (combine_pending_stack_adjustment_and_call
|
||
(unadjusted_args_size,
|
||
&adjusted_args_size,
|
||
preferred_unit_stack_boundary));
|
||
do_pending_stack_adjust ();
|
||
}
|
||
else if (argblock == 0)
|
||
anti_adjust_stack (GEN_INT (adjusted_args_size.constant
|
||
- unadjusted_args_size));
|
||
}
|
||
/* Now that the stack is properly aligned, pops can't safely
|
||
be deferred during the evaluation of the arguments. */
|
||
NO_DEFER_POP;
|
||
|
||
funexp = rtx_for_function_call (fndecl, addr);
|
||
|
||
/* Figure out the register where the value, if any, will come back. */
|
||
valreg = 0;
|
||
if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
|
||
&& ! structure_value_addr)
|
||
{
|
||
if (pcc_struct_value)
|
||
valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
|
||
fndecl, (pass == 0));
|
||
else
|
||
valreg = hard_function_value (TREE_TYPE (exp), fndecl, (pass == 0));
|
||
}
|
||
|
||
/* Precompute all register parameters. It isn't safe to compute anything
|
||
once we have started filling any specific hard regs. */
|
||
precompute_register_parameters (num_actuals, args, ®_parm_seen);
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
/* Save the fixed argument area if it's part of the caller's frame and
|
||
is clobbered by argument setup for this call. */
|
||
if (ACCUMULATE_OUTGOING_ARGS && pass)
|
||
save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
|
||
&low_to_save, &high_to_save);
|
||
#endif
|
||
|
||
/* Now store (and compute if necessary) all non-register parms.
|
||
These come before register parms, since they can require block-moves,
|
||
which could clobber the registers used for register parms.
|
||
Parms which have partial registers are not stored here,
|
||
but we do preallocate space here if they want that. */
|
||
|
||
for (i = 0; i < num_actuals; i++)
|
||
if (args[i].reg == 0 || args[i].pass_on_stack)
|
||
{
|
||
rtx before_arg = get_last_insn ();
|
||
|
||
if (store_one_arg (&args[i], argblock, flags,
|
||
adjusted_args_size.var != 0,
|
||
reg_parm_stack_space)
|
||
|| (pass == 0
|
||
&& check_sibcall_argument_overlap (before_arg,
|
||
&args[i], 1)))
|
||
sibcall_failure = 1;
|
||
|
||
if (flags & ECF_CONST
|
||
&& args[i].stack
|
||
&& args[i].value == args[i].stack)
|
||
call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
|
||
gen_rtx_USE (VOIDmode,
|
||
args[i].value),
|
||
call_fusage);
|
||
}
|
||
|
||
/* If we have a parm that is passed in registers but not in memory
|
||
and whose alignment does not permit a direct copy into registers,
|
||
make a group of pseudos that correspond to each register that we
|
||
will later fill. */
|
||
if (STRICT_ALIGNMENT)
|
||
store_unaligned_arguments_into_pseudos (args, num_actuals);
|
||
|
||
/* Now store any partially-in-registers parm.
|
||
This is the last place a block-move can happen. */
|
||
if (reg_parm_seen)
|
||
for (i = 0; i < num_actuals; i++)
|
||
if (args[i].partial != 0 && ! args[i].pass_on_stack)
|
||
{
|
||
rtx before_arg = get_last_insn ();
|
||
|
||
if (store_one_arg (&args[i], argblock, flags,
|
||
adjusted_args_size.var != 0,
|
||
reg_parm_stack_space)
|
||
|| (pass == 0
|
||
&& check_sibcall_argument_overlap (before_arg,
|
||
&args[i], 1)))
|
||
sibcall_failure = 1;
|
||
}
|
||
|
||
/* If we pushed args in forward order, perform stack alignment
|
||
after pushing the last arg. */
|
||
if (!PUSH_ARGS_REVERSED && argblock == 0)
|
||
anti_adjust_stack (GEN_INT (adjusted_args_size.constant
|
||
- unadjusted_args_size));
|
||
|
||
/* If register arguments require space on the stack and stack space
|
||
was not preallocated, allocate stack space here for arguments
|
||
passed in registers. */
|
||
#ifdef OUTGOING_REG_PARM_STACK_SPACE
|
||
if (!ACCUMULATE_OUTGOING_ARGS
|
||
&& must_preallocate == 0 && reg_parm_stack_space > 0)
|
||
anti_adjust_stack (GEN_INT (reg_parm_stack_space));
|
||
#endif
|
||
|
||
/* Pass the function the address in which to return a
|
||
structure value. */
|
||
if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
|
||
{
|
||
structure_value_addr
|
||
= convert_memory_address (Pmode, structure_value_addr);
|
||
emit_move_insn (struct_value,
|
||
force_reg (Pmode,
|
||
force_operand (structure_value_addr,
|
||
NULL_RTX)));
|
||
|
||
if (GET_CODE (struct_value) == REG)
|
||
use_reg (&call_fusage, struct_value);
|
||
}
|
||
|
||
funexp = prepare_call_address (funexp, fndecl, &call_fusage,
|
||
reg_parm_seen, pass == 0);
|
||
|
||
load_register_parameters (args, num_actuals, &call_fusage, flags,
|
||
pass == 0, &sibcall_failure);
|
||
|
||
/* Perform postincrements before actually calling the function. */
|
||
emit_queue ();
|
||
|
||
/* Save a pointer to the last insn before the call, so that we can
|
||
later safely search backwards to find the CALL_INSN. */
|
||
before_call = get_last_insn ();
|
||
|
||
/* Set up next argument register. For sibling calls on machines
|
||
with register windows this should be the incoming register. */
|
||
#ifdef FUNCTION_INCOMING_ARG
|
||
if (pass == 0)
|
||
next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
|
||
void_type_node, 1);
|
||
else
|
||
#endif
|
||
next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
|
||
void_type_node, 1);
|
||
|
||
/* All arguments and registers used for the call must be set up by
|
||
now! */
|
||
|
||
/* Stack must be properly aligned now. */
|
||
if (pass && stack_pointer_delta % preferred_unit_stack_boundary)
|
||
abort ();
|
||
|
||
/* Generate the actual call instruction. */
|
||
emit_call_1 (funexp, fndecl, funtype, unadjusted_args_size,
|
||
adjusted_args_size.constant, struct_value_size,
|
||
next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
|
||
flags, & args_so_far);
|
||
|
||
/* If call is cse'able, make appropriate pair of reg-notes around it.
|
||
Test valreg so we don't crash; may safely ignore `const'
|
||
if return type is void. Disable for PARALLEL return values, because
|
||
we have no way to move such values into a pseudo register. */
|
||
if (pass && (flags & ECF_LIBCALL_BLOCK))
|
||
{
|
||
rtx insns;
|
||
rtx insn;
|
||
bool failed = valreg == 0 || GET_CODE (valreg) == PARALLEL;
|
||
|
||
insns = get_insns ();
|
||
|
||
/* Expansion of block moves possibly introduced a loop that may
|
||
not appear inside libcall block. */
|
||
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == JUMP_INSN)
|
||
failed = true;
|
||
|
||
if (failed)
|
||
{
|
||
end_sequence ();
|
||
emit_insn (insns);
|
||
}
|
||
else
|
||
{
|
||
rtx note = 0;
|
||
rtx temp = gen_reg_rtx (GET_MODE (valreg));
|
||
|
||
/* Mark the return value as a pointer if needed. */
|
||
if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
|
||
mark_reg_pointer (temp,
|
||
TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))));
|
||
|
||
end_sequence ();
|
||
if (flag_unsafe_math_optimizations
|
||
&& fndecl
|
||
&& DECL_BUILT_IN (fndecl)
|
||
&& (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRT
|
||
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTF
|
||
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTL))
|
||
note = gen_rtx_fmt_e (SQRT,
|
||
GET_MODE (temp),
|
||
args[0].initial_value);
|
||
else
|
||
{
|
||
/* Construct an "equal form" for the value which
|
||
mentions all the arguments in order as well as
|
||
the function name. */
|
||
for (i = 0; i < num_actuals; i++)
|
||
note = gen_rtx_EXPR_LIST (VOIDmode,
|
||
args[i].initial_value, note);
|
||
note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);
|
||
|
||
if (flags & ECF_PURE)
|
||
note = gen_rtx_EXPR_LIST (VOIDmode,
|
||
gen_rtx_USE (VOIDmode,
|
||
gen_rtx_MEM (BLKmode,
|
||
gen_rtx_SCRATCH (VOIDmode))),
|
||
note);
|
||
}
|
||
emit_libcall_block (insns, temp, valreg, note);
|
||
|
||
valreg = temp;
|
||
}
|
||
}
|
||
else if (pass && (flags & ECF_MALLOC))
|
||
{
|
||
rtx temp = gen_reg_rtx (GET_MODE (valreg));
|
||
rtx last, insns;
|
||
|
||
/* The return value from a malloc-like function is a pointer. */
|
||
if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
|
||
mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
|
||
|
||
emit_move_insn (temp, valreg);
|
||
|
||
/* The return value from a malloc-like function can not alias
|
||
anything else. */
|
||
last = get_last_insn ();
|
||
REG_NOTES (last) =
|
||
gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));
|
||
|
||
/* Write out the sequence. */
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
emit_insn (insns);
|
||
valreg = temp;
|
||
}
|
||
|
||
/* For calls to `setjmp', etc., inform flow.c it should complain
|
||
if nonvolatile values are live. For functions that cannot return,
|
||
inform flow that control does not fall through. */
|
||
|
||
if ((flags & (ECF_NORETURN | ECF_LONGJMP)) || pass == 0)
|
||
{
|
||
/* The barrier must be emitted
|
||
immediately after the CALL_INSN. Some ports emit more
|
||
than just a CALL_INSN above, so we must search for it here. */
|
||
|
||
rtx last = get_last_insn ();
|
||
while (GET_CODE (last) != CALL_INSN)
|
||
{
|
||
last = PREV_INSN (last);
|
||
/* There was no CALL_INSN? */
|
||
if (last == before_call)
|
||
abort ();
|
||
}
|
||
|
||
emit_barrier_after (last);
|
||
|
||
/* Stack adjustments after a noreturn call are dead code.
