8e7dfe7144
PR middle-end/87138 * expmed.c (expand_mult_const): Use immed_wide_int_const instead of gen_int_mode. Formatting fixes. * gcc.target/i386/avx512bw-pr87138.c: New test. From-SVN: r264009
6286 lines
201 KiB
C
6286 lines
201 KiB
C
/* Medium-level subroutines: convert bit-field store and extract
|
||
and shifts, multiplies and divides to rtl instructions.
|
||
Copyright (C) 1987-2018 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "target.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "predict.h"
|
||
#include "memmodel.h"
|
||
#include "tm_p.h"
|
||
#include "expmed.h"
|
||
#include "optabs.h"
|
||
#include "regs.h"
|
||
#include "emit-rtl.h"
|
||
#include "diagnostic-core.h"
|
||
#include "fold-const.h"
|
||
#include "stor-layout.h"
|
||
#include "dojump.h"
|
||
#include "explow.h"
|
||
#include "expr.h"
|
||
#include "langhooks.h"
|
||
#include "tree-vector-builder.h"
|
||
|
||
struct target_expmed default_target_expmed;
|
||
#if SWITCHABLE_TARGET
|
||
struct target_expmed *this_target_expmed = &default_target_expmed;
|
||
#endif
|
||
|
||
static bool store_integral_bit_field (rtx, opt_scalar_int_mode,
|
||
unsigned HOST_WIDE_INT,
|
||
unsigned HOST_WIDE_INT,
|
||
poly_uint64, poly_uint64,
|
||
machine_mode, rtx, bool, bool);
|
||
static void store_fixed_bit_field (rtx, opt_scalar_int_mode,
|
||
unsigned HOST_WIDE_INT,
|
||
unsigned HOST_WIDE_INT,
|
||
poly_uint64, poly_uint64,
|
||
rtx, scalar_int_mode, bool);
|
||
static void store_fixed_bit_field_1 (rtx, scalar_int_mode,
|
||
unsigned HOST_WIDE_INT,
|
||
unsigned HOST_WIDE_INT,
|
||
rtx, scalar_int_mode, bool);
|
||
static void store_split_bit_field (rtx, opt_scalar_int_mode,
|
||
unsigned HOST_WIDE_INT,
|
||
unsigned HOST_WIDE_INT,
|
||
poly_uint64, poly_uint64,
|
||
rtx, scalar_int_mode, bool);
|
||
static rtx extract_integral_bit_field (rtx, opt_scalar_int_mode,
|
||
unsigned HOST_WIDE_INT,
|
||
unsigned HOST_WIDE_INT, int, rtx,
|
||
machine_mode, machine_mode, bool, bool);
|
||
static rtx extract_fixed_bit_field (machine_mode, rtx, opt_scalar_int_mode,
|
||
unsigned HOST_WIDE_INT,
|
||
unsigned HOST_WIDE_INT, rtx, int, bool);
|
||
static rtx extract_fixed_bit_field_1 (machine_mode, rtx, scalar_int_mode,
|
||
unsigned HOST_WIDE_INT,
|
||
unsigned HOST_WIDE_INT, rtx, int, bool);
|
||
static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
|
||
static rtx extract_split_bit_field (rtx, opt_scalar_int_mode,
|
||
unsigned HOST_WIDE_INT,
|
||
unsigned HOST_WIDE_INT, int, bool);
|
||
static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
|
||
static rtx expand_smod_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
|
||
static rtx expand_sdiv_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
|
||
|
||
/* Return a constant integer mask value of mode MODE with BITSIZE ones
|
||
followed by BITPOS zeros, or the complement of that if COMPLEMENT.
|
||
The mask is truncated if necessary to the width of mode MODE. The
|
||
mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
|
||
|
||
static inline rtx
|
||
mask_rtx (scalar_int_mode mode, int bitpos, int bitsize, bool complement)
|
||
{
|
||
return immed_wide_int_const
|
||
(wi::shifted_mask (bitpos, bitsize, complement,
|
||
GET_MODE_PRECISION (mode)), mode);
|
||
}
|
||
|
||
/* Test whether a value is zero of a power of two. */
|
||
#define EXACT_POWER_OF_2_OR_ZERO_P(x) \
|
||
(((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
|
||
|
||
struct init_expmed_rtl
|
||
{
|
||
rtx reg;
|
||
rtx plus;
|
||
rtx neg;
|
||
rtx mult;
|
||
rtx sdiv;
|
||
rtx udiv;
|
||
rtx sdiv_32;
|
||
rtx smod_32;
|
||
rtx wide_mult;
|
||
rtx wide_lshr;
|
||
rtx wide_trunc;
|
||
rtx shift;
|
||
rtx shift_mult;
|
||
rtx shift_add;
|
||
rtx shift_sub0;
|
||
rtx shift_sub1;
|
||
rtx zext;
|
||
rtx trunc;
|
||
|
||
rtx pow2[MAX_BITS_PER_WORD];
|
||
rtx cint[MAX_BITS_PER_WORD];
|
||
};
|
||
|
||
static void
|
||
init_expmed_one_conv (struct init_expmed_rtl *all, scalar_int_mode to_mode,
|
||
scalar_int_mode from_mode, bool speed)
|
||
{
|
||
int to_size, from_size;
|
||
rtx which;
|
||
|
||
to_size = GET_MODE_PRECISION (to_mode);
|
||
from_size = GET_MODE_PRECISION (from_mode);
|
||
|
||
/* Most partial integers have a precision less than the "full"
|
||
integer it requires for storage. In case one doesn't, for
|
||
comparison purposes here, reduce the bit size by one in that
|
||
case. */
|
||
if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
|
||
&& pow2p_hwi (to_size))
|
||
to_size --;
|
||
if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
|
||
&& pow2p_hwi (from_size))
|
||
from_size --;
|
||
|
||
/* Assume cost of zero-extend and sign-extend is the same. */
|
||
which = (to_size < from_size ? all->trunc : all->zext);
|
||
|
||
PUT_MODE (all->reg, from_mode);
|
||
set_convert_cost (to_mode, from_mode, speed,
|
||
set_src_cost (which, to_mode, speed));
|
||
}
|
||
|
||
static void
|
||
init_expmed_one_mode (struct init_expmed_rtl *all,
|
||
machine_mode mode, int speed)
|
||
{
|
||
int m, n, mode_bitsize;
|
||
machine_mode mode_from;
|
||
|
||
mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
|
||
|
||
PUT_MODE (all->reg, mode);
|
||
PUT_MODE (all->plus, mode);
|
||
PUT_MODE (all->neg, mode);
|
||
PUT_MODE (all->mult, mode);
|
||
PUT_MODE (all->sdiv, mode);
|
||
PUT_MODE (all->udiv, mode);
|
||
PUT_MODE (all->sdiv_32, mode);
|
||
PUT_MODE (all->smod_32, mode);
|
||
PUT_MODE (all->wide_trunc, mode);
|
||
PUT_MODE (all->shift, mode);
|
