866e32ad33
From-SVN: r215527
286 lines
7.6 KiB
C++
286 lines
7.6 KiB
C++
//===-- tsan_mutex.cc -----------------------------------------------------===//
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer (TSan), a race detector.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "sanitizer_common/sanitizer_libc.h"
|
|
#include "tsan_mutex.h"
|
|
#include "tsan_platform.h"
|
|
#include "tsan_rtl.h"
|
|
|
|
namespace __tsan {
|
|
|
|
// Simple reader-writer spin-mutex. Optimized for not-so-contended case.
|
|
// Readers have preference, can possibly starvate writers.
|
|
|
|
// The table fixes what mutexes can be locked under what mutexes.
|
|
// E.g. if the row for MutexTypeThreads contains MutexTypeReport,
|
|
// then Report mutex can be locked while under Threads mutex.
|
|
// The leaf mutexes can be locked under any other mutexes.
|
|
// Recursive locking is not supported.
|
|
#if TSAN_DEBUG && !TSAN_GO
|
|
const MutexType MutexTypeLeaf = (MutexType)-1;
|
|
static MutexType CanLockTab[MutexTypeCount][MutexTypeCount] = {
|
|
/*0 MutexTypeInvalid*/ {},
|
|
/*1 MutexTypeTrace*/ {MutexTypeLeaf},
|
|
/*2 MutexTypeThreads*/ {MutexTypeReport},
|
|
/*3 MutexTypeReport*/ {MutexTypeSyncVar,
|
|
MutexTypeMBlock, MutexTypeJavaMBlock},
|
|
/*4 MutexTypeSyncVar*/ {MutexTypeDDetector},
|
|
/*5 MutexTypeSyncTab*/ {}, // unused
|
|
/*6 MutexTypeSlab*/ {MutexTypeLeaf},
|
|
/*7 MutexTypeAnnotations*/ {},
|
|
/*8 MutexTypeAtExit*/ {MutexTypeSyncVar},
|
|
/*9 MutexTypeMBlock*/ {MutexTypeSyncVar},
|
|
/*10 MutexTypeJavaMBlock*/ {MutexTypeSyncVar},
|
|
/*11 MutexTypeDDetector*/ {},
|
|
};
|
|
|
|
static bool CanLockAdj[MutexTypeCount][MutexTypeCount];
|
|
#endif
|
|
|
|
void InitializeMutex() {
|
|
#if TSAN_DEBUG && !TSAN_GO
|
|
// Build the "can lock" adjacency matrix.
|
|
// If [i][j]==true, then one can lock mutex j while under mutex i.
|
|
const int N = MutexTypeCount;
|
|
int cnt[N] = {};
|
|
bool leaf[N] = {};
|
|
for (int i = 1; i < N; i++) {
|
|
for (int j = 0; j < N; j++) {
|
|
MutexType z = CanLockTab[i][j];
|
|
if (z == MutexTypeInvalid)
|
|
continue;
|
|
if (z == MutexTypeLeaf) {
|
|
CHECK(!leaf[i]);
|
|
leaf[i] = true;
|
|
continue;
|
|
}
|
|
CHECK(!CanLockAdj[i][(int)z]);
|
|
CanLockAdj[i][(int)z] = true;
|
|
cnt[i]++;
|
|
}
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
CHECK(!leaf[i] || cnt[i] == 0);
|
|
}
|
|
// Add leaf mutexes.
|
|
for (int i = 0; i < N; i++) {
|
|
if (!leaf[i])
|
|
continue;
|
|
for (int j = 0; j < N; j++) {
|
|
if (i == j || leaf[j] || j == MutexTypeInvalid)
|
|
continue;
|
|
CHECK(!CanLockAdj[j][i]);
|
|
CanLockAdj[j][i] = true;
|
|
}
|
|
}
|
|
// Build the transitive closure.