|
||
However when NO_DEFER_POP is in effect, we must preserve
|
||
stack_pointer_delta. */
|
||
if (inhibit_defer_pop == 0)
|
||
{
|
||
stack_pointer_delta = old_stack_allocated;
|
||
pending_stack_adjust = 0;
|
||
}
|
||
}
|
||
|
||
if (flags & ECF_LONGJMP)
|
||
current_function_calls_longjmp = 1;
|
||
|
||
/* If value type not void, return an rtx for the value. */
|
||
|
||
/* If there are cleanups to be called, don't use a hard reg as target.
|
||
We need to double check this and see if it matters anymore. */
|
||
if (any_pending_cleanups ())
|
||
{
|
||
if (target && REG_P (target)
|
||
&& REGNO (target) < FIRST_PSEUDO_REGISTER)
|
||
target = 0;
|
||
sibcall_failure = 1;
|
||
}
|
||
|
||
if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
|
||
|| ignore)
|
||
target = const0_rtx;
|
||
else if (structure_value_addr)
|
||
{
|
||
if (target == 0 || GET_CODE (target) != MEM)
|
||
{
|
||
target
|
||
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
|
||
memory_address (TYPE_MODE (TREE_TYPE (exp)),
|
||
structure_value_addr));
|
||
set_mem_attributes (target, exp, 1);
|
||
}
|
||
}
|
||
else if (pcc_struct_value)
|
||
{
|
||
/* This is the special C++ case where we need to
|
||
know what the true target was. We take care to
|
||
never use this value more than once in one expression. */
|
||
target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
|
||
copy_to_reg (valreg));
|
||
set_mem_attributes (target, exp, 1);
|
||
}
|
||
/* Handle calls that return values in multiple non-contiguous locations.
|
||
The Irix 6 ABI has examples of this. */
|
||
else if (GET_CODE (valreg) == PARALLEL)
|
||
{
|
||
/* Second condition is added because "target" is freed at the
|
||
the end of "pass0" for -O2 when call is made to
|
||
expand_end_target_temps (). Its "in_use" flag has been set
|
||
to false, so allocate a new temp. */
|
||
if (target == 0 || (pass == 1 && target == temp_target))
|
||
{
|
||
/* This will only be assigned once, so it can be readonly. */
|
||
tree nt = build_qualified_type (TREE_TYPE (exp),
|
||
(TYPE_QUALS (TREE_TYPE (exp))
|
||
| TYPE_QUAL_CONST));
|
||
|
||
target = assign_temp (nt, 0, 1, 1);
|
||
temp_target = target;
|
||
preserve_temp_slots (target);
|
||
}
|
||
|
||
if (! rtx_equal_p (target, valreg))
|
||
emit_group_store (target, valreg, TREE_TYPE (exp),
|
||
int_size_in_bytes (TREE_TYPE (exp)));
|
||
|
||
/* We can not support sibling calls for this case. */
|
||
sibcall_failure = 1;
|
||
}
|
||
else if (target
|
||
&& GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
|
||
&& GET_MODE (target) == GET_MODE (valreg))
|
||
{
|
||
/* TARGET and VALREG cannot be equal at this point because the
|
||
latter would not have REG_FUNCTION_VALUE_P true, while the
|
||
former would if it were referring to the same register.
|
||
|
||
If they refer to the same register, this move will be a no-op,
|
||
except when function inlining is being done. */
|
||
emit_move_insn (target, valreg);
|
||
|
||
/* If we are setting a MEM, this code must be executed. Since it is
|
||
emitted after the call insn, sibcall optimization cannot be
|
||
performed in that case. */
|
||
if (GET_CODE (target) == MEM)
|
||
sibcall_failure = 1;
|
||
}
|
||
else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
|
||
{
|
||
target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
|
||
|
||
/* We can not support sibling calls for this case. */
|
||
sibcall_failure = 1;
|
||
}
|
||
else
|
||
{
|
||
if (shift_returned_value (TREE_TYPE (exp), &valreg))
|
||
sibcall_failure = 1;
|
||
|
||
target = copy_to_reg (valreg);
|
||
}
|
||
|
||
if (targetm.calls.promote_function_return(funtype))
|
||
{
|
||
/* If we promoted this return value, make the proper SUBREG. TARGET
|
||
might be const0_rtx here, so be careful. */
|
||
if (GET_CODE (target) == REG
|
||
&& TYPE_MODE (TREE_TYPE (exp)) != BLKmode
|
||
&& GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
int unsignedp = TREE_UNSIGNED (type);
|
||
int offset = 0;
|
||
|
||
/* If we don't promote as expected, something is wrong. */
|
||
if (GET_MODE (target)
|
||
!= promote_mode (type, TYPE_MODE (type), &unsignedp, 1))
|
||
abort ();
|
||
|
||
if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
|
||
&& GET_MODE_SIZE (GET_MODE (target))
|
||
> GET_MODE_SIZE (TYPE_MODE (type)))
|
||
{
|
||
offset = GET_MODE_SIZE (GET_MODE (target))
|
||
- GET_MODE_SIZE (TYPE_MODE (type));
|
||
if (! BYTES_BIG_ENDIAN)
|
||
offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
|
||
else if (! WORDS_BIG_ENDIAN)
|
||
offset %= UNITS_PER_WORD;
|
||
}
|
||
target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
|
||
SUBREG_PROMOTED_VAR_P (target) = 1;
|
||
SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
|
||
}
|
||
}
|
||
|
||
/* If size of args is variable or this was a constructor call for a stack
|
||
argument, restore saved stack-pointer value. */
|
||
|
||
if (old_stack_level && ! (flags & ECF_SP_DEPRESSED))
|
||
{
|
||
emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
|
||
stack_pointer_delta = old_stack_pointer_delta;
|
||
pending_stack_adjust = old_pending_adj;
|
||
stack_arg_under_construction = old_stack_arg_under_construction;
|
||
highest_outgoing_arg_in_use = initial_highest_arg_in_use;
|
||
stack_usage_map = initial_stack_usage_map;
|
||
sibcall_failure = 1;
|
||
}
|
||
else if (ACCUMULATE_OUTGOING_ARGS && pass)
|
||
{
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
if (save_area)
|
||
restore_fixed_argument_area (save_area, argblock,
|
||
high_to_save, low_to_save);
|
||
#endif
|
||
|
||
/* If we saved any argument areas, restore them. */
|
||
for (i = 0; i < num_actuals; i++)
|
||
if (args[i].save_area)
|
||
{
|
||
enum machine_mode save_mode = GET_MODE (args[i].save_area);
|
||
rtx stack_area
|
||
= gen_rtx_MEM (save_mode,
|
||
memory_address (save_mode,
|
||
XEXP (args[i].stack_slot, 0)));
|
||
|
||
if (save_mode != BLKmode)
|
||
emit_move_insn (stack_area, args[i].save_area);
|
||
else
|
||
emit_block_move (stack_area, args[i].save_area,
|
||
GEN_INT (args[i].locate.size.constant),
|
||
BLOCK_OP_CALL_PARM);
|
||
}
|
||
|
||
highest_outgoing_arg_in_use = initial_highest_arg_in_use;
|
||
stack_usage_map = initial_stack_usage_map;
|
||
}
|
||
|
||
/* If this was alloca, record the new stack level for nonlocal gotos.