||
PUT_MODE (all->shift_mult, mode);
|
||
PUT_MODE (all->shift_add, mode);
|
||
PUT_MODE (all->shift_sub0, mode);
|
||
PUT_MODE (all->shift_sub1, mode);
|
||
PUT_MODE (all->zext, mode);
|
||
PUT_MODE (all->trunc, mode);
|
||
|
||
set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed));
|
||
set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed));
|
||
set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed));
|
||
set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed));
|
||
set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed));
|
||
|
||
set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed)
|
||
<= 2 * add_cost (speed, mode)));
|
||
set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed)
|
||
<= 4 * add_cost (speed, mode)));
|
||
|
||
set_shift_cost (speed, mode, 0, 0);
|
||
{
|
||
int cost = add_cost (speed, mode);
|
||
set_shiftadd_cost (speed, mode, 0, cost);
|
||
set_shiftsub0_cost (speed, mode, 0, cost);
|
||
set_shiftsub1_cost (speed, mode, 0, cost);
|
||
}
|
||
|
||
n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
|
||
for (m = 1; m < n; m++)
|
||
{
|
||
XEXP (all->shift, 1) = all->cint[m];
|
||
XEXP (all->shift_mult, 1) = all->pow2[m];
|
||
|
||
set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed));
|
||
set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode,
|
||
speed));
|
||
set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode,
|
||
speed));
|
||
set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode,
|
||
speed));
|
||
}
|
||
|
||
scalar_int_mode int_mode_to;
|
||
if (is_a <scalar_int_mode> (mode, &int_mode_to))
|
||
{
|
||
for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
|
||
mode_from = (machine_mode)(mode_from + 1))
|
||
init_expmed_one_conv (all, int_mode_to,
|
||
as_a <scalar_int_mode> (mode_from), speed);
|
||
|
||
scalar_int_mode wider_mode;
|
||
if (GET_MODE_CLASS (int_mode_to) == MODE_INT
|
||
&& GET_MODE_WIDER_MODE (int_mode_to).exists (&wider_mode))
|
||
{
|
||
PUT_MODE (all->zext, wider_mode);
|
||
PUT_MODE (all->wide_mult, wider_mode);
|
||
PUT_MODE (all->wide_lshr, wider_mode);
|
||
XEXP (all->wide_lshr, 1)
|
||
= gen_int_shift_amount (wider_mode, mode_bitsize);
|
||
|
||
set_mul_widen_cost (speed, wider_mode,
|
||
set_src_cost (all->wide_mult, wider_mode, speed));
|
||
set_mul_highpart_cost (speed, int_mode_to,
|
||
set_src_cost (all->wide_trunc,
|
||
int_mode_to, speed));
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
init_expmed (void)
|
||
{
|
||
struct init_expmed_rtl all;
|
||
machine_mode mode = QImode;
|
||
int m, speed;
|
||
|
||
memset (&all, 0, sizeof all);
|
||
for (m = 1; m < MAX_BITS_PER_WORD; m++)
|
||
{
|
||
all.pow2[m] = GEN_INT (HOST_WIDE_INT_1 << m);
|
||
all.cint[m] = GEN_INT (m);
|
||
}
|
||
|
||
/* Avoid using hard regs in ways which may be unsupported. */
|
||
all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
|
||
all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
|
||
all.neg = gen_rtx_NEG (mode, all.reg);
|
||
all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
|
||
all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
|
||
all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
|
||
all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
|
||
all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
|
||
all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
|
||
all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
|
||
all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
|
||
all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
|
||
all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
|
||
all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
|
||
all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
|
||
all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
|
||
all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
|
||
all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
|
||
|
||
for (speed = 0; speed < 2; speed++)
|
||
{
|
||
crtl->maybe_hot_insn_p = speed;
|
||
set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed));
|
||
|
||
for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
|
||
mode = (machine_mode)(mode + 1))
|
||
init_expmed_one_mode (&all, mode, speed);
|
||
|
||
if (MIN_MODE_PARTIAL_INT != VOIDmode)
|
||
for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
|
||
mode = (machine_mode)(mode + 1))
|
||
init_expmed_one_mode (&all, mode, speed);
|
||
|
||
if (MIN_MODE_VECTOR_INT != VOIDmode)
|
||
for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
|
||
mode = (machine_mode)(mode + 1))
|
||
init_expmed_one_mode (&all, mode, speed);
|
||
}
|
||
|
||
if (alg_hash_used_p ())
|
||
{
|
||
struct alg_hash_entry *p = alg_hash_entry_ptr (0);
|
||
memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
|
||
}
|
||
else
|
||
set_alg_hash_used_p (true);
|
||
default_rtl_profile ();
|
||
|
||
ggc_free (all.trunc);
|
||
ggc_free (all.shift_sub1);
|
||
ggc_free (all.shift_sub0);
|
||
ggc_free (all.shift_add);
|
||
ggc_free (all.shift_mult);
|
||
ggc_free (all.shift);
|
||
ggc_free (all.wide_trunc);
|
||
ggc_free (all.wide_lshr);
|
||
ggc_free (all.wide_mult);
|
||
ggc_free (all.zext);
|
||
ggc_free (all.smod_32);
|
||
ggc_free (all.sdiv_32);
|
||
ggc_free (all.udiv);
|
||
ggc_free (all.sdiv);
|
||
ggc_free (all.mult);
|
||
ggc_free (all.neg);
|
||
ggc_free (all.plus);
|
||
ggc_free (all.reg);
|
||
}
|
||
|
||
/* Return an rtx representing minus the value of X.
