gcc/libstdc++-v3/include/std/mutex
Chris Fairles d74eef3beb mutex (once_flag): Construct __gthread_once_t in a temporary variable before assigning to _M_once...
2008-09-04  Chris Fairles  <chris.fairles@gmail.com>

        * include/std/mutex (once_flag): Construct __gthread_once_t in a
	temporary variable before assigning to _M_once to avoid initialization
	errors.

From-SVN: r139986
2008-09-04 14:35:54 +00:00

680 lines
16 KiB
C++

// <mutex> -*- C++ -*-
// Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this library; see the file COPYING. If not, write to
// the Free Software Foundation, 51 Franklin Street, Fifth Floor,
// Boston, MA 02110-1301, USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/** @file mutex
* This is a Standard C++ Library header.
*/
#ifndef _GLIBCXX_MUTEX
#define _GLIBCXX_MUTEX 1
#pragma GCC system_header
#ifndef __GXX_EXPERIMENTAL_CXX0X__
# include <c++0x_warning.h>
#else
#include <cstddef>
#include <chrono>
#include <exception>
#include <type_traits>
#include <functional>
#include <system_error>
#include <bits/functexcept.h>
#include <bits/gthr.h>
#include <bits/move.h> // for std::swap
#if defined(_GLIBCXX_HAS_GTHREADS) && defined(_GLIBCXX_USE_C99_STDINT_TR1)
namespace std
{
/// mutex
class mutex
{
public:
typedef __gthread_mutex_t* native_handle_type;
mutex()
{
// XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may)
#ifdef __GTHREAD_MUTEX_INIT
__gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
_M_mutex = __tmp;
#else
__GTHREAD_MUTEX_INIT_FUNCTION(&_M_mutex);
#endif
}
mutex(const mutex&) = delete;
mutex& operator=(const mutex&) = delete;
void
lock()
{
int __e = __gthread_mutex_lock(&_M_mutex);
// EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
if (__e)
__throw_system_error(__e);
}
bool
try_lock()
{
// XXX EINVAL, EAGAIN, EBUSY
return !__gthread_mutex_trylock(&_M_mutex);
}
void
unlock()
{
// XXX EINVAL, EAGAIN, EPERM
__gthread_mutex_unlock(&_M_mutex);
}
native_handle_type
native_handle()
{ return &_M_mutex; }
private:
__gthread_mutex_t _M_mutex;
};
/// recursive_mutex
class recursive_mutex
{
public:
typedef __gthread_recursive_mutex_t* native_handle_type;
recursive_mutex()
{
// XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may)
#ifdef __GTHREAD_RECURSIVE_MUTEX_INIT
__gthread_recursive_mutex_t __tmp = __GTHREAD_RECURSIVE_MUTEX_INIT;
_M_mutex = __tmp;
#else
__GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION(&_M_mutex);
#endif
}
recursive_mutex(const recursive_mutex&) = delete;
recursive_mutex& operator=(const recursive_mutex&) = delete;
void
lock()
{
int __e = __gthread_recursive_mutex_lock(&_M_mutex);
// EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
if (__e)
__throw_system_error(__e);
}
bool
try_lock()
{
// XXX EINVAL, EAGAIN, EBUSY
return !__gthread_recursive_mutex_trylock(&_M_mutex);
}
void
unlock()
{
// XXX EINVAL, EAGAIN, EBUSY
__gthread_recursive_mutex_unlock(&_M_mutex);
}
native_handle_type
native_handle()
{ return &_M_mutex; }
private:
__gthread_recursive_mutex_t _M_mutex;
};
/// timed_mutex
class timed_mutex
{
public:
typedef __gthread_mutex_t* native_handle_type;
timed_mutex()
{
#ifdef __GTHREAD_MUTEX_INIT
__gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
_M_mutex = __tmp;
#else
__GTHREAD_MUTEX_INIT_FUNCTION(&_M_mutex);
#endif
}
timed_mutex(const timed_mutex&) = delete;
timed_mutex& operator=(const timed_mutex&) = delete;
void
lock()
{
int __e = __gthread_mutex_lock(&_M_mutex);
// EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
if (__e)
__throw_system_error(__e);
}
bool
try_lock()
{
// XXX EINVAL, EAGAIN, EBUSY
return !__gthread_mutex_trylock(&_M_mutex);
}
template <class _Rep, class _Period>
bool
try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
{ return __try_lock_for_impl(__rtime); }
template <class _Clock, class _Duration>
bool
try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