|
||
Check for the handler slots since we might not have a save area
|
||
for non-local gotos. */
|
||
|
||
if ((flags & ECF_MAY_BE_ALLOCA) && nonlocal_goto_handler_slots != 0)
|
||
emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
|
||
|
||
/* Free up storage we no longer need. */
|
||
for (i = 0; i < num_actuals; ++i)
|
||
if (args[i].aligned_regs)
|
||
free (args[i].aligned_regs);
|
||
|
||
if (pass == 0)
|
||
{
|
||
/* Undo the fake expand_start_target_temps we did earlier. If
|
||
there had been any cleanups created, we've already set
|
||
sibcall_failure. */
|
||
expand_end_target_temps ();
|
||
}
|
||
|
||
/* If this function is returning into a memory location marked as
|
||
readonly, it means it is initializing that location. We normally treat
|
||
functions as not clobbering such locations, so we need to specify that
|
||
this one does. We do this by adding the appropriate CLOBBER to the
|
||
CALL_INSN function usage list. This cannot be done by emitting a
|
||
standalone CLOBBER after the call because the latter would be ignored
|
||
by at least the delay slot scheduling pass. We do this now instead of
|
||
adding to call_fusage before the call to emit_call_1 because TARGET
|
||
may be modified in the meantime. */
|
||
if (structure_value_addr != 0 && target != 0
|
||
&& GET_CODE (target) == MEM && RTX_UNCHANGING_P (target))
|
||
add_function_usage_to
|
||
(last_call_insn (),
|
||
gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_CLOBBER (VOIDmode, target),
|
||
NULL_RTX));
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (pass == 0)
|
||
{
|
||
tail_call_insns = insns;
|
||
|
||
/* Restore the pending stack adjustment now that we have
|
||
finished generating the sibling call sequence. */
|
||
|
||
pending_stack_adjust = save_pending_stack_adjust;
|
||
stack_pointer_delta = save_stack_pointer_delta;
|
||
|
||
/* Prepare arg structure for next iteration. */
|
||
for (i = 0; i < num_actuals; i++)
|
||
{
|
||
args[i].value = 0;
|
||
args[i].aligned_regs = 0;
|
||
args[i].stack = 0;
|
||
}
|
||
|
||
sbitmap_free (stored_args_map);
|
||
}
|
||
else
|
||
{
|
||
normal_call_insns = insns;
|
||
|
||
/* Verify that we've deallocated all the stack we used. */
|
||
if (! (flags & (ECF_NORETURN | ECF_LONGJMP))
|
||
&& old_stack_allocated != stack_pointer_delta
|
||
- pending_stack_adjust)
|
||
abort ();
|
||
}
|
||
|
||
/* If something prevents making this a sibling call,
|
||
zero out the sequence. */
|
||
if (sibcall_failure)
|
||
tail_call_insns = NULL_RTX;
|
||
}
|
||
|
||
/* The function optimize_sibling_and_tail_recursive_calls doesn't
|
||
handle CALL_PLACEHOLDERs inside other CALL_PLACEHOLDERs. This
|
||
can happen if the arguments to this function call an inline
|
||
function who's expansion contains another CALL_PLACEHOLDER.
|
||
|
||
If there are any C_Ps in any of these sequences, replace them
|
||
with their normal call. */
|
||
|
||
for (insn = normal_call_insns; insn; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == CALL_INSN
|
||
&& GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
|
||
replace_call_placeholder (insn, sibcall_use_normal);
|
||
|
||
for (insn = tail_call_insns; insn; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == CALL_INSN
|
||
&& GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
|
||
replace_call_placeholder (insn, sibcall_use_normal);
|
||
|
||
for (insn = tail_recursion_insns; insn; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == CALL_INSN
|
||
&& GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
|
||
replace_call_placeholder (insn, sibcall_use_normal);
|
||
|
||
/* If this was a potential tail recursion site, then emit a
|
||
CALL_PLACEHOLDER with the normal and the tail recursion streams.
|
||
One of them will be selected later. */
|
||
if (tail_recursion_insns || tail_call_insns)
|
||
{
|
||
/* The tail recursion label must be kept around. We could expose
|
||
its use in the CALL_PLACEHOLDER, but that creates unwanted edges
|
||
and makes determining true tail recursion sites difficult.
|
||
|
||
So we set LABEL_PRESERVE_P here, then clear it when we select
|
||
one of the call sequences after rtl generation is complete. */
|
||
if (tail_recursion_insns)
|
||
LABEL_PRESERVE_P (tail_recursion_label) = 1;
|
||
emit_call_insn (gen_rtx_CALL_PLACEHOLDER (VOIDmode, normal_call_insns,
|
||
tail_call_insns,
|
||
tail_recursion_insns,
|
||
tail_recursion_label));
|
||
}
|
||
else
|
||
emit_insn (normal_call_insns);
|
||
|
||
currently_expanding_call--;
|
||
|
||
/* If this function returns with the stack pointer depressed, ensure
|
||
this block saves and restores the stack pointer, show it was
|
||
changed, and adjust for any outgoing arg space. */
|
||
if (flags & ECF_SP_DEPRESSED)
|
||
{
|
||
clear_pending_stack_adjust ();
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx));
|
||
emit_move_insn (virtual_stack_dynamic_rtx, stack_pointer_rtx);
|
||
save_stack_pointer ();
|
||
}
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Traverse an argument list in VALUES and expand all complex
|
||
arguments into their components. */
|
||
tree
|
||
split_complex_values (tree values)
|
||
{
|
||
tree p;
|
||
|
||
values = copy_list (values);
|
||
|
||
for (p = values; p; p = TREE_CHAIN (p))
|
||
{
|
||
tree complex_value = TREE_VALUE (p);
|
||
tree complex_type;
|
||
|
||
complex_type = TREE_TYPE (complex_value);
|
||
if (!complex_type)
|
||
continue;
|
||
|
||
if (TREE_CODE (complex_type) == COMPLEX_TYPE)
|
||
{
|
||
tree subtype;
|
||
tree real, imag, next;
|
||
|
||
subtype = TREE_TYPE (complex_type);
|
||
complex_value = save_expr (complex_value);
|
||
real = build1 (REALPART_EXPR, subtype, complex_value);
|
||
imag = build1 (IMAGPART_EXPR, subtype, complex_value);
|
||
|
||
TREE_VALUE (p) = real;
|
||
next = TREE_CHAIN (p);
|
||
imag = build_tree_list (NULL_TREE, imag);
|
||
TREE_CHAIN (p) = imag;
|
||
TREE_CHAIN (imag) = next;
|
||
|
||
/* Skip the newly created node. */
|
||
p = TREE_CHAIN (p);
|
||
}
|
||
}
|
||
|
||
return values;
|
||
}
|
||
|
||
/* Traverse a list of TYPES and expand all complex types into their
|
||
components. */
|
||
tree
|
||
split_complex_types (tree types)
|
||
{
|
||
tree p;
|
||
|
||
types = copy_list (types);
|
||
|
||
for (p = types; p; p = TREE_CHAIN (p))
|
||
{
|
||
tree complex_type = TREE_VALUE (p);
|
||
|
||
if (TREE_CODE (complex_type) == COMPLEX_TYPE)
|
||
{
|
||
tree next, imag;
|
||
|
||
/* Rewrite complex type with component type. */
|
||
TREE_VALUE (p) = TREE_TYPE (complex_type);
|
||
next = TREE_CHAIN (p);
|
||
|
||
/* Add another component type for the imaginary part. */
|
||
imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
|
||
TREE_CHAIN (p) = imag;
|
||
TREE_CHAIN (imag) = next;
|
||
|
||
/* Skip the newly created node. */
|
||
p = TREE_CHAIN (p);
|
||
}
|
||
}
|
||
|
||
return types;
|
||
}
|
||
|
||
/* Output a library call to function FUN (a SYMBOL_REF rtx).