|
||
MODE is the intended mode of the result,
|
||
useful if X is a CONST_INT. */
|
||
|
||
rtx
|
||
negate_rtx (machine_mode mode, rtx x)
|
||
{
|
||
rtx result = simplify_unary_operation (NEG, mode, x, mode);
|
||
|
||
if (result == 0)
|
||
result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Whether reverse storage order is supported on the target. */
|
||
static int reverse_storage_order_supported = -1;
|
||
|
||
/* Check whether reverse storage order is supported on the target. */
|
||
|
||
static void
|
||
check_reverse_storage_order_support (void)
|
||
{
|
||
if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
|
||
{
|
||
reverse_storage_order_supported = 0;
|
||
sorry ("reverse scalar storage order");
|
||
}
|
||
else
|
||
reverse_storage_order_supported = 1;
|
||
}
|
||
|
||
/* Whether reverse FP storage order is supported on the target. */
|
||
static int reverse_float_storage_order_supported = -1;
|
||
|
||
/* Check whether reverse FP storage order is supported on the target. */
|
||
|
||
static void
|
||
check_reverse_float_storage_order_support (void)
|
||
{
|
||
if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
|
||
{
|
||
reverse_float_storage_order_supported = 0;
|
||
sorry ("reverse floating-point scalar storage order");
|
||
}
|
||
else
|
||
reverse_float_storage_order_supported = 1;
|
||
}
|
||
|
||
/* Return an rtx representing value of X with reverse storage order.
|
||
MODE is the intended mode of the result,
|
||
useful if X is a CONST_INT. */
|
||
|
||
rtx
|
||
flip_storage_order (machine_mode mode, rtx x)
|
||
{
|
||
scalar_int_mode int_mode;
|
||
rtx result;
|
||
|
||
if (mode == QImode)
|
||
return x;
|
||
|
||
if (COMPLEX_MODE_P (mode))
|
||
{
|
||
rtx real = read_complex_part (x, false);
|
||
rtx imag = read_complex_part (x, true);
|
||
|
||
real = flip_storage_order (GET_MODE_INNER (mode), real);
|
||
imag = flip_storage_order (GET_MODE_INNER (mode), imag);
|
||
|
||
return gen_rtx_CONCAT (mode, real, imag);
|
||
}
|
||
|
||
if (__builtin_expect (reverse_storage_order_supported < 0, 0))
|
||
check_reverse_storage_order_support ();
|
||
|
||
if (!is_a <scalar_int_mode> (mode, &int_mode))
|
||
{
|
||
if (FLOAT_MODE_P (mode)
|
||
&& __builtin_expect (reverse_float_storage_order_supported < 0, 0))
|
||
check_reverse_float_storage_order_support ();
|
||
|
||
if (!int_mode_for_size (GET_MODE_PRECISION (mode), 0).exists (&int_mode))
|
||
{
|
||
sorry ("reverse storage order for %smode", GET_MODE_NAME (mode));
|
||
return x;
|
||
}
|
||
x = gen_lowpart (int_mode, x);
|
||
}
|
||
|
||
result = simplify_unary_operation (BSWAP, int_mode, x, int_mode);
|
||
if (result == 0)
|
||
result = expand_unop (int_mode, bswap_optab, x, NULL_RTX, 1);
|
||
|
||
if (int_mode != mode)
|
||
result = gen_lowpart (mode, result);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* If MODE is set, adjust bitfield memory MEM so that it points to the
|
||
first unit of mode MODE that contains a bitfield of size BITSIZE at
|
||
bit position BITNUM. If MODE is not set, return a BLKmode reference
|
||
to every byte in the bitfield. Set *NEW_BITNUM to the bit position
|
||
of the field within the new memory. */
|
||
|
||
static rtx
|
||
narrow_bit_field_mem (rtx mem, opt_scalar_int_mode mode,
|
||
unsigned HOST_WIDE_INT bitsize,
|
||
unsigned HOST_WIDE_INT bitnum,
|
||
unsigned HOST_WIDE_INT *new_bitnum)
|
||
{
|
||
scalar_int_mode imode;
|
||
if (mode.exists (&imode))
|
||
{
|
||
unsigned int unit = GET_MODE_BITSIZE (imode);
|
||
*new_bitnum = bitnum % unit;
|
||
HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
|
||
return adjust_bitfield_address (mem, imode, offset);
|
||
}
|
||
else
|
||
{
|
||
*new_bitnum = bitnum % BITS_PER_UNIT;
|
||
HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
|
||
HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
|
||
/ BITS_PER_UNIT);
|
||
return adjust_bitfield_address_size (mem, BLKmode, offset, size);
|
||
}
|
||
}
|
||
|
||
/* The caller wants to perform insertion or extraction PATTERN on a
|
||
bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
|
||
BITREGION_START and BITREGION_END are as for store_bit_field
|
||
and FIELDMODE is the natural mode of the field.
