b7938f087d
From-SVN: r101300
716 lines
21 KiB
C++
716 lines
21 KiB
C++
// boehm.cc - interface between libjava and Boehm GC.
|
||
|
||
/* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
|
||
Free Software Foundation
|
||
|
||
This file is part of libgcj.
|
||
|
||
This software is copyrighted work licensed under the terms of the
|
||
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
|
||
details. */
|
||
|
||
#include <config.h>
|
||
|
||
#include <stdio.h>
|
||
#include <limits.h>
|
||
|
||
#include <jvm.h>
|
||
#include <gcj/cni.h>
|
||
|
||
#include <java/lang/Class.h>
|
||
#include <java/lang/reflect/Modifier.h>
|
||
#include <java-interp.h>
|
||
|
||
// More nastiness: the GC wants to define TRUE and FALSE. We don't
|
||
// need the Java definitions (themselves a hack), so we undefine them.
|
||
#undef TRUE
|
||
#undef FALSE
|
||
|
||
extern "C"
|
||
{
|
||
#include <gc_config.h>
|
||
|
||
// Set GC_DEBUG before including gc.h!
|
||
#ifdef LIBGCJ_GC_DEBUG
|
||
# define GC_DEBUG
|
||
#endif
|
||
|
||
#include <gc_mark.h>
|
||
#include <gc_gcj.h>
|
||
#include <javaxfc.h> // GC_finalize_all declaration.
|
||
|
||
#ifdef THREAD_LOCAL_ALLOC
|
||
# define GC_REDIRECT_TO_LOCAL
|
||
# include <gc_local_alloc.h>
|
||
#endif
|
||
|
||
// From boehm's misc.c
|
||
void GC_enable();
|
||
void GC_disable();
|
||
};
|
||
|
||
#define MAYBE_MARK(Obj, Top, Limit, Source) \
|
||
Top=GC_MARK_AND_PUSH((GC_PTR) Obj, Top, Limit, (GC_PTR *) Source)
|
||
|
||
// `kind' index used when allocating Java arrays.
|
||
static int array_kind_x;
|
||
|
||
// Freelist used for Java arrays.
|
||
static void **array_free_list;
|
||
|
||
|
||
|
||
// This is called by the GC during the mark phase. It marks a Java
|
||
// object. We use `void *' arguments and return, and not what the
|
||
// Boehm GC wants, to avoid pollution in our headers.
|
||
void *
|
||
_Jv_MarkObj (void *addr, void *msp, void *msl, void *env)
|
||
{
|
||
struct GC_ms_entry *mark_stack_ptr = (struct GC_ms_entry *)msp;
|
||
struct GC_ms_entry *mark_stack_limit = (struct GC_ms_entry *)msl;
|
||
|
||
if (env == (void *)1) /* Object allocated with debug allocator. */
|
||
addr = (GC_PTR)GC_USR_PTR_FROM_BASE(addr);
|
||
jobject obj = (jobject) addr;
|
||
|
||
_Jv_VTable *dt = *(_Jv_VTable **) addr;
|
||
// The object might not yet have its vtable set, or it might
|
||
// really be an object on the freelist. In either case, the vtable slot
|
||
// will either be 0, or it will point to a cleared object.
|
||
// This assumes Java objects have size at least 3 words,
|
||
// including the header. But this should remain true, since this
|
||
// should only be used with debugging allocation or with large objects.
|
||
if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
|
||
return mark_stack_ptr;
|
||
jclass klass = dt->clas;
|
||
GC_PTR p;
|
||
|
||
# ifndef JV_HASH_SYNCHRONIZATION
|
||
// Every object has a sync_info pointer.
|
||
p = (GC_PTR) obj->sync_info;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj);
|
||
# endif
|
||
// Mark the object's class.
|
||
p = (GC_PTR) klass;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj);
|
||
|
||
if (__builtin_expect (klass == &java::lang::Class::class$, false))
|
||
{
|
||
// Currently we allocate some of the memory referenced from class objects
|
||
// as pointerfree memory, and then mark it more intelligently here.
|
||
// We ensure that the ClassClass mark descriptor forces invocation of
|
||
// this procedure.
|
||
// Correctness of this is subtle, but it looks OK to me for now. For the incremental
|
||
// collector, we need to make sure that the class object is written whenever
|
||
// any of the subobjects are altered and may need rescanning. This may be tricky
|
||
// during construction, and this may not be the right way to do this with
|
||
// incremental collection.