|
||
The RETVAL parameter specifies whether return value needs to be saved, other
|
||
parameters are documented in the emit_library_call function below. */
|
||
|
||
static rtx
|
||
emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
|
||
enum libcall_type fn_type,
|
||
enum machine_mode outmode, int nargs, va_list p)
|
||
{
|
||
/* Total size in bytes of all the stack-parms scanned so far. */
|
||
struct args_size args_size;
|
||
/* Size of arguments before any adjustments (such as rounding). */
|
||
struct args_size original_args_size;
|
||
int argnum;
|
||
rtx fun;
|
||
int inc;
|
||
int count;
|
||
rtx argblock = 0;
|
||
CUMULATIVE_ARGS args_so_far;
|
||
struct arg
|
||
{
|
||
rtx value;
|
||
enum machine_mode mode;
|
||
rtx reg;
|
||
int partial;
|
||
struct locate_and_pad_arg_data locate;
|
||
rtx save_area;
|
||
};
|
||
struct arg *argvec;
|
||
int old_inhibit_defer_pop = inhibit_defer_pop;
|
||
rtx call_fusage = 0;
|
||
rtx mem_value = 0;
|
||
rtx valreg;
|
||
int pcc_struct_value = 0;
|
||
int struct_value_size = 0;
|
||
int flags;
|
||
int reg_parm_stack_space = 0;
|
||
int needed;
|
||
rtx before_call;
|
||
tree tfom; /* type_for_mode (outmode, 0) */
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
/* Define the boundary of the register parm stack space that needs to be
|
||
save, if any. */
|
||
int low_to_save, high_to_save;
|
||
rtx save_area = 0; /* Place that it is saved. */
|
||
#endif
|
||
|
||
/* Size of the stack reserved for parameter registers. */
|
||
int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
|
||
char *initial_stack_usage_map = stack_usage_map;
|
||
|
||
rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
#ifdef MAYBE_REG_PARM_STACK_SPACE
|
||
reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
|
||
#else
|
||
reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
|
||
#endif
|
||
#endif
|
||
|
||
/* By default, library functions can not throw. */
|
||
flags = ECF_NOTHROW;
|
||
|
||
switch (fn_type)
|
||
{
|
||
case LCT_NORMAL:
|
||
break;
|
||
case LCT_CONST:
|
||
flags |= ECF_CONST;
|
||
break;
|
||
case LCT_PURE:
|
||
flags |= ECF_PURE;
|
||
break;
|
||
case LCT_CONST_MAKE_BLOCK:
|
||
flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
|
||
break;
|
||
case LCT_PURE_MAKE_BLOCK:
|
||
flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
|
||
break;
|
||
case LCT_NORETURN:
|
||
flags |= ECF_NORETURN;
|
||
break;
|
||
case LCT_THROW:
|
||
flags = ECF_NORETURN;
|
||
break;
|
||
case LCT_ALWAYS_RETURN:
|
||
flags = ECF_ALWAYS_RETURN;
|
||
break;
|
||
case LCT_RETURNS_TWICE:
|
||
flags = ECF_RETURNS_TWICE;
|
||
break;
|
||
}
|
||
fun = orgfun;
|
||
|
||
/* Ensure current function's preferred stack boundary is at least
|
||
what we need. */
|
||
if (cfun->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
|
||
cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
|
||
|
||
/* If this kind of value comes back in memory,
|
||
decide where in memory it should come back. */
|
||
if (outmode != VOIDmode)
|
||
{
|
||
tfom = (*lang_hooks.types.type_for_mode) (outmode, 0);
|
||
if (aggregate_value_p (tfom, 0))
|
||
{
|
||
#ifdef PCC_STATIC_STRUCT_RETURN
|
||
rtx pointer_reg
|
||
= hard_function_value (build_pointer_type (tfom), 0, 0);
|
||
mem_value = gen_rtx_MEM (outmode, pointer_reg);
|
||
pcc_struct_value = 1;
|
||
if (value == 0)
|
||
value = gen_reg_rtx (outmode);
|
||
#else /* not PCC_STATIC_STRUCT_RETURN */
|
||
struct_value_size = GET_MODE_SIZE (outmode);
|
||
if (value != 0 && GET_CODE (value) == MEM)
|
||
mem_value = value;
|
||
else
|
||
mem_value = assign_temp (tfom, 0, 1, 1);
|
||
#endif
|
||
/* This call returns a big structure. */
|
||
flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
|
||
}
|
||
}
|
||
else
|
||
tfom = void_type_node;
|
||
|
||
/* ??? Unfinished: must pass the memory address as an argument. */
|
||
|
||
/* Copy all the libcall-arguments out of the varargs data
|
||
and into a vector ARGVEC.
|
||
|
||
Compute how to pass each argument. We only support a very small subset
|
||
of the full argument passing conventions to limit complexity here since
|
||
library functions shouldn't have many args. */
|
||
|
||
argvec = alloca ((nargs + 1) * sizeof (struct arg));
|
||
memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
|
||
|
||
#ifdef INIT_CUMULATIVE_LIBCALL_ARGS
|
||
INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
|
||
#else
|
||
INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
|
||
#endif
|
||
|
||
args_size.constant = 0;
|
||
args_size.var = 0;
|
||
|
||
count = 0;
|
||
|
||
/* Now we are about to start emitting insns that can be deleted
|
||
if a libcall is deleted. */
|
||
if (flags & ECF_LIBCALL_BLOCK)
|
||
start_sequence ();
|
||
|
||
push_temp_slots ();
|
||
|
||
/* If there's a structure value address to be passed,
|
||
either pass it in the special place, or pass it as an extra argument. */
|
||
if (mem_value && struct_value == 0 && ! pcc_struct_value)
|
||
{
|
||
rtx addr = XEXP (mem_value, 0);
|
||
nargs++;
|
||
|
||
/* Make sure it is a reasonable operand for a move or push insn. */
|
||
if (GET_CODE (addr) != REG && GET_CODE (addr) != MEM
|
||
&& ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
|
||
addr = force_operand (addr, NULL_RTX);
|
||
|
||
argvec[count].value = addr;
|
||
argvec[count].mode = Pmode;
|
||
argvec[count].partial = 0;
|
||
|
||
argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
|
||
#ifdef FUNCTION_ARG_PARTIAL_NREGS
|
||
if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1))
|
||
abort ();
|
||
#endif
|
||
|
||
locate_and_pad_parm (Pmode, NULL_TREE,
|
||
#ifdef STACK_PARMS_IN_REG_PARM_AREA
|
||
1,
|
||
#else
|
||
argvec[count].reg != 0,
|
||
#endif
|
||
0, NULL_TREE, &args_size, &argvec[count].locate);
|
||
|
||
if (argvec[count].reg == 0 || argvec[count].partial != 0
|
||
|| reg_parm_stack_space > 0)
|
||
args_size.constant += argvec[count].locate.size.constant;
|
||
|
||
FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
|
||
|
||
count++;
|
||
}
|
||
|
||
for (; count < nargs; count++)
|
||
{
|
||
rtx val = va_arg (p, rtx);
|
||
enum machine_mode mode = va_arg (p, enum machine_mode);
|
||
|
||
/* We cannot convert the arg value to the mode the library wants here;
|
||
must do it earlier where we know the signedness of the arg. */
|
||
if (mode == BLKmode
|
||
|| (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode))
|
||
abort ();
|
||
|
||
/* There's no need to call protect_from_queue, because
|
||
either emit_move_insn or emit_push_insn will do that. */
|
||
|
||
/* Make sure it is a reasonable operand for a move or push insn. */
|
||
if (GET_CODE (val) != REG && GET_CODE (val) != MEM
|
||
&& ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
|
||
val = force_operand (val, NULL_RTX);
|
||
|
||
#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
|
||
if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1))
|
||
{
|
||
rtx slot;
|
||
int must_copy = 1
|
||
#ifdef FUNCTION_ARG_CALLEE_COPIES
|
||
&& ! FUNCTION_ARG_CALLEE_COPIES (args_so_far, mode,
|
||
NULL_TREE, 1)
|
||
#endif
|
||
;
|
||
|
||
/* loop.c won't look at CALL_INSN_FUNCTION_USAGE of const/pure
|
||
functions, so we have to pretend this isn't such a function. */
|
||
if (flags & ECF_LIBCALL_BLOCK)
|
||
{
|
||
rtx insns = get_insns ();
|
||
end_sequence ();
|
||
emit_insn (insns);
|
||
}
|
||
flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
|
||
|
||
/* If this was a CONST function, it is now PURE since
|
||
it now reads memory. */
|
||
if (flags & ECF_CONST)