|
||
|
||
Search for a mode that is compatible with the memory access
|
||
restrictions and (where applicable) with a register insertion or
|
||
extraction. Return the new memory on success, storing the adjusted
|
||
bit position in *NEW_BITNUM. Return null otherwise. */
|
||
|
||
static rtx
|
||
adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
|
||
rtx op0, HOST_WIDE_INT bitsize,
|
||
HOST_WIDE_INT bitnum,
|
||
poly_uint64 bitregion_start,
|
||
poly_uint64 bitregion_end,
|
||
machine_mode fieldmode,
|
||
unsigned HOST_WIDE_INT *new_bitnum)
|
||
{
|
||
bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
|
||
bitregion_end, MEM_ALIGN (op0),
|
||
MEM_VOLATILE_P (op0));
|
||
scalar_int_mode best_mode;
|
||
if (iter.next_mode (&best_mode))
|
||
{
|
||
/* We can use a memory in BEST_MODE. See whether this is true for
|
||
any wider modes. All other things being equal, we prefer to
|
||
use the widest mode possible because it tends to expose more
|
||
CSE opportunities. */
|
||
if (!iter.prefer_smaller_modes ())
|
||
{
|
||
/* Limit the search to the mode required by the corresponding
|
||
register insertion or extraction instruction, if any. */
|
||
scalar_int_mode limit_mode = word_mode;
|
||
extraction_insn insn;
|
||
if (get_best_reg_extraction_insn (&insn, pattern,
|
||
GET_MODE_BITSIZE (best_mode),
|
||
fieldmode))
|
||
limit_mode = insn.field_mode;
|
||
|
||
scalar_int_mode wider_mode;
|
||
while (iter.next_mode (&wider_mode)
|
||
&& GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
|
||
best_mode = wider_mode;
|
||
}
|
||
return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
|
||
new_bitnum);
|
||
}
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Return true if a bitfield of size BITSIZE at bit number BITNUM within
|
||
a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
|
||
offset is then BITNUM / BITS_PER_UNIT. */
|
||
|
||
static bool
|
||
lowpart_bit_field_p (poly_uint64 bitnum, poly_uint64 bitsize,
|
||
machine_mode struct_mode)
|
||
{
|
||
poly_uint64 regsize = REGMODE_NATURAL_SIZE (struct_mode);
|
||
if (BYTES_BIG_ENDIAN)
|
||
return (multiple_p (bitnum, BITS_PER_UNIT)
|
||
&& (known_eq (bitnum + bitsize, GET_MODE_BITSIZE (struct_mode))
|
||
|| multiple_p (bitnum + bitsize,
|
||
regsize * BITS_PER_UNIT)));
|
||
else
|
||
return multiple_p (bitnum, regsize * BITS_PER_UNIT);
|
||
}
|
||
|
||
/* Return true if -fstrict-volatile-bitfields applies to an access of OP0
|
||
containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
|
||
Return false if the access would touch memory outside the range
|
||
BITREGION_START to BITREGION_END for conformance to the C++ memory
|
||
model. */
|
||
|
||
static bool
|
||
strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
|
||
unsigned HOST_WIDE_INT bitnum,
|
||
scalar_int_mode fieldmode,
|
||
poly_uint64 bitregion_start,
|
||
poly_uint64 bitregion_end)
|
||
{
|
||
unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
|
||
|
||
/* -fstrict-volatile-bitfields must be enabled and we must have a
|
||
volatile MEM. */
|
||
if (!MEM_P (op0)
|
||
|| !MEM_VOLATILE_P (op0)
|
||
|| flag_strict_volatile_bitfields <= 0)
|
||
return false;
|
||
|
||
/* The bit size must not be larger than the field mode, and
|
||
the field mode must not be larger than a word. */
|
||
if (bitsize > modesize || modesize > BITS_PER_WORD)
|
||
return false;
|
||
|
||
/* Check for cases of unaligned fields that must be split. */
|
||
if (bitnum % modesize + bitsize > modesize)
|
||
return false;
|
||
|
||
/* The memory must be sufficiently aligned for a MODESIZE access.
|
||
This condition guarantees, that the memory access will not
|
||
touch anything after the end of the structure. */
|
||
if (MEM_ALIGN (op0) < modesize)
|
||
return false;
|
||
|
||
/* Check for cases where the C++ memory model applies. */
|
||
if (maybe_ne (bitregion_end, 0U)
|
||
&& (maybe_lt (bitnum - bitnum % modesize, bitregion_start)
|
||
|| maybe_gt (bitnum - bitnum % modesize + modesize - 1,
|
||
bitregion_end)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true if OP is a memory and if a bitfield of size BITSIZE at
|
||
bit number BITNUM can be treated as a simple value of mode MODE.
|
||
Store the byte offset in *BYTENUM if so. */
|
||
|
||
static bool
|
||
simple_mem_bitfield_p (rtx op0, poly_uint64 bitsize, poly_uint64 bitnum,
|
||
machine_mode mode, poly_uint64 *bytenum)
|
||
{
|
||
return (MEM_P (op0)
|
||
&& multiple_p (bitnum, BITS_PER_UNIT, bytenum)
|
||
&& known_eq (bitsize, GET_MODE_BITSIZE (mode))
|
||
&& (!targetm.slow_unaligned_access (mode, MEM_ALIGN (op0))
|
||
|| (multiple_p (bitnum, GET_MODE_ALIGNMENT (mode))
|
||
&& MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
|
||
}
|
||
|
||
/* Try to use instruction INSV to store VALUE into a field of OP0.
|
||
If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a
|
||
BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM
|
||
are as for store_bit_field. */
|
||
|
||
static bool
|
||
store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
|
||
opt_scalar_int_mode op0_mode,
|
||
unsigned HOST_WIDE_INT bitsize,
|
||
unsigned HOST_WIDE_INT bitnum,
|
||
rtx value, scalar_int_mode value_mode)
|
||
{
|
||
struct expand_operand ops[4];
|
||
rtx value1;
|
||
rtx xop0 = op0;
|
||
rtx_insn *last = get_last_insn ();
|
||
bool copy_back = false;
|
||
|
||
scalar_int_mode op_mode = insv->field_mode;
|
||
unsigned int unit = GET_MODE_BITSIZE (op_mode);
|
||
if (bitsize == 0 || bitsize > unit)
|
||
return false;
|
||
|
||
if (MEM_P (xop0))
|
||
/* Get a reference to the first byte of the field. */
|
||
xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
|
||
&bitnum);
|
||
else
|
||
{
|
||
/* Convert from counting within OP0 to counting in OP_MODE. */
|
||
if (BYTES_BIG_ENDIAN)
|
||
bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
|
||
|
||
/* If xop0 is a register, we need it in OP_MODE
|
||
to make it acceptable to the format of insv. */
|
||
if (GET_CODE (xop0) == SUBREG)
|
||
/* We can't just change the mode, because this might clobber op0,
|
||
and we will need the original value of op0 if insv fails. */
|
||
xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
|
||
if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
|
||
xop0 = gen_lowpart_SUBREG (op_mode, xop0);
|
||
}
|
||
|
||
/* If the destination is a paradoxical subreg such that we need a
|
||
truncate to the inner mode, perform the insertion on a temporary and
|
||
truncate the result to the original destination. Note that we can't
|
||
just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
|
||
X) 0)) is (reg:N X). */
|
||
if (GET_CODE (xop0) == SUBREG
|
||
&& REG_P (SUBREG_REG (xop0))
|
||
&& !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
|
||
op_mode))
|
||
{
|
||
rtx tem = gen_reg_rtx (op_mode);
|
||
emit_move_insn (tem, xop0);
|
||
xop0 = tem;
|
||
copy_back = true;
|
||
}
|
||
|
||
/* There are similar overflow check at the start of store_bit_field_1,
|
||
but that only check the situation where the field lies completely
|
||
outside the register, while there do have situation where the field
|
||
lies partialy in the register, we need to adjust bitsize for this
|
||
partial overflow situation. Without this fix, pr48335-2.c on big-endian
|
||
will broken on those arch support bit insert instruction, like arm, aarch64
|
||
etc. */
|
||
if (bitsize + bitnum > unit && bitnum < unit)
|
||
{
|
||
warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
|
||
"destination object, data truncated into %wu-bit",
|
||
bitsize, unit - bitnum);
|
||
bitsize = unit - bitnum;
|
||
}
|
||
|
||
/* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
|
||
"backwards" from the size of the unit we are inserting into.