|
||
// If we overflow the mark stack, we will rescan the class object, so we should
|
||
// be OK. The same applies if we redo the mark phase because win32 unmapped part
|
||
// of our root set. - HB
|
||
jclass c = (jclass) addr;
|
||
|
||
p = (GC_PTR) c->name;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
p = (GC_PTR) c->superclass;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
for (int i = 0; i < c->constants.size; ++i)
|
||
{
|
||
/* FIXME: We could make this more precise by using the tags -KKT */
|
||
p = (GC_PTR) c->constants.data[i].p;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
}
|
||
|
||
#ifdef INTERPRETER
|
||
if (_Jv_IsInterpretedClass (c))
|
||
{
|
||
p = (GC_PTR) c->constants.tags;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
p = (GC_PTR) c->constants.data;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
}
|
||
#endif
|
||
|
||
// The vtable might be allocated even for compiled code.
|
||
p = (GC_PTR) c->vtable;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
|
||
// If the class is an array, then the methods field holds a
|
||
// pointer to the element class. If the class is primitive,
|
||
// then the methods field holds a pointer to the array class.
|
||
p = (GC_PTR) c->methods;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
|
||
// The vtable might have been set, but the rest of the class
|
||
// could still be uninitialized. If this is the case, then
|
||
// c.isArray will SEGV. We check for this, and if it is the
|
||
// case we just return.
|
||
if (__builtin_expect (c->name == NULL, false))
|
||
return mark_stack_ptr;
|
||
|
||
if (! c->isArray() && ! c->isPrimitive())
|
||
{
|
||
// Scan each method in the cases where `methods' really
|
||
// points to a methods structure.
|
||
for (int i = 0; i < c->method_count; ++i)
|
||
{
|
||
p = (GC_PTR) c->methods[i].name;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
p = (GC_PTR) c->methods[i].signature;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
|
||
// Note that we don't have to mark each individual throw
|
||
// separately, as these are stored in the constant pool.
|
||
p = (GC_PTR) c->methods[i].throws;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
}
|
||
}
|
||
|
||
// Mark all the fields.
|
||
p = (GC_PTR) c->fields;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
for (int i = 0; i < c->field_count; ++i)
|
||
{
|
||
_Jv_Field* field = &c->fields[i];
|
||
|
||
p = (GC_PTR) field->name;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
p = (GC_PTR) field->type;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
|
||
// For the interpreter, we also need to mark the memory
|
||
// containing static members
|
||
if ((field->flags & java::lang::reflect::Modifier::STATIC))
|
||
{
|
||
p = (GC_PTR) field->u.addr;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
|
||
// also, if the static member is a reference,
|
||
// mark also the value pointed to. We check for isResolved
|
||
// since marking can happen before memory is allocated for
|
||
// static members.
|
||
// Note that field->u.addr may be null if the class c is
|
||
// JV_STATE_LOADED but not JV_STATE_PREPARED (initialized).
|
||
// Note also that field->type could be NULL in some
|
||
// situations, for instance if the class has state
|
||
// JV_STATE_ERROR.
|
||
if (field->type && JvFieldIsRef (field)
|
||
&& p && field->isResolved())
|
||
{
|
||
jobject val = *(jobject*) p;
|
||
p = (GC_PTR) val;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
}
|
||
}
|
||
}
|
||
|
||
p = (GC_PTR) c->vtable;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
p = (GC_PTR) c->interfaces;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
for (int i = 0; i < c->interface_count; ++i)
|
||
{
|
||
p = (GC_PTR) c->interfaces[i];
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
}
|
||
p = (GC_PTR) c->loader;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
|
||
// The dispatch tables can be allocated at runtime.
|
||
p = (GC_PTR) c->ancestors;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
if (c->idt)
|
||
{
|
||
p = (GC_PTR) c->idt;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
|
||
if (c->isInterface())
|
||
{
|
||
p = (GC_PTR) c->idt->iface.ioffsets;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c->idt);
|
||
}
|
||
else if (! c->isPrimitive())
|
||
{
|
||
// This field is only valid for ordinary classes.