|
||
{
|
||
flags &= ~ECF_CONST;
|
||
flags |= ECF_PURE;
|
||
}
|
||
|
||
if (GET_MODE (val) == MEM && ! must_copy)
|
||
slot = val;
|
||
else if (must_copy)
|
||
{
|
||
slot = assign_temp ((*lang_hooks.types.type_for_mode) (mode, 0),
|
||
0, 1, 1);
|
||
emit_move_insn (slot, val);
|
||
}
|
||
else
|
||
{
|
||
tree type = (*lang_hooks.types.type_for_mode) (mode, 0);
|
||
|
||
slot
|
||
= gen_rtx_MEM (mode,
|
||
expand_expr (build1 (ADDR_EXPR,
|
||
build_pointer_type (type),
|
||
make_tree (type, val)),
|
||
NULL_RTX, VOIDmode, 0));
|
||
}
|
||
|
||
call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
|
||
gen_rtx_USE (VOIDmode, slot),
|
||
call_fusage);
|
||
if (must_copy)
|
||
call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
|
||
gen_rtx_CLOBBER (VOIDmode,
|
||
slot),
|
||
call_fusage);
|
||
|
||
mode = Pmode;
|
||
val = force_operand (XEXP (slot, 0), NULL_RTX);
|
||
}
|
||
#endif
|
||
|
||
argvec[count].value = val;
|
||
argvec[count].mode = mode;
|
||
|
||
argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
|
||
|
||
#ifdef FUNCTION_ARG_PARTIAL_NREGS
|
||
argvec[count].partial
|
||
= FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
|
||
#else
|
||
argvec[count].partial = 0;
|
||
#endif
|
||
|
||
locate_and_pad_parm (mode, NULL_TREE,
|
||
#ifdef STACK_PARMS_IN_REG_PARM_AREA
|
||
1,
|
||
#else
|
||
argvec[count].reg != 0,
|
||
#endif
|
||
argvec[count].partial,
|
||
NULL_TREE, &args_size, &argvec[count].locate);
|
||
|
||
if (argvec[count].locate.size.var)
|
||
abort ();
|
||
|
||
if (argvec[count].reg == 0 || argvec[count].partial != 0
|
||
|| reg_parm_stack_space > 0)
|
||
args_size.constant += argvec[count].locate.size.constant;
|
||
|
||
FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
|
||
}
|
||
|
||
#ifdef FINAL_REG_PARM_STACK_SPACE
|
||
reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant,
|
||
args_size.var);
|
||
#endif
|
||
/* If this machine requires an external definition for library
|
||
functions, write one out. */
|
||
assemble_external_libcall (fun);
|
||
|
||
original_args_size = args_size;
|
||
args_size.constant = (((args_size.constant
|
||
+ stack_pointer_delta
|
||
+ STACK_BYTES - 1)
|
||
/ STACK_BYTES
|
||
* STACK_BYTES)
|
||
- stack_pointer_delta);
|
||
|
||
args_size.constant = MAX (args_size.constant,
|
||
reg_parm_stack_space);
|
||
|
||
#ifndef OUTGOING_REG_PARM_STACK_SPACE
|
||
args_size.constant -= reg_parm_stack_space;
|
||
#endif
|
||
|
||
if (args_size.constant > current_function_outgoing_args_size)
|
||
current_function_outgoing_args_size = args_size.constant;
|
||
|
||
if (ACCUMULATE_OUTGOING_ARGS)
|
||
{
|
||
/* Since the stack pointer will never be pushed, it is possible for
|
||
the evaluation of a parm to clobber something we have already
|
||
written to the stack. Since most function calls on RISC machines
|
||
do not use the stack, this is uncommon, but must work correctly.
|
||
|
||
Therefore, we save any area of the stack that was already written
|
||
and that we are using. Here we set up to do this by making a new
|
||
stack usage map from the old one.
|
||
|
||
Another approach might be to try to reorder the argument
|
||
evaluations to avoid this conflicting stack usage. */
|
||
|
||
needed = args_size.constant;
|
||
|
||
#ifndef OUTGOING_REG_PARM_STACK_SPACE
|
||
/* Since we will be writing into the entire argument area, the
|
||
map must be allocated for its entire size, not just the part that
|
||
is the responsibility of the caller. */
|
||
needed += reg_parm_stack_space;
|
||
#endif
|
||
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
|
||
needed + 1);
|
||
#else
|
||
highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
|
||
needed);
|
||
#endif
|
||
stack_usage_map = alloca (highest_outgoing_arg_in_use);
|
||
|
||
if (initial_highest_arg_in_use)
|
||
memcpy (stack_usage_map, initial_stack_usage_map,
|
||
initial_highest_arg_in_use);
|
||
|
||
if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
|
||
memset (&stack_usage_map[initial_highest_arg_in_use], 0,
|
||
highest_outgoing_arg_in_use - initial_highest_arg_in_use);
|
||
needed = 0;
|
||
|
||
/* We must be careful to use virtual regs before they're instantiated,
|
||
and real regs afterwards. Loop optimization, for example, can create
|
||
new libcalls after we've instantiated the virtual regs, and if we
|
||
use virtuals anyway, they won't match the rtl patterns. */
|
||
|
||
if (virtuals_instantiated)
|
||
argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
|
||
else
|
||
argblock = virtual_outgoing_args_rtx;
|
||
}
|
||
else
|
||
{
|
||
if (!PUSH_ARGS)
|
||
argblock = push_block (GEN_INT (args_size.constant), 0, 0);
|
||
}
|
||
|
||
/* If we push args individually in reverse order, perform stack alignment
|
||
before the first push (the last arg). */
|
||
if (argblock == 0 && PUSH_ARGS_REVERSED)
|
||
anti_adjust_stack (GEN_INT (args_size.constant
|
||
- original_args_size.constant));
|
||
|
||
if (PUSH_ARGS_REVERSED)
|
||
{
|
||
inc = -1;
|
||
argnum = nargs - 1;
|
||
}
|
||
else
|
||
{
|
||
inc = 1;
|
||
argnum = 0;
|
||
}
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
if (ACCUMULATE_OUTGOING_ARGS)
|
||
{
|
||
/* The argument list is the property of the called routine and it
|
||
may clobber it. If the fixed area has been used for previous
|
||
parameters, we must save and restore it. */
|
||
save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
|
||
&low_to_save, &high_to_save);
|
||
}
|
||
#endif
|
||
|
||
/* Push the args that need to be pushed. */
|
||
|
||
/* ARGNUM indexes the ARGVEC array in the order in which the arguments
|
||
are to be pushed. */
|
||
for (count = 0; count < nargs; count++, argnum += inc)
|
||
{
|
||
enum machine_mode mode = argvec[argnum].mode;
|
||
rtx val = argvec[argnum].value;
|
||
rtx reg = argvec[argnum].reg;
|
||
int partial = argvec[argnum].partial;
|
||
int lower_bound = 0, upper_bound = 0, i;
|
||
|
||
if (! (reg != 0 && partial == 0))
|
||
{
|
||
if (ACCUMULATE_OUTGOING_ARGS)
|
||
{
|
||
/* If this is being stored into a pre-allocated, fixed-size,
|
||
stack area, save any previous data at that location. */
|
||
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
/* stack_slot is negative, but we want to index stack_usage_map
|
||
with positive values. */
|
||
upper_bound = -argvec[argnum].locate.offset.constant + 1;
|
||
lower_bound = upper_bound - argvec[argnum].locate.size.constant;
|
||
#else
|
||
lower_bound = argvec[argnum].locate.offset.constant;
|
||
upper_bound = lower_bound + argvec[argnum].locate.size.constant;
|
||
#endif
|
||
|
||
i = lower_bound;
|
||
/* Don't worry about things in the fixed argument area;
|
||
it has already been saved. */
|
||
if (i < reg_parm_stack_space)
|
||
i = reg_parm_stack_space;
|
||
while (i < upper_bound && stack_usage_map[i] == 0)
|
||
i++;
|
||
|
||
if (i < upper_bound)
|
||
{
|
||
/* We need to make a save area. */
|
||
unsigned int size
|
||
= argvec[argnum].locate.size.constant * BITS_PER_UNIT;
|
||
enum machine_mode save_mode
|
||
= mode_for_size (size, MODE_INT, 1);
|
||
rtx adr
|
||
= plus_constant (argblock,
|
||
argvec[argnum].locate.offset.constant);
|
||
rtx stack_area
|
||
= gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
|
||
|
||
if (save_mode == BLKmode)
|
||
{
|
||
argvec[argnum].save_area
|
||
= assign_stack_temp (BLKmode,
|
||
argvec[argnum].locate.size.constant,
|
||
0);
|
||
|
||
emit_block_move (validize_mem (argvec[argnum].save_area),
|
||
stack_area,
|
||
GEN_INT (argvec[argnum].locate.size.constant),
|
||