|
|
bool CanLockAdj2[MutexTypeCount][MutexTypeCount];
|
|
for (int i = 0; i < N; i++) {
|
|
for (int j = 0; j < N; j++) {
|
|
CanLockAdj2[i][j] = CanLockAdj[i][j];
|
|
}
|
|
}
|
|
for (int k = 0; k < N; k++) {
|
|
for (int i = 0; i < N; i++) {
|
|
for (int j = 0; j < N; j++) {
|
|
if (CanLockAdj2[i][k] && CanLockAdj2[k][j]) {
|
|
CanLockAdj2[i][j] = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#if 0
|
|
Printf("Can lock graph:\n");
|
|
for (int i = 0; i < N; i++) {
|
|
for (int j = 0; j < N; j++) {
|
|
Printf("%d ", CanLockAdj[i][j]);
|
|
}
|
|
Printf("\n");
|
|
}
|
|
Printf("Can lock graph closure:\n");
|
|
for (int i = 0; i < N; i++) {
|
|
for (int j = 0; j < N; j++) {
|
|
Printf("%d ", CanLockAdj2[i][j]);
|
|
}
|
|
Printf("\n");
|
|
}
|
|
#endif
|
|
// Verify that the graph is acyclic.
|
|
for (int i = 0; i < N; i++) {
|
|
if (CanLockAdj2[i][i]) {
|
|
Printf("Mutex %d participates in a cycle\n", i);
|
|
Die();
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
InternalDeadlockDetector::InternalDeadlockDetector() {
|
|
// Rely on zero initialization because some mutexes can be locked before ctor.
|
|
}
|
|
|
|
#if TSAN_DEBUG && !TSAN_GO
|
|
void InternalDeadlockDetector::Lock(MutexType t) {
|
|
// Printf("LOCK %d @%zu\n", t, seq_ + 1);
|
|
CHECK_GT(t, MutexTypeInvalid);
|
|
CHECK_LT(t, MutexTypeCount);
|
|
u64 max_seq = 0;
|
|
u64 max_idx = MutexTypeInvalid;
|
|
for (int i = 0; i != MutexTypeCount; i++) {
|
|
if (locked_[i] == 0)
|
|
continue;
|
|
CHECK_NE(locked_[i], max_seq);
|
|
if (max_seq < locked_[i]) {
|
|
max_seq = locked_[i];
|
|
max_idx = i;
|
|
}
|
|
}
|
|
locked_[t] = ++seq_;
|
|
if (max_idx == MutexTypeInvalid)
|
|
return;
|
|
// Printf(" last %d @%zu\n", max_idx, max_seq);
|
|
if (!CanLockAdj[max_idx][t]) {
|
|
Printf("ThreadSanitizer: internal deadlock detected\n");
|
|
Printf("ThreadSanitizer: can't lock %d while under %zu\n",
|
|
t, (uptr)max_idx);
|
|
CHECK(0);
|
|
}
|
|
}
|
|
|
|
void InternalDeadlockDetector::Unlock(MutexType t) {
|
|
// Printf("UNLO %d @%zu #%zu\n", t, seq_, locked_[t]);
|
|
CHECK(locked_[t]);
|
|
locked_[t] = 0;
|
|
}
|
|
|
|
void InternalDeadlockDetector::CheckNoLocks() {
|
|
for (int i = 0; i != MutexTypeCount; i++) {
|
|
CHECK_EQ(locked_[i], 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void CheckNoLocks(ThreadState *thr) {
|
|
#if TSAN_DEBUG && !TSAN_GO
|
|
thr->internal_deadlock_detector.CheckNoLocks();
|
|
#endif
|
|
}
|
|
|
|
const uptr kUnlocked = 0;
|
|
const uptr kWriteLock = 1;
|
|
const uptr kReadLock = 2;
|
|
|
|
class Backoff {
|
|
public:
|
|
Backoff()
|
|
: iter_() {
|
|
}
|
|
|
|
bool Do() {
|
|
if (iter_++ < kActiveSpinIters)