|
||
Otherwise, we count bits from the most significant on a
|
||
BYTES/BITS_BIG_ENDIAN machine. */
|
||
|
||
if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
|
||
bitnum = unit - bitsize - bitnum;
|
||
|
||
/* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
|
||
value1 = value;
|
||
if (value_mode != op_mode)
|
||
{
|
||
if (GET_MODE_BITSIZE (value_mode) >= bitsize)
|
||
{
|
||
rtx tmp;
|
||
/* Optimization: Don't bother really extending VALUE
|
||
if it has all the bits we will actually use. However,
|
||
if we must narrow it, be sure we do it correctly. */
|
||
|
||
if (GET_MODE_SIZE (value_mode) < GET_MODE_SIZE (op_mode))
|
||
{
|
||
tmp = simplify_subreg (op_mode, value1, value_mode, 0);
|
||
if (! tmp)
|
||
tmp = simplify_gen_subreg (op_mode,
|
||
force_reg (value_mode, value1),
|
||
value_mode, 0);
|
||
}
|
||
else
|
||
{
|
||
tmp = gen_lowpart_if_possible (op_mode, value1);
|
||
if (! tmp)
|
||
tmp = gen_lowpart (op_mode, force_reg (value_mode, value1));
|
||
}
|
||
value1 = tmp;
|
||
}
|
||
else if (CONST_INT_P (value))
|
||
value1 = gen_int_mode (INTVAL (value), op_mode);
|
||
else
|
||
/* Parse phase is supposed to make VALUE's data type
|
||
match that of the component reference, which is a type
|
||
at least as wide as the field; so VALUE should have
|
||
a mode that corresponds to that type. */
|
||
gcc_assert (CONSTANT_P (value));
|
||
}
|
||
|
||
create_fixed_operand (&ops[0], xop0);
|
||
create_integer_operand (&ops[1], bitsize);
|
||
create_integer_operand (&ops[2], bitnum);
|
||
create_input_operand (&ops[3], value1, op_mode);
|
||
if (maybe_expand_insn (insv->icode, 4, ops))
|
||
{
|
||
if (copy_back)
|
||
convert_move (op0, xop0, true);
|
||
return true;
|
||
}
|
||
delete_insns_since (last);
|
||
return false;
|
||
}
|
||
|
||
/* A subroutine of store_bit_field, with the same arguments. Return true
|
||
if the operation could be implemented.
|
||
|
||
If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
|
||
no other way of implementing the operation. If FALLBACK_P is false,
|
||
return false instead. */
|
||
|
||
static bool
|
||
store_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
|
||
poly_uint64 bitregion_start, poly_uint64 bitregion_end,
|
||
machine_mode fieldmode,
|
||
rtx value, bool reverse, bool fallback_p)
|
||
{
|
||
rtx op0 = str_rtx;
|
||
|
||
while (GET_CODE (op0) == SUBREG)
|
||
{
|
||
bitnum += subreg_memory_offset (op0) * BITS_PER_UNIT;
|
||
op0 = SUBREG_REG (op0);
|
||
}
|
||
|
||
/* No action is needed if the target is a register and if the field
|
||
lies completely outside that register. This can occur if the source
|
||
code contains an out-of-bounds access to a small array. */
|
||
if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
|
||
return true;
|
||
|
||
/* Use vec_set patterns for inserting parts of vectors whenever
|
||
available. */
|
||
machine_mode outermode = GET_MODE (op0);
|
||
scalar_mode innermode = GET_MODE_INNER (outermode);
|
||
poly_uint64 pos;
|
||
if (VECTOR_MODE_P (outermode)
|
||
&& !MEM_P (op0)
|
||
&& optab_handler (vec_set_optab, outermode) != CODE_FOR_nothing
|
||
&& fieldmode == innermode
|
||
&& known_eq (bitsize, GET_MODE_BITSIZE (innermode))
|
||
&& multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos))
|
||
{
|
||
struct expand_operand ops[3];
|
||
enum insn_code icode = optab_handler (vec_set_optab, outermode);
|
||
|
||
create_fixed_operand (&ops[0], op0);
|
||
create_input_operand (&ops[1], value, innermode);
|
||
create_integer_operand (&ops[2], pos);
|
||
if (maybe_expand_insn (icode, 3, ops))
|
||
return true;
|
||
}
|
||
|
||
/* If the target is a register, overwriting the entire object, or storing
|
||
a full-word or multi-word field can be done with just a SUBREG. */
|
||
if (!MEM_P (op0)
|
||
&& known_eq (bitsize, GET_MODE_BITSIZE (fieldmode)))
|
||
{
|
||
/* Use the subreg machinery either to narrow OP0 to the required
|
||
words or to cope with mode punning between equal-sized modes.