BLOCK_OP_CALL_PARM);
|
||
}
|
||
else
|
||
{
|
||
argvec[argnum].save_area = gen_reg_rtx (save_mode);
|
||
|
||
emit_move_insn (argvec[argnum].save_area, stack_area);
|
||
}
|
||
}
|
||
}
|
||
|
||
emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
|
||
partial, reg, 0, argblock,
|
||
GEN_INT (argvec[argnum].locate.offset.constant),
|
||
reg_parm_stack_space,
|
||
ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
|
||
|
||
/* Now mark the segment we just used. */
|
||
if (ACCUMULATE_OUTGOING_ARGS)
|
||
for (i = lower_bound; i < upper_bound; i++)
|
||
stack_usage_map[i] = 1;
|
||
|
||
NO_DEFER_POP;
|
||
}
|
||
}
|
||
|
||
/* If we pushed args in forward order, perform stack alignment
|
||
after pushing the last arg. */
|
||
if (argblock == 0 && !PUSH_ARGS_REVERSED)
|
||
anti_adjust_stack (GEN_INT (args_size.constant
|
||
- original_args_size.constant));
|
||
|
||
if (PUSH_ARGS_REVERSED)
|
||
argnum = nargs - 1;
|
||
else
|
||
argnum = 0;
|
||
|
||
fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0, 0);
|
||
|
||
/* Now load any reg parms into their regs. */
|
||
|
||
/* ARGNUM indexes the ARGVEC array in the order in which the arguments
|
||
are to be pushed. */
|
||
for (count = 0; count < nargs; count++, argnum += inc)
|
||
{
|
||
rtx val = argvec[argnum].value;
|
||
rtx reg = argvec[argnum].reg;
|
||
int partial = argvec[argnum].partial;
|
||
|
||
/* Handle calls that pass values in multiple non-contiguous
|
||
locations. The PA64 has examples of this for library calls. */
|
||
if (reg != 0 && GET_CODE (reg) == PARALLEL)
|
||
emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (GET_MODE (val)));
|
||
else if (reg != 0 && partial == 0)
|
||
emit_move_insn (reg, val);
|
||
|
||
NO_DEFER_POP;
|
||
}
|
||
|
||
/* Any regs containing parms remain in use through the call. */
|
||
for (count = 0; count < nargs; count++)
|
||
{
|
||
rtx reg = argvec[count].reg;
|
||
if (reg != 0 && GET_CODE (reg) == PARALLEL)
|
||
use_group_regs (&call_fusage, reg);
|
||
else if (reg != 0)
|
||
use_reg (&call_fusage, reg);
|
||
}
|
||
|
||
/* Pass the function the address in which to return a structure value. */
|
||
if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
|
||
{
|
||
emit_move_insn (struct_value,
|
||
force_reg (Pmode,
|
||
force_operand (XEXP (mem_value, 0),
|
||
NULL_RTX)));
|
||
if (GET_CODE (struct_value) == REG)
|
||
use_reg (&call_fusage, struct_value);
|
||
}
|
||
|
||
/* Don't allow popping to be deferred, since then
|
||
cse'ing of library calls could delete a call and leave the pop. */
|
||
NO_DEFER_POP;
|
||
valreg = (mem_value == 0 && outmode != VOIDmode
|
||
? hard_libcall_value (outmode) : NULL_RTX);
|
||
|
||
/* Stack must be properly aligned now. */
|
||
if (stack_pointer_delta & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1))
|
||
abort ();
|
||
|
||
before_call = get_last_insn ();
|
||
|
||
/* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
|
||
will set inhibit_defer_pop to that value. */
|
||
/* The return type is needed to decide how many bytes the function pops.
|
||
Signedness plays no role in that, so for simplicity, we pretend it's
|
||
always signed. We also assume that the list of arguments passed has
|
||
no impact, so we pretend it is unknown. */
|
||
|
||
emit_call_1 (fun,
|
||
get_identifier (XSTR (orgfun, 0)),
|
||
build_function_type (tfom, NULL_TREE),
|
||
original_args_size.constant, args_size.constant,
|
||
struct_value_size,
|
||
FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
|
||
valreg,
|
||
old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
|
||
|
||
/* For calls to `setjmp', etc., inform flow.c it should complain
|
||
if nonvolatile values are live. For functions that cannot return,
|
||
inform flow that control does not fall through. */
|
||
|
||
if (flags & (ECF_NORETURN | ECF_LONGJMP))
|
||
{
|
||
/* The barrier note must be emitted
|
||
immediately after the CALL_INSN. Some ports emit more than
|
||
just a CALL_INSN above, so we must search for it here. */
|
||
|
||
rtx last = get_last_insn ();
|
||
while (GET_CODE (last) != CALL_INSN)
|
||
{
|
||
last = PREV_INSN (last);
|
||
/* There was no CALL_INSN? */
|
||
if (last == before_call)
|
||
abort ();
|
||
}
|
||
|
||
emit_barrier_after (last);
|
||
}
|
||
|
||
/* Now restore inhibit_defer_pop to its actual original value. */
|
||
OK_DEFER_POP;
|
||
|
||
/* If call is cse'able, make appropriate pair of reg-notes around it.
|
||
Test valreg so we don't crash; may safely ignore `const'
|
||
if return type is void. Disable for PARALLEL return values, because
|
||
we have no way to move such values into a pseudo register. */
|
||
if (flags & ECF_LIBCALL_BLOCK)
|
||
{
|
||
rtx insns;
|
||
|
||
if (valreg == 0)
|
||
{
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
emit_insn (insns);
|
||
}
|
||
else
|
||
{
|
||
rtx note = 0;
|
||
rtx temp;
|
||
int i;
|
||
|
||
if (GET_CODE (valreg) == PARALLEL)
|
||
{
|
||
temp = gen_reg_rtx (outmode);
|
||
emit_group_store (temp, valreg, NULL_TREE,
|
||
GET_MODE_SIZE (outmode));
|
||
valreg = temp;
|
||
}
|
||
|
||
temp = gen_reg_rtx (GET_MODE (valreg));
|
||
|
||
/* Construct an "equal form" for the value which mentions all the
|
||
arguments in order as well as the function name. */
|
||
for (i = 0; i < nargs; i++)
|
||
note = gen_rtx_EXPR_LIST (VOIDmode, argvec[i].value, note);
|
||
note = gen_rtx_EXPR_LIST (VOIDmode, fun, note);
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (flags & ECF_PURE)
|
||
note = gen_rtx_EXPR_LIST (VOIDmode,
|
||
gen_rtx_USE (VOIDmode,
|
||
gen_rtx_MEM (BLKmode,
|
||
gen_rtx_SCRATCH (VOIDmode))),
|
||
note);
|
||
|
||
emit_libcall_block (insns, temp, valreg, note);
|
||
|
||
valreg = temp;
|
||
}
|
||
}
|
||
pop_temp_slots ();
|
||
|
||
/* Copy the value to the right place. */
|
||
if (outmode != VOIDmode && retval)
|
||
{
|
||
if (mem_value)
|
||
{
|
||
if (value == 0)
|
||
value = mem_value;
|
||
if (value != mem_value)
|
||
emit_move_insn (value, mem_value);
|
||
}
|
||
else if (GET_CODE (valreg) == PARALLEL)
|
||
{
|
||
if (value == 0)
|
||
value = gen_reg_rtx (outmode);
|
||
emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
|
||
}
|
||
else if (value != 0)
|
||
emit_move_insn (value, valreg);
|
||
else
|
||
value = valreg;
|
||
}
|
||
|
||
if (ACCUMULATE_OUTGOING_ARGS)
|
||
{
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
if (save_area)
|
||
restore_fixed_argument_area (save_area, argblock,
|
||
high_to_save, low_to_save);
|
||
#endif
|
||
|
||
/* If we saved any argument areas, restore them. */
|
||
for (count = 0; count < nargs; count++)
|
||
if (argvec[count].save_area)
|
||
{
|
||
enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
|
||
rtx adr = plus_constant (argblock,
|
||
argvec[count].locate.offset.constant);
|
||
rtx stack_area = gen_rtx_MEM (save_mode,
|
||
memory_address (save_mode, adr));
|
||
|
||
if (save_mode == BLKmode)
|
||
emit_block_move (stack_area,
|
||
validize_mem (argvec[count].save_area),
|
||
GEN_INT (argvec[count].locate.size.constant),
|
||
BLOCK_OP_CALL_PARM);
|
||
else
|
||
emit_move_insn (stack_area, argvec[count].save_area);
|
||
}
|
||
|
||
highest_outgoing_arg_in_use = initial_highest_arg_in_use;
|
||
stack_usage_map = initial_stack_usage_map;
|
||
}
|
||
|
||
return value;
|
||
|
||
}
|
||
|
||
/* Output a library call to function FUN (a SYMBOL_REF rtx)
|
||
(emitting the queue unless NO_QUEUE is nonzero),
|
||
for a value of mode OUTMODE,
|
||
with NARGS different arguments, passed as alternating rtx values
|
||
and machine_modes to convert them to.
