gcc/libsanitizer/sanitizer_common/sanitizer_stoptheworld_netbsd_libcdep.cpp
H.J. Lu 76288e1c5d libsanitizer: Merge with upstream
Merged revision: 1c2e5fd66ea27d0c51360ba4e22099124a915562
2021-10-01 09:02:54 -07:00

363 lines
11 KiB
C++

//===-- sanitizer_stoptheworld_netbsd_libcdep.cpp -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// See sanitizer_stoptheworld.h for details.
// This implementation was inspired by Markus Gutschke's linuxthreads.cc.
//
// This is a NetBSD variation of Linux stoptheworld implementation
// See sanitizer_stoptheworld_linux_libcdep.cpp for code comments.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_platform.h"
#if SANITIZER_NETBSD
#include "sanitizer_stoptheworld.h"
#include "sanitizer_atomic.h"
#include "sanitizer_platform_limits_posix.h"
#include <sys/types.h>
#include <sys/ptrace.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <machine/reg.h>
#include <elf.h>
#include <errno.h>
#include <sched.h>
#include <signal.h>
#include <stddef.h>
#define internal_sigaction_norestorer internal_sigaction
#include "sanitizer_common.h"
#include "sanitizer_flags.h"
#include "sanitizer_libc.h"
#include "sanitizer_linux.h"
#include "sanitizer_mutex.h"
#include "sanitizer_placement_new.h"
namespace __sanitizer {
class SuspendedThreadsListNetBSD final : public SuspendedThreadsList {
public:
SuspendedThreadsListNetBSD() { thread_ids_.reserve(1024); }
tid_t GetThreadID(uptr index) const;
uptr ThreadCount() const;
bool ContainsTid(tid_t thread_id) const;
void Append(tid_t tid);
PtraceRegistersStatus GetRegistersAndSP(uptr index,
InternalMmapVector<uptr> *buffer,
uptr *sp) const;
private:
InternalMmapVector<tid_t> thread_ids_;
};
struct TracerThreadArgument {
StopTheWorldCallback callback;
void *callback_argument;
Mutex mutex;
atomic_uintptr_t done;
uptr parent_pid;
};
class ThreadSuspender {
public:
explicit ThreadSuspender(pid_t pid, TracerThreadArgument *arg)
: arg(arg), pid_(pid) {
CHECK_GE(pid, 0);
}
bool SuspendAllThreads();
void ResumeAllThreads();
void KillAllThreads();
SuspendedThreadsListNetBSD &suspended_threads_list() {
return suspended_threads_list_;
}
TracerThreadArgument *arg;
private:
SuspendedThreadsListNetBSD suspended_threads_list_;
pid_t pid_;
};
void ThreadSuspender::ResumeAllThreads() {
int pterrno;
if (!internal_iserror(internal_ptrace(PT_DETACH, pid_, (void *)(uptr)1, 0),
&pterrno)) {
VReport(2, "Detached from process %d.\n", pid_);
} else {
VReport(1, "Could not detach from process %d (errno %d).\n", pid_, pterrno);
}
}
void ThreadSuspender::KillAllThreads() {
internal_ptrace(PT_KILL, pid_, nullptr, 0);
}
bool ThreadSuspender::SuspendAllThreads() {
int pterrno;
if (internal_iserror(internal_ptrace(PT_ATTACH, pid_, nullptr, 0),
&pterrno)) {
Printf("Could not attach to process %d (errno %d).\n", pid_, pterrno);
return false;
}
int status;
uptr waitpid_status;
HANDLE_EINTR(waitpid_status, internal_waitpid(pid_, &status, 0));
VReport(2, "Attached to process %d.\n", pid_);
#ifdef PT_LWPNEXT
struct ptrace_lwpstatus pl;
int op = PT_LWPNEXT;
#else
struct ptrace_lwpinfo pl;
int op = PT_LWPINFO;
#endif
pl.pl_lwpid = 0;
int val;
while ((val = internal_ptrace(op, pid_, (void *)&pl, sizeof(pl))) != -1 &&
pl.pl_lwpid != 0) {
suspended_threads_list_.Append(pl.pl_lwpid);
VReport(2, "Appended thread %d in process %d.\n", pl.pl_lwpid, pid_);
}
return true;
}
// Pointer to the ThreadSuspender instance for use in signal handler.