|
||
p = (GC_PTR) c->idt->cls.itable;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c->idt);
|
||
}
|
||
}
|
||
|
||
p = (GC_PTR) c->arrayclass;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
p = (GC_PTR) c->protectionDomain;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
p = (GC_PTR) c->hack_signers;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
p = (GC_PTR) c->aux_info;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
|
||
#ifdef INTERPRETER
|
||
if (_Jv_IsInterpretedClass (c) && c->aux_info)
|
||
{
|
||
_Jv_InterpClass* ic = (_Jv_InterpClass*) c->aux_info;
|
||
|
||
p = (GC_PTR) ic->interpreted_methods;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic);
|
||
|
||
p = (GC_PTR) ic->source_file_name;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic);
|
||
|
||
for (int i = 0; i < c->method_count; i++)
|
||
{
|
||
// The interpreter installs a heap-allocated trampoline
|
||
// here, so we'll mark it.
|
||
p = (GC_PTR) c->methods[i].ncode;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c);
|
||
|
||
using namespace java::lang::reflect;
|
||
|
||
// Mark the direct-threaded code. Note a subtlety here:
|
||
// when we add Miranda methods to a class, we don't
|
||
// resize its interpreted_methods array. If we try to
|
||
// reference one of these methods, we may crash.
|
||
// However, we know these are all abstract, and we know
|
||
// that abstract methods have nothing useful in this
|
||
// array. So, we skip all abstract methods to avoid the
|
||
// problem. FIXME: this is pretty obscure, it may be
|
||
// better to add a methods to the execution engine and
|
||
// resize the array.
|
||
if ((c->methods[i].accflags & Modifier::ABSTRACT) != 0)
|
||
continue;
|
||
|
||
p = (GC_PTR) ic->interpreted_methods[i];
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic);
|
||
|
||
if ((c->methods[i].accflags & Modifier::NATIVE) != 0)
|
||
{
|
||
_Jv_JNIMethod *jm
|
||
= (_Jv_JNIMethod *) ic->interpreted_methods[i];
|
||
if (jm)
|
||
{
|
||
p = (GC_PTR) jm->jni_arg_types;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, p);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
_Jv_InterpMethod *im
|
||
= (_Jv_InterpMethod *) ic->interpreted_methods[i];
|
||
if (im)
|
||
{
|
||
p = (GC_PTR) im->line_table;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic);
|
||
p = (GC_PTR) im->prepared;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic);
|
||
}
|
||
}
|
||
}
|
||
|
||
p = (GC_PTR) ic->field_initializers;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic);
|
||
|
||
}
|
||
#endif
|
||
|
||
}
|
||
else
|
||
{
|
||
// NOTE: each class only holds information about the class
|
||
// itself. So we must do the marking for the entire inheritance
|
||
// tree in order to mark all fields. FIXME: what about
|
||
// interfaces? We skip Object here, because Object only has a
|
||
// sync_info, and we handled that earlier.
|
||
// Note: occasionally `klass' can be null. For instance, this
|
||
// can happen if a GC occurs between the point where an object
|
||
// is allocated and where the vtbl slot is set.
|
||
while (klass && klass != &java::lang::Object::class$)
|
||
{
|
||
jfieldID field = JvGetFirstInstanceField (klass);
|
||
jint max = JvNumInstanceFields (klass);
|
||
|
||
for (int i = 0; i < max; ++i)
|
||
{
|
||
if (JvFieldIsRef (field))
|
||
{
|
||
jobject val = JvGetObjectField (obj, field);
|
||
p = (GC_PTR) val;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj);
|
||
}
|
||
field = field->getNextField ();
|
||
}
|
||
klass = klass->getSuperclass();
|
||
}
|
||
}
|
||
|
||
return mark_stack_ptr;
|
||
}
|
||
|
||
// This is called by the GC during the mark phase. It marks a Java
|
||
// array (of objects). We use `void *' arguments and return, and not
|
||
// what the Boehm GC wants, to avoid pollution in our headers.
|
||
void *
|
||
_Jv_MarkArray (void *addr, void *msp, void *msl, void *env)
|
||
{
|
||
struct GC_ms_entry *mark_stack_ptr = (struct GC_ms_entry *)msp;
|
||
struct GC_ms_entry *mark_stack_limit = (struct GC_ms_entry *)msl;
|
||
|
||
if (env == (void *)1) /* Object allocated with debug allocator. */
|
||
addr = (void *)GC_USR_PTR_FROM_BASE(addr);
|
||
jobjectArray array = (jobjectArray) addr;
|
||
|
||
_Jv_VTable *dt = *(_Jv_VTable **) addr;
|
||
// Assumes size >= 3 words. That's currently true since arrays have
|
||
// a vtable, sync pointer, and size. If the sync pointer goes away,
|
||
// we may need to round up the size.