|
||
In the latter case, use subreg on the rhs side, not lhs. */
|
||
rtx sub;
|
||
HOST_WIDE_INT regnum;
|
||
poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (op0));
|
||
if (known_eq (bitnum, 0U)
|
||
&& known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
|
||
{
|
||
sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
|
||
if (sub)
|
||
{
|
||
if (reverse)
|
||
sub = flip_storage_order (GET_MODE (op0), sub);
|
||
emit_move_insn (op0, sub);
|
||
return true;
|
||
}
|
||
}
|
||
else if (constant_multiple_p (bitnum, regsize * BITS_PER_UNIT, ®num)
|
||
&& multiple_p (bitsize, regsize * BITS_PER_UNIT))
|
||
{
|
||
sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
|
||
regnum * regsize);
|
||
if (sub)
|
||
{
|
||
if (reverse)
|
||
value = flip_storage_order (fieldmode, value);
|
||
emit_move_insn (sub, value);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If the target is memory, storing any naturally aligned field can be
|
||
done with a simple store. For targets that support fast unaligned
|
||
memory, any naturally sized, unit aligned field can be done directly. */
|
||
poly_uint64 bytenum;
|
||
if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode, &bytenum))
|
||
{
|
||
op0 = adjust_bitfield_address (op0, fieldmode, bytenum);
|
||
if (reverse)
|
||
value = flip_storage_order (fieldmode, value);
|
||
emit_move_insn (op0, value);
|
||
return true;
|
||
}
|
||
|
||
/* It's possible we'll need to handle other cases here for
|
||
polynomial bitnum and bitsize. */
|
||
|
||
/* From here on we need to be looking at a fixed-size insertion. */
|
||
unsigned HOST_WIDE_INT ibitsize = bitsize.to_constant ();
|
||
unsigned HOST_WIDE_INT ibitnum = bitnum.to_constant ();
|
||
|
||
/* Make sure we are playing with integral modes. Pun with subregs
|
||
if we aren't. This must come after the entire register case above,
|
||
since that case is valid for any mode. The following cases are only
|
||
valid for integral modes. */
|
||
opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
|
||
scalar_int_mode imode;
|
||
if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
|
||
{
|
||
if (MEM_P (op0))
|
||
op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
|
||
0, MEM_SIZE (op0));
|
||
else
|
||
op0 = gen_lowpart (op0_mode.require (), op0);
|
||
}
|
||
|
||
return store_integral_bit_field (op0, op0_mode, ibitsize, ibitnum,
|
||
bitregion_start, bitregion_end,
|
||
fieldmode, value, reverse, fallback_p);
|
||
}
|
||
|
||
/* Subroutine of store_bit_field_1, with the same arguments, except
|
||
that BITSIZE and BITNUM are constant. Handle cases specific to
|
||
integral modes. If OP0_MODE is defined, it is the mode of OP0,
|
||
otherwise OP0 is a BLKmode MEM. */
|
||
|
||
static bool
|
||
store_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
|
||
unsigned HOST_WIDE_INT bitsize,
|
||
unsigned HOST_WIDE_INT bitnum,
|
||
poly_uint64 bitregion_start,
|
||
poly_uint64 bitregion_end,
|
||
machine_mode fieldmode,
|
||
rtx value, bool reverse, bool fallback_p)
|
||
{
|
||
/* Storing an lsb-aligned field in a register
|
||
can be done with a movstrict instruction. */
|
||
|
||
if (!MEM_P (op0)
|
||
&& !reverse
|
||
&& lowpart_bit_field_p (bitnum, bitsize, op0_mode.require ())
|
||
&& known_eq (bitsize, GET_MODE_BITSIZE (fieldmode))
|
||
&& optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
|
||
{
|
||
struct expand_operand ops[2];
|
||
enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
|
||
rtx arg0 = op0;
|
||
unsigned HOST_WIDE_INT subreg_off;
|
||
|
||
if (GET_CODE (arg0) == SUBREG)
|
||
{
|
||
/* Else we've got some float mode source being extracted into
|
||
a different float mode destination -- this combination of
|
||
subregs results in Severe Tire Damage. */
|
||
gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
|
||
|| GET_MODE_CLASS (fieldmode) == MODE_INT
|
||
|| GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
|
||
arg0 = SUBREG_REG (arg0);
|
||
}
|
||
|
||
subreg_off = bitnum / BITS_PER_UNIT;
|
||
if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
|
||
{
|
||
arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
|
||
|
||
create_fixed_operand (&ops[0], arg0);
|
||
/* Shrink the source operand to FIELDMODE. */
|
||
create_convert_operand_to (&ops[1], value, fieldmode, false);
|
||
if (maybe_expand_insn (icode, 2, ops))
|
||
return true;
|
||
}
|
||
}
|
||
|
||
/* Handle fields bigger than a word. */
|
||
|
||
if (bitsize > BITS_PER_WORD)
|
||
{
|
||
/* Here we transfer the words of the field
|
||
in the order least significant first.
|
||
This is because the most significant word is the one which may
|
||
be less than full.
|
||
However, only do that if the value is not BLKmode. */
|
||
|
||
const bool backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
|
||
unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
|
||
unsigned int i;
|
||
rtx_insn *last;
|
||
|
||
/* This is the mode we must force value to, so that there will be enough
|
||
subwords to extract. Note that fieldmode will often (always?) be
|
||
VOIDmode, because that is what store_field uses to indicate that this
|
||
is a bit field, but passing VOIDmode to operand_subword_force
|
||
is not allowed.
|
||
|
||
The mode must be fixed-size, since insertions into variable-sized
|
||
objects are meant to be handled before calling this function. */
|
||
fixed_size_mode value_mode = as_a <fixed_size_mode> (GET_MODE (value));
|
||
if (value_mode == VOIDmode)
|
||
value_mode = smallest_int_mode_for_size (nwords * BITS_PER_WORD);
|
||
|
||
last = get_last_insn ();
|
||
for (i = 0; i < nwords; i++)
|
||
{
|
||
/* If I is 0, use the low-order word in both field and target;
|
||
if I is 1, use the next to lowest word; and so on. */
|
||
unsigned int wordnum = (backwards
|
||
? GET_MODE_SIZE (value_mode) / UNITS_PER_WORD
|
||
- i - 1
|
||
: i);
|
||
unsigned int bit_offset = (backwards ^ reverse
|
||
? MAX ((int) bitsize - ((int) i + 1)
|
||
* BITS_PER_WORD,
|
||
0)
|
||
: (int) i * BITS_PER_WORD);
|
||
rtx value_word = operand_subword_force (value, wordnum, value_mode);
|
||
unsigned HOST_WIDE_INT new_bitsize =
|
||
MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
|
||
|
||
/* If the remaining chunk doesn't have full wordsize we have
|
||
to make sure that for big-endian machines the higher order
|
||
bits are used. */
|
||
if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
|
||
{
|
||
int shift = BITS_PER_WORD - new_bitsize;
|
||
rtx shift_rtx = gen_int_shift_amount (word_mode, shift);
|
||
value_word = simplify_expand_binop (word_mode, lshr_optab,
|
||
value_word, shift_rtx,
|
||
NULL_RTX, true,
|
||
OPTAB_LIB_WIDEN);
|
||
}
|
||
|
||
if (!store_bit_field_1 (op0, new_bitsize,
|
||
bitnum + bit_offset,
|
||
bitregion_start, bitregion_end,
|
||
word_mode,
|
||
value_word, reverse, fallback_p))
|
||
{
|
||
delete_insns_since (last);
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* If VALUE has a floating-point or complex mode, access it as an
|
||
integer of the corresponding size. This can occur on a machine
|
||
with 64 bit registers that uses SFmode for float. It can also
|
||
occur for unaligned float or complex fields. */
|
||
rtx orig_value = value;
|
||
scalar_int_mode value_mode;
|
||
if (GET_MODE (value) == VOIDmode)
|
||
/* By this point we've dealt with values that are bigger than a word,
|
||
so word_mode is a conservatively correct choice. */
|
||
value_mode = word_mode;
|
||
else if (!is_a <scalar_int_mode> (GET_MODE (value), &value_mode))
|
||
{
|
||
value_mode = int_mode_for_mode (GET_MODE (value)).require ();
|
||
value = gen_reg_rtx (value_mode);
|
||
emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
|
||
}
|
||
|
||
/* If OP0 is a multi-word register, narrow it to the affected word.