{
chrono::time_point<_Clock, chrono::seconds> __s =
chrono::time_point_cast<chrono::seconds>(__atime);
chrono::nanoseconds __ns =
chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
__gthread_time_t __ts = {
static_cast<std::time_t>(__s.time_since_epoch().count()),
static_cast<long>(__ns.count())
};
return !__gthread_mutex_timedlock(&_M_mutex, &__ts);
}
void
unlock()
{
// XXX EINVAL, EAGAIN, EBUSY
__gthread_mutex_unlock(&_M_mutex);
}
native_handle_type
native_handle()
{ return &_M_mutex; }
private:
__gthread_mutex_t _M_mutex;
#ifdef _GLIBCXX_USE_CLOCK_MONOTONIC
typedef chrono::monotonic_clock __clock_t;
#else
typedef chrono::high_resolution_clock __clock_t;
#endif
template<typename _Rep, typename _Period>
typename enable_if<
ratio_less_equal<__clock_t::period, _Period>::value, bool>::type
__try_lock_for_impl(const chrono::duration<_Rep, _Period>& __rtime)
{
__clock_t::time_point __atime = __clock_t::now()
+ chrono::duration_cast<__clock_t::duration>(__rtime);
return try_lock_until(__atime);
}
template <typename _Rep, typename _Period>
typename enable_if<
!ratio_less_equal<__clock_t::period, _Period>::value, bool>::type
__try_lock_for_impl(const chrono::duration<_Rep, _Period>& __rtime)
{
__clock_t::time_point __atime = __clock_t::now()
+ ++chrono::duration_cast<__clock_t::duration>(__rtime);
return try_lock_until(__atime);
}
};
/// recursive_timed_mutex
class recursive_timed_mutex
{
public:
typedef __gthread_recursive_mutex_t* native_handle_type;
recursive_timed_mutex()
{
// XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may)
#ifdef __GTHREAD_RECURSIVE_MUTEX_INIT
__gthread_recursive_mutex_t __tmp = __GTHREAD_RECURSIVE_MUTEX_INIT;
_M_mutex = __tmp;
#else
__GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION(&_M_mutex);
#endif
}
recursive_timed_mutex(const recursive_timed_mutex&) = delete;
recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;
void
lock()
{
int __e = __gthread_recursive_mutex_lock(&_M_mutex);
// EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
if (__e)
__throw_system_error(__e);
}
bool
try_lock()
{
// XXX EINVAL, EAGAIN, EBUSY
return !__gthread_recursive_mutex_trylock(&_M_mutex);
}
template <class _Rep, class _Period>
bool
try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
{ return __try_lock_for_impl(__rtime); }
template <class _Clock, class _Duration>
bool
try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
{
chrono::time_point<_Clock, chrono::seconds> __s =
chrono::time_point_cast<chrono::seconds>(__atime);
chrono::nanoseconds __ns =
chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
__gthread_time_t __ts = {
static_cast<std::time_t>(__s.time_since_epoch().count()),
static_cast<long>(__ns.count())
};
return !__gthread_recursive_mutex_timedlock(&_M_mutex, &__ts);
}
void
unlock()
{
// XXX EINVAL, EAGAIN, EBUSY
__gthread_recursive_mutex_unlock(&_M_mutex);
}
native_handle_type
native_handle()
{ return &_M_mutex; }
private:
__gthread_recursive_mutex_t _M_mutex;
#ifdef _GLIBCXX_USE_CLOCK_MONOTONIC
typedef chrono::monotonic_clock __clock_t;
#else
typedef chrono::high_resolution_clock __clock_t;
#endif
template<typename _Rep, typename _Period>
typename enable_if<
ratio_less_equal<__clock_t::period, _Period>::value, bool>::type
__try_lock_for_impl(const chrono::duration<_Rep, _Period>& __rtime)
{
__clock_t::time_point __atime = __clock_t::now()
+ chrono::duration_cast<__clock_t::duration>(__rtime);
return try_lock_until(__atime);
}
template <typename _Rep, typename _Period>
typename enable_if<
!ratio_less_equal<__clock_t::period, _Period>::value, bool>::type
__try_lock_for_impl(const chrono::duration<_Rep, _Period>& __rtime)
{
__clock_t::time_point __atime = __clock_t::now()
+ ++chrono::duration_cast<__clock_t::duration>(__rtime);
return try_lock_until(__atime);
}
};
/// Do not acquire ownership of the mutex.