|
||
The rtx values should have been passed through protect_from_queue already.
|
||
|
||
FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for `const'
|
||
calls, LCT_PURE for `pure' calls, LCT_CONST_MAKE_BLOCK for `const' calls
|
||
which should be enclosed in REG_LIBCALL/REG_RETVAL notes,
|
||
LCT_PURE_MAKE_BLOCK for `purep' calls which should be enclosed in
|
||
REG_LIBCALL/REG_RETVAL notes with extra (use (memory (scratch)),
|
||
or other LCT_ value for other types of library calls. */
|
||
|
||
void
|
||
emit_library_call (rtx orgfun, enum libcall_type fn_type,
|
||
enum machine_mode outmode, int nargs, ...)
|
||
{
|
||
va_list p;
|
||
|
||
va_start (p, nargs);
|
||
emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
|
||
va_end (p);
|
||
}
|
||
|
||
/* Like emit_library_call except that an extra argument, VALUE,
|
||
comes second and says where to store the result.
|
||
(If VALUE is zero, this function chooses a convenient way
|
||
to return the value.
|
||
|
||
This function returns an rtx for where the value is to be found.
|
||
If VALUE is nonzero, VALUE is returned. */
|
||
|
||
rtx
|
||
emit_library_call_value (rtx orgfun, rtx value,
|
||
enum libcall_type fn_type,
|
||
enum machine_mode outmode, int nargs, ...)
|
||
{
|
||
rtx result;
|
||
va_list p;
|
||
|
||
va_start (p, nargs);
|
||
result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
|
||
nargs, p);
|
||
va_end (p);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Store a single argument for a function call
|
||
into the register or memory area where it must be passed.
|
||
*ARG describes the argument value and where to pass it.
|
||
|
||
ARGBLOCK is the address of the stack-block for all the arguments,
|
||
or 0 on a machine where arguments are pushed individually.
|
||
|
||
MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
|
||
so must be careful about how the stack is used.
|
||
|
||
VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
|
||
argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
|
||
that we need not worry about saving and restoring the stack.
|
||
|
||
FNDECL is the declaration of the function we are calling.
|
||
|
||
Return nonzero if this arg should cause sibcall failure,
|
||
zero otherwise. */
|
||
|
||
static int
|
||
store_one_arg (struct arg_data *arg, rtx argblock, int flags,
|
||
int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
|
||
{
|
||
tree pval = arg->tree_value;
|
||
rtx reg = 0;
|
||
int partial = 0;
|
||
int used = 0;
|
||
int i, lower_bound = 0, upper_bound = 0;
|
||
int sibcall_failure = 0;
|
||
|
||
if (TREE_CODE (pval) == ERROR_MARK)
|
||
return 1;
|
||
|
||
/* Push a new temporary level for any temporaries we make for
|
||
this argument. */
|
||
push_temp_slots ();
|
||
|
||
if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
|
||
{
|
||
/* If this is being stored into a pre-allocated, fixed-size, stack area,
|
||
save any previous data at that location. */
|
||
if (argblock && ! variable_size && arg->stack)
|
||
{
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
/* stack_slot is negative, but we want to index stack_usage_map
|
||
with positive values. */
|
||
if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
|
||
upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
|
||
else
|
||
upper_bound = 0;
|
||
|
||
lower_bound = upper_bound - arg->locate.size.constant;
|
||
#else
|
||
if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
|
||
lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
|
||
else
|
||
lower_bound = 0;
|
||
|
||
upper_bound = lower_bound + arg->locate.size.constant;
|
||
#endif
|
||
|
||
i = lower_bound;
|
||
/* Don't worry about things in the fixed argument area;
|
||
it has already been saved. */
|
||
if (i < reg_parm_stack_space)
|
||
i = reg_parm_stack_space;
|
||
while (i < upper_bound && stack_usage_map[i] == 0)
|
||
i++;
|
||
|
||
if (i < upper_bound)
|
||
{
|
||
/* We need to make a save area. */
|
||
unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
|
||
enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
|
||
rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
|
||
rtx stack_area = gen_rtx_MEM (save_mode, adr);
|
||
|
||
if (save_mode == BLKmode)
|
||
{
|
||
tree ot = TREE_TYPE (arg->tree_value);
|
||
tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
|
||
| TYPE_QUAL_CONST));
|
||
|
||
arg->save_area = assign_temp (nt, 0, 1, 1);
|
||
preserve_temp_slots (arg->save_area);
|
||
emit_block_move (validize_mem (arg->save_area), stack_area,
|
||
expr_size (arg->tree_value),
|
||
BLOCK_OP_CALL_PARM);
|
||
}
|
||
else
|
||
{
|
||
arg->save_area = gen_reg_rtx (save_mode);
|
||
emit_move_insn (arg->save_area, stack_area);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If this isn't going to be placed on both the stack and in registers,
|
||
set up the register and number of words. */
|
||
if (! arg->pass_on_stack)
|
||
{
|
||
if (flags & ECF_SIBCALL)
|
||
reg = arg->tail_call_reg;
|
||
else
|
||
reg = arg->reg;
|
||
partial = arg->partial;
|
||
}
|
||
|
||
if (reg != 0 && partial == 0)
|
||
/* Being passed entirely in a register. We shouldn't be called in
|
||
this case. */
|
||
abort ();
|
||
|
||
/* If this arg needs special alignment, don't load the registers
|
||
here. */
|
||
if (arg->n_aligned_regs != 0)
|
||
reg = 0;
|
||
|
||
/* If this is being passed partially in a register, we can't evaluate
|
||
it directly into its stack slot. Otherwise, we can. */
|
||
if (arg->value == 0)
|
||
{
|
||
/* stack_arg_under_construction is nonzero if a function argument is
|
||
being evaluated directly into the outgoing argument list and
|
||
expand_call must take special action to preserve the argument list
|
||
if it is called recursively.
|
||
|
||
For scalar function arguments stack_usage_map is sufficient to
|
||
determine which stack slots must be saved and restored. Scalar
|
||
arguments in general have pass_on_stack == 0.
|
||
|
||
If this argument is initialized by a function which takes the
|
||
address of the argument (a C++ constructor or a C function
|
||
returning a BLKmode structure), then stack_usage_map is
|
||
insufficient and expand_call must push the stack around the
|
||
function call. Such arguments have pass_on_stack == 1.
|
||
|
||
Note that it is always safe to set stack_arg_under_construction,
|
||
but this generates suboptimal code if set when not needed. */
|
||
|
||
if (arg->pass_on_stack)
|
||
stack_arg_under_construction++;
|
||
|
||
arg->value = expand_expr (pval,
|
||
(partial
|
||
|| TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
|
||
? NULL_RTX : arg->stack,
|
||
VOIDmode, EXPAND_STACK_PARM);
|
||
|
||
/* If we are promoting object (or for any other reason) the mode
|
||
doesn't agree, convert the mode. */
|
||
|
||
if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
|
||
arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
|
||
arg->value, arg->unsignedp);
|
||
|
||
if (arg->pass_on_stack)
|
||
stack_arg_under_construction--;
|
||
}
|
||
|
||
/* Don't allow anything left on stack from computation
|
||
of argument to alloca. */
|
||
if (flags & ECF_MAY_BE_ALLOCA)
|
||
do_pending_stack_adjust ();
|
||
|
||
if (arg->value == arg->stack)
|
||
/* If the value is already in the stack slot, we are done. */
|
||
;
|
||
else if (arg->mode != BLKmode)
|
||
{
|
||
int size;
|
||
|
||
/* Argument is a scalar, not entirely passed in registers.