|
||
if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
|
||
return mark_stack_ptr;
|
||
jclass klass = dt->clas;
|
||
GC_PTR p;
|
||
|
||
# ifndef JV_HASH_SYNCHRONIZATION
|
||
// Every object has a sync_info pointer.
|
||
p = (GC_PTR) array->sync_info;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array);
|
||
# endif
|
||
// Mark the object's class.
|
||
p = (GC_PTR) klass;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, &(dt -> clas));
|
||
|
||
for (int i = 0; i < JvGetArrayLength (array); ++i)
|
||
{
|
||
jobject obj = elements (array)[i];
|
||
p = (GC_PTR) obj;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array);
|
||
}
|
||
|
||
return mark_stack_ptr;
|
||
}
|
||
|
||
// Generate a GC marking descriptor for a class.
|
||
//
|
||
// We assume that the gcj mark proc has index 0. This is a dubious assumption,
|
||
// since another one could be registered first. But the compiler also
|
||
// knows this, so in that case everything else will break, too.
|
||
#define GCJ_DEFAULT_DESCR GC_MAKE_PROC(GC_GCJ_RESERVED_MARK_PROC_INDEX,0)
|
||
|
||
void *
|
||
_Jv_BuildGCDescr(jclass self)
|
||
{
|
||
jlong desc = 0;
|
||
jint bits_per_word = CHAR_BIT * sizeof (void *);
|
||
|
||
// Note: for now we only consider a bitmap mark descriptor. We
|
||
// could also handle the case where the first N fields of a type are
|
||
// references. However, this is not very likely to be used by many
|
||
// classes, and it is easier to compute things this way.
|
||
|
||
// The vtable pointer.
|
||
desc |= 1ULL << (bits_per_word - 1);
|
||
#ifndef JV_HASH_SYNCHRONIZATION
|
||
// The sync_info field.
|
||
desc |= 1ULL << (bits_per_word - 2);
|
||
#endif
|
||
|
||
for (jclass klass = self; klass != NULL; klass = klass->getSuperclass())
|
||
{
|
||
jfieldID field = JvGetFirstInstanceField(klass);
|
||
int count = JvNumInstanceFields(klass);
|
||
|
||
for (int i = 0; i < count; ++i)
|
||
{
|
||
if (field->isRef())
|
||
{
|
||
unsigned int off = field->getOffset();
|
||
// If we run into a weird situation, we bail.
|
||
if (off % sizeof (void *) != 0)
|
||
return (void *) (GCJ_DEFAULT_DESCR);
|
||
off /= sizeof (void *);
|
||
// If we find a field outside the range of our bitmap,
|
||
// fall back to procedure marker. The bottom 2 bits are
|
||
// reserved.
|
||
if (off >= (unsigned) bits_per_word - 2)
|
||
return (void *) (GCJ_DEFAULT_DESCR);
|
||
desc |= 1ULL << (bits_per_word - off - 1);
|
||
}
|
||
|
||
field = field->getNextField();
|
||
}
|
||
}
|
||
|
||
// For bitmap mark type, bottom bits are 01.
|
||
desc |= 1;
|
||
// Bogus warning avoidance (on many platforms).
|
||
return (void *) (unsigned long) desc;
|
||
}
|
||
|
||
// Allocate some space that is known to be pointer-free.
|
||
void *
|
||
_Jv_AllocBytes (jsize size)
|
||
{
|
||
void *r = GC_MALLOC_ATOMIC (size);
|
||
// We have to explicitly zero memory here, as the GC doesn't
|
||
// guarantee that PTRFREE allocations are zeroed. Note that we
|
||
// don't have to do this for other allocation types because we set
|
||
// the `ok_init' flag in the type descriptor.
|
||
memset (r, 0, size);
|
||
return r;
|
||
}
|
||
|
||
#ifdef LIBGCJ_GC_DEBUG
|
||
|
||
void *
|
||
_Jv_AllocObj (jsize size, jclass klass)
|
||
{
|
||
return GC_GCJ_MALLOC (size, klass->vtable);
|
||
}
|
||
|
||
void *
|
||
_Jv_AllocPtrFreeObj (jsize size, jclass klass)
|
||
{
|
||
#ifdef JV_HASH_SYNCHRONIZATION
|
||
void * obj = GC_MALLOC_ATOMIC(size);
|
||
*((_Jv_VTable **) obj) = klass->vtable;
|
||
#else
|
||
void * obj = GC_GCJ_MALLOC(size, klass->vtable);
|
||
#endif
|
||
return obj;
|
||
}
|
||
|
||
#endif /* LIBGCJ_GC_DEBUG */
|
||
// In the non-debug case, the above two functions are defined
|
||
// as inline functions in boehm-gc.h. In the debug case we
|
||
// really want to take advantage of the definitions in gc_gcj.h.