struct defer_lock_t { };
/// Try to acquire ownership of the mutex without blocking.
struct try_to_lock_t { };
/// Assume the calling thread has already obtained mutex ownership
/// and manage it.
struct adopt_lock_t { };
extern const defer_lock_t defer_lock;
extern const try_to_lock_t try_to_lock;
extern const adopt_lock_t adopt_lock;
/// Thrown to indicate errors with lock operations.
class lock_error : public exception
{
public:
virtual const char*
what() const throw();
};
/// @brief Scoped lock idiom.
// Acquire the mutex here with a constructor call, then release with
// the destructor call in accordance with RAII style.
template<typename _Mutex>
class lock_guard
{
public:
typedef _Mutex mutex_type;
explicit lock_guard(mutex_type& __m) : _M_device(__m)
{ _M_device.lock(); }
lock_guard(mutex_type& __m, adopt_lock_t __a) : _M_device(__m)
{ _M_device.lock(); }
~lock_guard()
{ _M_device.unlock(); }
lock_guard(const lock_guard&) = delete;
lock_guard& operator=(const lock_guard&) = delete;
private:
mutex_type& _M_device;
};
/// unique_lock
template<typename _Mutex>
class unique_lock
{
public:
typedef _Mutex mutex_type;
unique_lock()
: _M_device(0), _M_owns(false)
{ }
explicit unique_lock(mutex_type& __m)
: _M_device(&__m), _M_owns(false)
{
lock();
_M_owns = true;
}
unique_lock(mutex_type& __m, defer_lock_t)
: _M_device(&__m), _M_owns(false)
{ }
unique_lock(mutex_type& __m, try_to_lock_t)
: _M_device(&__m), _M_owns(_M_device->try_lock())
{ }
unique_lock(mutex_type& __m, adopt_lock_t)
: _M_device(&__m), _M_owns(true)
{
// XXX calling thread owns mutex
}
template<typename _Clock, typename _Duration>
unique_lock(mutex_type& __m,
const chrono::time_point<_Clock, _Duration>& __atime)
: _M_device(&__m), _M_owns(_M_device->try_lock_until(__atime))
{ }
template<typename _Rep, typename _Period>
unique_lock(mutex_type& __m,
const chrono::duration<_Rep, _Period>& __rtime)
: _M_device(&__m), _M_owns(_M_device->try_lock_for(__rtime))
{ }
~unique_lock()
{
if (_M_owns)
unlock();
}
unique_lock(const unique_lock&) = delete;
unique_lock& operator=(const unique_lock&) = delete;
unique_lock(unique_lock&& __u)
: _M_device(__u._M_device), _M_owns(__u._M_owns)
{
__u._M_device = 0;
__u._M_owns = false;
}
unique_lock& operator=(unique_lock&& __u)
{
if(_M_owns)
unlock();
unique_lock(std::move(__u)).swap(*this);
__u._M_device = 0;
__u._M_owns = false;
return *this;
}
void
lock()
{
if (!_M_device)
__throw_system_error(posix_error::operation_not_permitted);
else if (_M_owns)
__throw_system_error(posix_error::resource_deadlock_would_occur);
else
{
_M_device->lock();
_M_owns = true;
}
}
bool
try_lock()
{
if (!_M_device)
__throw_system_error(posix_error::operation_not_permitted);
else if (_M_owns)
__throw_system_error(posix_error::resource_deadlock_would_occur);
else
{
_M_owns = _M_device->try_lock();
return _M_owns;
}
}
template<typename _Clock, typename _Duration>
bool
try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
{
if (!_M_device)
__throw_system_error(posix_error::operation_not_permitted);
else if (_M_owns)