|
|
proc_yield(kActiveSpinCnt);
|
|
else
|
|
internal_sched_yield();
|
|
return true;
|
|
}
|
|
|
|
u64 Contention() const {
|
|
u64 active = iter_ % kActiveSpinIters;
|
|
u64 passive = iter_ - active;
|
|
return active + 10 * passive;
|
|
}
|
|
|
|
private:
|
|
int iter_;
|
|
static const int kActiveSpinIters = 10;
|
|
static const int kActiveSpinCnt = 20;
|
|
};
|
|
|
|
Mutex::Mutex(MutexType type, StatType stat_type) {
|
|
CHECK_GT(type, MutexTypeInvalid);
|
|
CHECK_LT(type, MutexTypeCount);
|
|
#if TSAN_DEBUG
|
|
type_ = type;
|
|
#endif
|
|
#if TSAN_COLLECT_STATS
|
|
stat_type_ = stat_type;
|
|
#endif
|
|
atomic_store(&state_, kUnlocked, memory_order_relaxed);
|
|
}
|
|
|
|
Mutex::~Mutex() {
|
|
CHECK_EQ(atomic_load(&state_, memory_order_relaxed), kUnlocked);
|
|
}
|
|
|
|
void Mutex::Lock() {
|
|
#if TSAN_DEBUG && !TSAN_GO
|
|
cur_thread()->internal_deadlock_detector.Lock(type_);
|
|
#endif
|
|
uptr cmp = kUnlocked;
|
|
if (atomic_compare_exchange_strong(&state_, &cmp, kWriteLock,
|
|
memory_order_acquire))
|
|
return;
|
|
for (Backoff backoff; backoff.Do();) {
|
|
if (atomic_load(&state_, memory_order_relaxed) == kUnlocked) {
|
|
cmp = kUnlocked;
|
|
if (atomic_compare_exchange_weak(&state_, &cmp, kWriteLock,
|
|
memory_order_acquire)) {
|
|
#if TSAN_COLLECT_STATS && !TSAN_GO
|
|
StatInc(cur_thread(), stat_type_, backoff.Contention());
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Mutex::Unlock() {
|
|
uptr prev = atomic_fetch_sub(&state_, kWriteLock, memory_order_release);
|
|
(void)prev;
|
|
DCHECK_NE(prev & kWriteLock, 0);
|
|
#if TSAN_DEBUG && !TSAN_GO
|
|
cur_thread()->internal_deadlock_detector.Unlock(type_);
|
|
#endif
|
|
}
|
|
|
|
void Mutex::ReadLock() {
|
|
#if TSAN_DEBUG && !TSAN_GO
|
|
cur_thread()->internal_deadlock_detector.Lock(type_);
|
|
#endif
|
|
uptr prev = atomic_fetch_add(&state_, kReadLock, memory_order_acquire);
|
|
if ((prev & kWriteLock) == 0)
|
|
return;
|
|
for (Backoff backoff; backoff.Do();) {
|
|
prev = atomic_load(&state_, memory_order_acquire);
|
|
if ((prev & kWriteLock) == 0) {
|
|
#if TSAN_COLLECT_STATS && !TSAN_GO
|
|
StatInc(cur_thread(), stat_type_, backoff.Contention());
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Mutex::ReadUnlock() {
|
|
uptr prev = atomic_fetch_sub(&state_, kReadLock, memory_order_release);
|
|
(void)prev;
|
|
DCHECK_EQ(prev & kWriteLock, 0);
|
|
DCHECK_GT(prev & ~kWriteLock, 0);
|
|
#if TSAN_DEBUG && !TSAN_GO
|
|
cur_thread()->internal_deadlock_detector.Unlock(type_);
|
|
#endif
|
|
}
|
|
|
|
void Mutex::CheckLocked() {
|
|
CHECK_NE(atomic_load(&state_, memory_order_relaxed), 0);
|
|
}
|
|
|
|
} // namespace __tsan
|