|
||
If the region spans two words, defer to store_split_bit_field.
|
||
Don't do this if op0 is a single hard register wider than word
|
||
such as a float or vector register. */
|
||
if (!MEM_P (op0)
|
||
&& GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD
|
||
&& (!REG_P (op0)
|
||
|| !HARD_REGISTER_P (op0)
|
||
|| hard_regno_nregs (REGNO (op0), op0_mode.require ()) != 1))
|
||
{
|
||
if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
|
||
{
|
||
if (!fallback_p)
|
||
return false;
|
||
|
||
store_split_bit_field (op0, op0_mode, bitsize, bitnum,
|
||
bitregion_start, bitregion_end,
|
||
value, value_mode, reverse);
|
||
return true;
|
||
}
|
||
op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
|
||
bitnum / BITS_PER_WORD * UNITS_PER_WORD);
|
||
gcc_assert (op0);
|
||
op0_mode = word_mode;
|
||
bitnum %= BITS_PER_WORD;
|
||
}
|
||
|
||
/* From here on we can assume that the field to be stored in fits
|
||
within a word. If the destination is a register, it too fits
|
||
in a word. */
|
||
|
||
extraction_insn insv;
|
||
if (!MEM_P (op0)
|
||
&& !reverse
|
||
&& get_best_reg_extraction_insn (&insv, EP_insv,
|
||
GET_MODE_BITSIZE (op0_mode.require ()),
|
||
fieldmode)
|
||
&& store_bit_field_using_insv (&insv, op0, op0_mode,
|
||
bitsize, bitnum, value, value_mode))
|
||
return true;
|
||
|
||
/* If OP0 is a memory, try copying it to a register and seeing if a
|
||
cheap register alternative is available. */
|
||
if (MEM_P (op0) && !reverse)
|
||
{
|
||
if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
|
||
fieldmode)
|
||
&& store_bit_field_using_insv (&insv, op0, op0_mode,
|
||
bitsize, bitnum, value, value_mode))
|
||
return true;
|
||
|
||
rtx_insn *last = get_last_insn ();
|
||
|
||
/* Try loading part of OP0 into a register, inserting the bitfield
|
||
into that, and then copying the result back to OP0. */
|
||
unsigned HOST_WIDE_INT bitpos;
|
||
rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
|
||
bitregion_start, bitregion_end,
|
||
fieldmode, &bitpos);
|
||
if (xop0)
|
||
{
|
||
rtx tempreg = copy_to_reg (xop0);
|
||
if (store_bit_field_1 (tempreg, bitsize, bitpos,
|
||
bitregion_start, bitregion_end,
|
||
fieldmode, orig_value, reverse, false))
|
||
{
|
||
emit_move_insn (xop0, tempreg);
|
||
return true;
|
||
}
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
|
||
if (!fallback_p)
|
||
return false;
|
||
|
||
store_fixed_bit_field (op0, op0_mode, bitsize, bitnum, bitregion_start,
|
||
bitregion_end, value, value_mode, reverse);
|
||
return true;
|
||
}
|
||
|
||
/* Generate code to store value from rtx VALUE
|
||
into a bit-field within structure STR_RTX
|
||
containing BITSIZE bits starting at bit BITNUM.
|
||
|
||
BITREGION_START is bitpos of the first bitfield in this region.
|
||
BITREGION_END is the bitpos of the ending bitfield in this region.
|
||
These two fields are 0, if the C++ memory model does not apply,
|
||
or we are not interested in keeping track of bitfield regions.
|
||
|
||
FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
|
||
|
||
If REVERSE is true, the store is to be done in reverse order. */
|
||
|
||
void
|
||
store_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
|
||
poly_uint64 bitregion_start, poly_uint64 bitregion_end,
|
||
machine_mode fieldmode,
|
||
rtx value, bool reverse)
|
||
{
|
||
/* Handle -fstrict-volatile-bitfields in the cases where it applies. */
|
||
unsigned HOST_WIDE_INT ibitsize = 0, ibitnum = 0;
|
||
scalar_int_mode int_mode;
|
||
if (bitsize.is_constant (&ibitsize)
|
||
&& bitnum.is_constant (&ibitnum)
|
||
&& is_a <scalar_int_mode> (fieldmode, &int_mode)
|
||
&& strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum, int_mode,
|
||
bitregion_start, bitregion_end))
|
||
{
|
||
/* Storing of a full word can be done with a simple store.