|
||
|
||
// Allocate space for a new Java array.
|
||
// Used only for arrays of objects.
|
||
void *
|
||
_Jv_AllocArray (jsize size, jclass klass)
|
||
{
|
||
void *obj;
|
||
|
||
#ifdef LIBGCJ_GC_DEBUG
|
||
// There isn't much to lose by scanning this conservatively.
|
||
// If we didn't, the mark proc would have to understand that
|
||
// it needed to skip the header.
|
||
obj = GC_MALLOC(size);
|
||
#else
|
||
const jsize min_heap_addr = 16*1024;
|
||
// A heuristic. If size is less than this value, the size
|
||
// stored in the array can't possibly be misinterpreted as
|
||
// a pointer. Thus we lose nothing by scanning the object
|
||
// completely conservatively, since no misidentification can
|
||
// take place.
|
||
|
||
if (size < min_heap_addr)
|
||
obj = GC_MALLOC(size);
|
||
else
|
||
obj = GC_generic_malloc (size, array_kind_x);
|
||
#endif
|
||
*((_Jv_VTable **) obj) = klass->vtable;
|
||
return obj;
|
||
}
|
||
|
||
/* Allocate space for a new non-Java object, which does not have the usual
|
||
Java object header but may contain pointers to other GC'ed objects. */
|
||
void *
|
||
_Jv_AllocRawObj (jsize size)
|
||
{
|
||
return (void *) GC_MALLOC (size);
|
||
}
|
||
|
||
static void
|
||
call_finalizer (GC_PTR obj, GC_PTR client_data)
|
||
{
|
||
_Jv_FinalizerFunc *fn = (_Jv_FinalizerFunc *) client_data;
|
||
jobject jobj = (jobject) obj;
|
||
|
||
(*fn) (jobj);
|
||
}
|
||
|
||
void
|
||
_Jv_RegisterFinalizer (void *object, _Jv_FinalizerFunc *meth)
|
||
{
|
||
GC_REGISTER_FINALIZER_NO_ORDER (object, call_finalizer, (GC_PTR) meth,
|
||
NULL, NULL);
|
||
}
|
||
|
||
void
|
||
_Jv_RunFinalizers (void)
|
||
{
|
||
GC_invoke_finalizers ();
|
||
}
|
||
|
||
void
|
||
_Jv_RunAllFinalizers (void)
|
||
{
|
||
GC_finalize_all ();
|
||
}
|
||
|
||
void
|
||
_Jv_RunGC (void)
|
||
{
|
||
GC_gcollect ();
|
||
}
|
||
|
||
long
|
||
_Jv_GCTotalMemory (void)
|
||
{
|
||
return GC_get_heap_size ();
|
||
}
|
||
|
||
long
|
||
_Jv_GCFreeMemory (void)
|
||
{
|
||
return GC_get_free_bytes ();
|
||
}
|
||
|
||
void
|
||
_Jv_GCSetInitialHeapSize (size_t size)
|
||
{
|
||
size_t current = GC_get_heap_size ();
|
||
if (size > current)
|
||
GC_expand_hp (size - current);
|
||
}
|
||
|
||
void
|
||
_Jv_GCSetMaximumHeapSize (size_t size)
|
||
{
|
||
GC_set_max_heap_size ((GC_word) size);
|
||
}
|
||
|
||
void
|
||
_Jv_DisableGC (void)
|
||
{
|
||
GC_disable();
|
||
}
|
||
|
||
void
|
||
_Jv_EnableGC (void)
|
||
{
|
||
GC_enable();
|
||
}
|
||
|
||
static void * handle_out_of_memory(size_t)
|
||
{
|
||
_Jv_ThrowNoMemory();
|
||
}
|
||
|
||
static void
|
||
gcj_describe_type_fn(void *obj, char *out_buf)
|
||
{
|
||
_Jv_VTable *dt = *(_Jv_VTable **) obj;
|
||
|
||
if (! dt /* Shouldn't happen */)
|
||
{
|
||
strcpy(out_buf, "GCJ (bad)");
|
||
return;
|
||
}
|
||
jclass klass = dt->clas;
|
||
if (!klass /* shouldn't happen */)
|
||
{
|
||
strcpy(out_buf, "GCJ (bad)");
|
||
return;
|
||
}
|
||
jstring name = klass -> getName();
|
||
size_t len = name -> length();
|
||
if (len >= GC_TYPE_DESCR_LEN) len = GC_TYPE_DESCR_LEN - 1;
|
||
JvGetStringUTFRegion (name, 0, len, out_buf);
|
||
out_buf[len] = '\0';
|
||
}
|
||
|
||
void
|
||
_Jv_InitGC (void)
|
||
{
|
||
int proc;
|
||
|
||
// Ignore pointers that do not point to the start of an object.