|
||
(If part is passed in registers, arg->partial says how much
|
||
and emit_push_insn will take care of putting it there.)
|
||
|
||
Push it, and if its size is less than the
|
||
amount of space allocated to it,
|
||
also bump stack pointer by the additional space.
|
||
Note that in C the default argument promotions
|
||
will prevent such mismatches. */
|
||
|
||
size = GET_MODE_SIZE (arg->mode);
|
||
/* Compute how much space the push instruction will push.
|
||
On many machines, pushing a byte will advance the stack
|
||
pointer by a halfword. */
|
||
#ifdef PUSH_ROUNDING
|
||
size = PUSH_ROUNDING (size);
|
||
#endif
|
||
used = size;
|
||
|
||
/* Compute how much space the argument should get:
|
||
round up to a multiple of the alignment for arguments. */
|
||
if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
|
||
used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
|
||
/ (PARM_BOUNDARY / BITS_PER_UNIT))
|
||
* (PARM_BOUNDARY / BITS_PER_UNIT));
|
||
|
||
/* This isn't already where we want it on the stack, so put it there.
|
||
This can either be done with push or copy insns. */
|
||
emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
|
||
PARM_BOUNDARY, partial, reg, used - size, argblock,
|
||
ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
|
||
ARGS_SIZE_RTX (arg->locate.alignment_pad));
|
||
|
||
/* Unless this is a partially-in-register argument, the argument is now
|
||
in the stack. */
|
||
if (partial == 0)
|
||
arg->value = arg->stack;
|
||
}
|
||
else
|
||
{
|
||
/* BLKmode, at least partly to be pushed. */
|
||
|
||
unsigned int parm_align;
|
||
int excess;
|
||
rtx size_rtx;
|
||
|
||
/* Pushing a nonscalar.
|
||
If part is passed in registers, PARTIAL says how much
|
||
and emit_push_insn will take care of putting it there. */
|
||
|
||
/* Round its size up to a multiple
|
||
of the allocation unit for arguments. */
|
||
|
||
if (arg->locate.size.var != 0)
|
||
{
|
||
excess = 0;
|
||
size_rtx = ARGS_SIZE_RTX (arg->locate.size);
|
||
}
|
||
else
|
||
{
|
||
/* PUSH_ROUNDING has no effect on us, because
|
||
emit_push_insn for BLKmode is careful to avoid it. */
|
||
if (reg && GET_CODE (reg) == PARALLEL)
|
||
{
|
||
/* Use the size of the elt to compute excess. */
|
||
rtx elt = XEXP (XVECEXP (reg, 0, 0), 0);
|
||
excess = (arg->locate.size.constant
|
||
- int_size_in_bytes (TREE_TYPE (pval))
|
||
+ partial * GET_MODE_SIZE (GET_MODE (elt)));
|
||
}
|
||
else
|
||
excess = (arg->locate.size.constant
|
||
- int_size_in_bytes (TREE_TYPE (pval))
|
||
+ partial * UNITS_PER_WORD);
|
||
size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
|
||
NULL_RTX, TYPE_MODE (sizetype), 0);
|
||
}
|
||
|
||
/* Some types will require stricter alignment, which will be
|
||
provided for elsewhere in argument layout. */
|
||
parm_align = MAX (PARM_BOUNDARY, TYPE_ALIGN (TREE_TYPE (pval)));
|
||
|
||
/* When an argument is padded down, the block is aligned to
|
||
PARM_BOUNDARY, but the actual argument isn't. */
|
||
if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
|
||
{
|
||
if (arg->locate.size.var)
|
||
parm_align = BITS_PER_UNIT;
|
||
else if (excess)
|
||
{
|
||
unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
|
||
parm_align = MIN (parm_align, excess_align);
|
||
}
|
||
}
|
||
|
||
if ((flags & ECF_SIBCALL) && GET_CODE (arg->value) == MEM)
|
||
{
|
||
/* emit_push_insn might not work properly if arg->value and
|
||
argblock + arg->locate.offset areas overlap. */
|
||
rtx x = arg->value;
|
||
int i = 0;
|
||
|
||
if (XEXP (x, 0) == current_function_internal_arg_pointer
|
||
|| (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& XEXP (XEXP (x, 0), 0) ==
|
||
current_function_internal_arg_pointer
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
|
||
{
|
||
if (XEXP (x, 0) != current_function_internal_arg_pointer)
|
||
i = INTVAL (XEXP (XEXP (x, 0), 1));
|
||
|
||
/* expand_call should ensure this. */
|
||
if (arg->locate.offset.var || GET_CODE (size_rtx) != CONST_INT)
|
||
abort ();
|
||
|
||
if (arg->locate.offset.constant > i)
|
||
{
|
||
if (arg->locate.offset.constant < i + INTVAL (size_rtx))
|
||
sibcall_failure = 1;
|
||
}
|
||
else if (arg->locate.offset.constant < i)
|
||
{
|
||
if (i < arg->locate.offset.constant + INTVAL (size_rtx))
|
||
sibcall_failure = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
|
||
parm_align, partial, reg, excess, argblock,
|
||
ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
|
||
ARGS_SIZE_RTX (arg->locate.alignment_pad));
|
||
|
||
/* Unless this is a partially-in-register argument, the argument is now
|
||
in the stack.
|
||
|
||
??? Unlike the case above, in which we want the actual
|
||
address of the data, so that we can load it directly into a
|
||
register, here we want the address of the stack slot, so that
|
||
it's properly aligned for word-by-word copying or something
|
||
like that. It's not clear that this is always correct. */
|
||
if (partial == 0)
|
||
arg->value = arg->stack_slot;
|
||
}
|
||
|
||
/* Mark all slots this store used. */
|
||
if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
|
||
&& argblock && ! variable_size && arg->stack)
|
||
for (i = lower_bound; i < upper_bound; i++)
|
||
stack_usage_map[i] = 1;
|
||
|
||
/* Once we have pushed something, pops can't safely
|
||
be deferred during the rest of the arguments. */
|
||
NO_DEFER_POP;
|
||
|
||
/* ANSI doesn't require a sequence point here,
|
||
but PCC has one, so this will avoid some problems. */
|
||
emit_queue ();
|
||
|
||
/* Free any temporary slots made in processing this argument. Show
|
||
that we might have taken the address of something and pushed that
|
||
as an operand. */
|
||
preserve_temp_slots (NULL_RTX);
|
||
free_temp_slots ();
|
||
pop_temp_slots ();
|
||
|
||
return sibcall_failure;
|
||
}
|
||
|
||
/* Nonzero if we do not know how to pass TYPE solely in registers.
|
||
We cannot do so in the following cases:
|
||
|
||
- if the type has variable size
|
||
- if the type is marked as addressable (it is required to be constructed
|
||
into the stack)
|
||
- if the padding and mode of the type is such that a copy into a register
|
||
would put it into the wrong part of the register.
|
||
|
||
Which padding can't be supported depends on the byte endianness.
|
||
|
||
A value in a register is implicitly padded at the most significant end.
|
||
On a big-endian machine, that is the lower end in memory.
|
||
So a value padded in memory at the upper end can't go in a register.
|
||
For a little-endian machine, the reverse is true. */
|
||
|
||
bool
|
||
default_must_pass_in_stack (enum machine_mode mode, tree type)
|
||
{
|
||
if (!type)
|
||
return false;
|
||
|
||
/* If the type has variable size... */
|
||
if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
|
||
return true;
|
||
|
||
/* If the type is marked as addressable (it is required
|
||
to be constructed into the stack)... */
|
||
if (TREE_ADDRESSABLE (type))
|
||
return true;
|
||
|
||
/* If the padding and mode of the type is such that a copy into
|
||
a register would put it into the wrong part of the register. */
|
||
if (mode == BLKmode
|
||
&& int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
|
||
&& (FUNCTION_ARG_PADDING (mode, type)
|
||
== (BYTES_BIG_ENDIAN ? upward : downward)))
|
||
return true;
|
||
|
||
return false;
|
||
}
|