__throw_system_error(posix_error::resource_deadlock_would_occur);
else
{
_M_owns = _M_device->try_lock_until(__atime);
return _M_owns;
}
}
template<typename _Rep, typename _Period>
bool
try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
{
if (!_M_device)
__throw_system_error(posix_error::operation_not_permitted);
else if (_M_owns)
__throw_system_error(posix_error::resource_deadlock_would_occur);
else
{
_M_owns = _M_device->try_lock_for(__rtime);
return _M_owns;
}
}
void
unlock()
{
if (!_M_owns)
__throw_system_error(posix_error::operation_not_permitted);
else if (_M_device)
{
_M_device->unlock();
_M_owns = false;
}
}
void
swap(unique_lock&& __u)
{
std::swap(_M_device, __u._M_device);
std::swap(_M_owns, __u._M_owns);
}
mutex_type*
release()
{
mutex_type* __ret = _M_device;
_M_device = 0;
_M_owns = false;
return __ret;
}
bool
owns_lock() const
{ return _M_owns; }
/* explicit */ operator bool () const
{ return owns_lock(); }
mutex_type*
mutex() const
{ return _M_device; }
private:
mutex_type* _M_device;
bool _M_owns; // XXX use atomic_bool
};
template<typename _Mutex>
inline void
swap(unique_lock<_Mutex>& __x, unique_lock<_Mutex>& __y)
{ __x.swap(__y); }
template<typename _Mutex>
inline void
swap(unique_lock<_Mutex>&& __x, unique_lock<_Mutex>& __y)
{ __x.swap(__y); }
template<typename _Mutex>
inline void
swap(unique_lock<_Mutex>& __x, unique_lock<_Mutex>&& __y)
{ __x.swap(__y); }
template<typename _L1, typename _L2, typename ..._L3>
int
try_lock(_L1& __l1, _L2& __l2, _L3&... __l3);
template<typename _L1, typename _L2, typename ..._L3>
void
lock(_L1&, _L2&, _L3&...);
/// once_flag
struct once_flag
{
typedef __gthread_once_t __native_type;
once_flag()
{
__gthread_once_t __tmp = __GTHREAD_ONCE_INIT;
_M_once = __tmp;
}
once_flag(const once_flag&) = delete;
once_flag& operator=(const once_flag&) = delete;
template<typename _Callable, typename... _Args>
friend void
call_once(once_flag& __once, _Callable __f, _Args&&... __args);
private:
__native_type _M_once;
};
#ifdef _GLIBCXX_HAVE_TLS
extern __thread void* __once_callable;
extern __thread void (*__once_call)();
template<typename _Callable>
void __once_call_impl()
{
(*(_Callable*)__once_callable)();
}
#else
extern function<void()> __once_functor;
extern unique_lock<mutex> __once_functor_lock;
#endif
extern "C" void __once_proxy();
template<typename _Callable, typename... _Args>
void
call_once(once_flag& __once, _Callable __f, _Args&&... __args)
{
#ifdef _GLIBCXX_HAVE_TLS
auto __bound_functor = bind(__f, __args...);
__once_callable = &__bound_functor;
__once_call = &__once_call_impl<decltype(__bound_functor)>;
#else
__once_functor_lock.lock();
__once_functor = bind(__f, __args...);
#endif
int __e = __gthread_once(&(__once._M_once), &__once_proxy);
#ifndef _GLIBCXX_HAVE_TLS
if (__once_functor_lock)
__once_functor_lock.unlock();
#endif
if (__e)
__throw_system_error(__e);
}
}
#endif // _GLIBCXX_HAS_GTHREADS && _GLIBCXX_USE_C99_STDINT_TR1
#endif // __GXX_EXPERIMENTAL_CXX0X__
#endif // _GLIBCXX_MUTEX