|
||
GC_all_interior_pointers = 0;
|
||
|
||
// Configure the collector to use the bitmap marking descriptors that we
|
||
// stash in the class vtable.
|
||
// We always use mark proc descriptor 0, since the compiler knows
|
||
// about it.
|
||
GC_init_gcj_malloc (0, (void *) _Jv_MarkObj);
|
||
|
||
// Cause an out of memory error to be thrown from the allocators,
|
||
// instead of returning 0. This is cheaper than checking on allocation.
|
||
GC_oom_fn = handle_out_of_memory;
|
||
|
||
GC_java_finalization = 1;
|
||
|
||
// We use a different mark procedure for object arrays. This code
|
||
// configures a different object `kind' for object array allocation and
|
||
// marking.
|
||
array_free_list = GC_new_free_list();
|
||
proc = GC_new_proc((GC_mark_proc)_Jv_MarkArray);
|
||
array_kind_x = GC_new_kind(array_free_list, GC_MAKE_PROC (proc, 0), 0, 1);
|
||
|
||
// Arrange to have the GC print Java class names in backtraces, etc.
|
||
GC_register_describe_type_fn(GC_gcj_kind, gcj_describe_type_fn);
|
||
GC_register_describe_type_fn(GC_gcj_debug_kind, gcj_describe_type_fn);
|
||
}
|
||
|
||
#ifdef JV_HASH_SYNCHRONIZATION
|
||
// Allocate an object with a fake vtable pointer, which causes only
|
||
// the first field (beyond the fake vtable pointer) to be traced.
|
||
// Eventually this should probably be generalized.
|
||
|
||
static _Jv_VTable trace_one_vtable = {
|
||
0, // class pointer
|
||
(void *)(2 * sizeof(void *)),
|
||
// descriptor; scan 2 words incl. vtable ptr.
|
||
// Least significant bits must be zero to
|
||
// identify this as a length descriptor
|
||
{0} // First method
|
||
};
|
||
|
||
void *
|
||
_Jv_AllocTraceOne (jsize size /* includes vtable slot */)
|
||
{
|
||
return GC_GCJ_MALLOC (size, &trace_one_vtable);
|
||
}
|
||
|
||
// Ditto for two words.
|
||
// the first field (beyond the fake vtable pointer) to be traced.
|
||
// Eventually this should probably be generalized.
|
||
|
||
static _Jv_VTable trace_two_vtable =
|
||
{
|
||
0, // class pointer
|
||
(void *)(3 * sizeof(void *)),
|
||
// descriptor; scan 3 words incl. vtable ptr.
|
||
{0} // First method
|
||
};
|
||
|
||
void *
|
||
_Jv_AllocTraceTwo (jsize size /* includes vtable slot */)
|
||
{
|
||
return GC_GCJ_MALLOC (size, &trace_two_vtable);
|
||
}
|
||
|
||
#endif /* JV_HASH_SYNCHRONIZATION */
|
||
|
||
void
|
||
_Jv_GCInitializeFinalizers (void (*notifier) (void))
|
||
{
|
||
GC_finalize_on_demand = 1;
|
||
GC_finalizer_notifier = notifier;
|
||
}
|
||
|
||
void
|
||
_Jv_GCRegisterDisappearingLink (jobject *objp)
|
||
{
|
||
// This test helps to ensure that we meet a precondition of
|
||
// GC_general_register_disappearing_link, viz. "Obj must be a
|
||
// pointer to the first word of an object we allocated."
|
||
if (GC_base(*objp))
|
||
GC_general_register_disappearing_link ((GC_PTR *) objp, (GC_PTR) *objp);
|
||
}
|
||
|
||
jboolean
|
||
_Jv_GCCanReclaimSoftReference (jobject)
|
||
{
|
||
// For now, always reclaim soft references. FIXME.
|
||
return true;
|
||
}
|