static ThreadSuspender *thread_suspender_instance = nullptr;
// Synchronous signals that should not be blocked.
static const int kSyncSignals[] = {SIGABRT, SIGILL, SIGFPE, SIGSEGV,
SIGBUS, SIGXCPU, SIGXFSZ};
static void TracerThreadDieCallback() {
ThreadSuspender *inst = thread_suspender_instance;
if (inst && stoptheworld_tracer_pid == internal_getpid()) {
inst->KillAllThreads();
thread_suspender_instance = nullptr;
}
}
// Signal handler to wake up suspended threads when the tracer thread dies.
static void TracerThreadSignalHandler(int signum, __sanitizer_siginfo *siginfo,
void *uctx) {
SignalContext ctx(siginfo, uctx);
Printf("Tracer caught signal %d: addr=0x%zx pc=0x%zx sp=0x%zx\n", signum,
ctx.addr, ctx.pc, ctx.sp);
ThreadSuspender *inst = thread_suspender_instance;
if (inst) {
if (signum == SIGABRT)
inst->KillAllThreads();
else
inst->ResumeAllThreads();
RAW_CHECK(RemoveDieCallback(TracerThreadDieCallback));
thread_suspender_instance = nullptr;
atomic_store(&inst->arg->done, 1, memory_order_relaxed);
}
internal__exit((signum == SIGABRT) ? 1 : 2);
}
// Size of alternative stack for signal handlers in the tracer thread.
static const int kHandlerStackSize = 8192;
// This function will be run as a cloned task.
static int TracerThread(void *argument) {
TracerThreadArgument *tracer_thread_argument =
(TracerThreadArgument *)argument;
// Check if parent is already dead.
if (internal_getppid() != tracer_thread_argument->parent_pid)
internal__exit(4);
// Wait for the parent thread to finish preparations.
tracer_thread_argument->mutex.Lock();
tracer_thread_argument->mutex.Unlock();
RAW_CHECK(AddDieCallback(TracerThreadDieCallback));
ThreadSuspender thread_suspender(internal_getppid(), tracer_thread_argument);
// Global pointer for the signal handler.
thread_suspender_instance = &thread_suspender;
// Alternate stack for signal handling.
InternalMmapVector<char> handler_stack_memory(kHandlerStackSize);
stack_t handler_stack;
internal_memset(&handler_stack, 0, sizeof(handler_stack));
handler_stack.ss_sp = handler_stack_memory.data();
handler_stack.ss_size = kHandlerStackSize;
internal_sigaltstack(&handler_stack, nullptr);
// Install our handler for synchronous signals. Other signals should be
// blocked by the mask we inherited from the parent thread.
for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++) {
__sanitizer_sigaction act;
internal_memset(&act, 0, sizeof(act));
act.sigaction = TracerThreadSignalHandler;
act.sa_flags = SA_ONSTACK | SA_SIGINFO;
internal_sigaction_norestorer(kSyncSignals[i], &act, 0);
}
int exit_code = 0;
if (!thread_suspender.SuspendAllThreads()) {
VReport(1, "Failed suspending threads.\n");
exit_code = 3;
} else {
tracer_thread_argument->callback(thread_suspender.suspended_threads_list(),
tracer_thread_argument->callback_argument);
thread_suspender.ResumeAllThreads();
exit_code = 0;
}
RAW_CHECK(RemoveDieCallback(TracerThreadDieCallback));
thread_suspender_instance = nullptr;
atomic_store(&tracer_thread_argument->done, 1, memory_order_relaxed);
return exit_code;
}
class ScopedStackSpaceWithGuard {
public:
explicit ScopedStackSpaceWithGuard(uptr stack_size) {
stack_size_ = stack_size;
guard_size_ = GetPageSizeCached();
// FIXME: Omitting MAP_STACK here works in current kernels but might break
// in the future.
guard_start_ =
(uptr)MmapOrDie(stack_size_ + guard_size_, "ScopedStackWithGuard");
CHECK(MprotectNoAccess((uptr)guard_start_, guard_size_));
}
~ScopedStackSpaceWithGuard() {
UnmapOrDie((void *)guard_start_, stack_size_ + guard_size_);
}
void *Bottom() const {
return (void *)(guard_start_ + stack_size_ + guard_size_);
}
private:
uptr stack_size_;
uptr guard_size_;
uptr guard_start_;
};
static __sanitizer_sigset_t blocked_sigset;
static __sanitizer_sigset_t old_sigset;
struct ScopedSetTracerPID {
explicit ScopedSetTracerPID(uptr tracer_pid) {
stoptheworld_tracer_pid = tracer_pid;
stoptheworld_tracer_ppid = internal_getpid();
}
~ScopedSetTracerPID() {
stoptheworld_tracer_pid = 0;
stoptheworld_tracer_ppid = 0;
}
};
void StopTheWorld(StopTheWorldCallback callback, void *argument) {
// Prepare the arguments for TracerThread.
struct TracerThreadArgument tracer_thread_argument;
tracer_thread_argument.callback = callback;
tracer_thread_argument.callback_argument = argument;
tracer_thread_argument.parent_pid = internal_getpid();
atomic_store(&tracer_thread_argument.done, 0, memory_order_relaxed);
const uptr kTracerStackSize = 2 * 1024 * 1024;
ScopedStackSpaceWithGuard tracer_stack(kTracerStackSize);
tracer_thread_argument.mutex.Lock();
internal_sigfillset(&blocked_sigset);
for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++)
internal_sigdelset(&blocked_sigset, kSyncSignals[i]);
int rv = internal_sigprocmask(SIG_BLOCK, &blocked_sigset, &old_sigset);
CHECK_EQ(rv, 0);
uptr tracer_pid = internal_clone(TracerThread, tracer_stack.Bottom(),
CLONE_VM | CLONE_FS | CLONE_FILES,
&tracer_thread_argument);
internal_sigprocmask(SIG_SETMASK, &old_sigset, 0);
int local_errno = 0;
if (internal_iserror(tracer_pid, &local_errno)) {
VReport(1, "Failed spawning a tracer thread (errno %d).\n", local_errno);
tracer_thread_argument.mutex.Unlock();
} else {
ScopedSetTracerPID scoped_set_tracer_pid(tracer_pid);
tracer_thread_argument.mutex.Unlock();
while (atomic_load(&tracer_thread_argument.done, memory_order_relaxed) == 0)
sched_yield();
for (;;) {
uptr waitpid_status = internal_waitpid(tracer_pid, nullptr, __WALL);
if (!internal_iserror(waitpid_status, &local_errno))
break;
if (local_errno == EINTR)
continue;
VReport(1, "Waiting on the tracer thread failed (errno %d).\n",
local_errno);
break;
}
}
}
tid_t SuspendedThreadsListNetBSD::GetThreadID(uptr index) const {
CHECK_LT(index, thread_ids_.size());
return thread_ids_[index];
}
uptr SuspendedThreadsListNetBSD::ThreadCount() const {
return thread_ids_.size();
}
bool SuspendedThreadsListNetBSD::ContainsTid(tid_t thread_id) const {
for (uptr i = 0; i < thread_ids_.size(); i++) {
if (thread_ids_[i] == thread_id)
return true;
}
return false;
}
void SuspendedThreadsListNetBSD::Append(tid_t tid) {
thread_ids_.push_back(tid);
}
PtraceRegistersStatus SuspendedThreadsListNetBSD::GetRegistersAndSP(
uptr index, InternalMmapVector<uptr> *buffer, uptr *sp) const {
lwpid_t tid = GetThreadID(index);
pid_t ppid = internal_getppid();
struct reg regs;
int pterrno;
bool isErr =
internal_iserror(internal_ptrace(PT_GETREGS, ppid, &regs, tid), &pterrno);
if (isErr) {
VReport(1,
"Could not get registers from process %d thread %d (errno %d).\n",
ppid, tid, pterrno);
return pterrno == ESRCH ? REGISTERS_UNAVAILABLE_FATAL
: REGISTERS_UNAVAILABLE;
}
*sp = PTRACE_REG_SP(&regs);
buffer->resize(RoundUpTo(sizeof(regs), sizeof(uptr)) / sizeof(uptr));
internal_memcpy(buffer->data(), &regs, sizeof(regs));
return REGISTERS_AVAILABLE;
}
} // namespace __sanitizer
#endif