|
||
We know here that the field can be accessed with one single
|
||
instruction. For targets that support unaligned memory,
|
||
an unaligned access may be necessary. */
|
||
if (ibitsize == GET_MODE_BITSIZE (int_mode))
|
||
{
|
||
str_rtx = adjust_bitfield_address (str_rtx, int_mode,
|
||
ibitnum / BITS_PER_UNIT);
|
||
if (reverse)
|
||
value = flip_storage_order (int_mode, value);
|
||
gcc_assert (ibitnum % BITS_PER_UNIT == 0);
|
||
emit_move_insn (str_rtx, value);
|
||
}
|
||
else
|
||
{
|
||
rtx temp;
|
||
|
||
str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize,
|
||
ibitnum, &ibitnum);
|
||
gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
|
||
temp = copy_to_reg (str_rtx);
|
||
if (!store_bit_field_1 (temp, ibitsize, ibitnum, 0, 0,
|
||
int_mode, value, reverse, true))
|
||
gcc_unreachable ();
|
||
|
||
emit_move_insn (str_rtx, temp);
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
/* Under the C++0x memory model, we must not touch bits outside the
|
||
bit region. Adjust the address to start at the beginning of the
|
||
bit region. */
|
||
if (MEM_P (str_rtx) && maybe_ne (bitregion_start, 0U))
|
||
{
|
||
scalar_int_mode best_mode;
|
||
machine_mode addr_mode = VOIDmode;
|
||
|
||
poly_uint64 offset = exact_div (bitregion_start, BITS_PER_UNIT);
|
||
bitnum -= bitregion_start;
|
||
poly_int64 size = bits_to_bytes_round_up (bitnum + bitsize);
|
||
bitregion_end -= bitregion_start;
|
||
bitregion_start = 0;
|
||
if (bitsize.is_constant (&ibitsize)
|
||
&& bitnum.is_constant (&ibitnum)
|
||
&& get_best_mode (ibitsize, ibitnum,
|
||
bitregion_start, bitregion_end,
|
||
MEM_ALIGN (str_rtx), INT_MAX,
|
||
MEM_VOLATILE_P (str_rtx), &best_mode))
|
||
addr_mode = best_mode;
|
||
str_rtx = adjust_bitfield_address_size (str_rtx, addr_mode,
|
||
offset, size);
|
||
}
|
||
|
||
if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
|
||
bitregion_start, bitregion_end,
|
||
fieldmode, value, reverse, true))
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Use shifts and boolean operations to store VALUE into a bit field of
|
||
width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined,
|
||
it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is
|
||
the mode of VALUE.
|
||
|
||
If REVERSE is true, the store is to be done in reverse order. */
|
||
|
||
static void
|
||
store_fixed_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
|
||
unsigned HOST_WIDE_INT bitsize,
|
||
unsigned HOST_WIDE_INT bitnum,
|
||
poly_uint64 bitregion_start, poly_uint64 bitregion_end,
|
||
rtx value, scalar_int_mode value_mode, bool reverse)
|
||
{
|
||
/* There is a case not handled here:
|
||
a structure with a known alignment of just a halfword
|
||
and a field split across two aligned halfwords within the structure.
|
||
Or likewise a structure with a known alignment of just a byte
|
||
and a field split across two bytes.
|
||
Such cases are not supposed to be able to occur. */
|
||
|
||
scalar_int_mode best_mode;
|
||
if (MEM_P (op0))
|
||
{
|
||
unsigned int max_bitsize = BITS_PER_WORD;
|
||
scalar_int_mode imode;
|
||
if (op0_mode.exists (&imode) && GET_MODE_BITSIZE (imode) < max_bitsize)
|
||
max_bitsize = GET_MODE_BITSIZE (imode);
|
||
|
||
if (!get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
|
||
MEM_ALIGN (op0), max_bitsize, MEM_VOLATILE_P (op0),
|
||
&best_mode))
|
||
{
|
||
/* The only way this should occur is if the field spans word
|
||
boundaries. */
|
||
store_split_bit_field (op0, op0_mode, bitsize, bitnum,
|
||
bitregion_start, bitregion_end,
|
||
value, value_mode, reverse);
|
||
return;
|
||
}
|
||
|
||
op0 = narrow_bit_field_mem (op0, best_mode, bitsize, bitnum, &bitnum);
|
||
}
|
||
else
|
||
best_mode = op0_mode.require ();
|
||
|
||
store_fixed_bit_field_1 (op0, best_mode, bitsize, bitnum,
|
||
value, value_mode, reverse);
|
||
}
|
||
|
||
/* Helper function for store_fixed_bit_field, stores
|
||
the bit field always using MODE, which is the mode of OP0. The other
|
||
arguments are as for store_fixed_bit_field. */
|
||
|
||
static void
|
||
store_fixed_bit_field_1 (rtx op0, scalar_int_mode mode,
|
||
unsigned HOST_WIDE_INT bitsize,
|
||
unsigned HOST_WIDE_INT bitnum,
|
||
rtx value, scalar_int_mode value_mode, bool reverse)
|
||
{
|
||
rtx temp;
|
||
int all_zero = 0;
|
||
int all_one = 0;
|
||
|
||
/* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
|
||
for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
|
||
|
||
if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
|
||
/* BITNUM is the distance between our msb
|
||
and that of the containing datum.
|
||
Convert it to the distance from the lsb. */
|
||
bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
|
||
|
||
/* Now BITNUM is always the distance between our lsb
|
||
and that of OP0. */
|
||
|
||
/* Shift VALUE left by BITNUM bits. If VALUE is not constant,
|
||
we must first convert its mode to MODE. */
|
||
|
||
if (CONST_INT_P (value))
|
||
{
|
||
unsigned HOST_WIDE_INT v = UINTVAL (value);
|
||
|
||
if (bitsize < HOST_BITS_PER_WIDE_INT)
|
||
v &= (HOST_WIDE_INT_1U << bitsize) - 1;
|
||
|
||
if (v == 0)
|
||
all_zero = 1;
|
||
else if ((bitsize < HOST_BITS_PER_WIDE_INT
|
||
&& v == (HOST_WIDE_INT_1U << bitsize) - 1)
|
||
|| (bitsize == HOST_BITS_PER_WIDE_INT
|
||
&& v == HOST_WIDE_INT_M1U))
|
||
all_one = 1;
|
||
|
||
value = lshift_value (mode, v, bitnum);
|
||
}
|
||
else
|
||
{
|
||
int must_and = (GET_MODE_BITSIZE (value_mode) != bitsize
|
||
&& bitnum + bitsize != GET_MODE_BITSIZE (mode));
|
||
|
||
if (value_mode != mode)
|
||
value = convert_to_mode (mode, value, 1);
|
||
|
||
if (must_and)
|
||
value = expand_binop (mode, and_optab, value,
|
||
mask_rtx (mode, 0, bitsize, 0),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
if (bitnum > 0)
|
||
value = expand_shift (LSHIFT_EXPR, mode, value,
|
||
bitnum, NULL_RTX, 1);
|
||
}
|
||
|
||
if (reverse)
|
||
value = flip_storage_order (mode, value);
|
||
|
||
/* Now clear the chosen bits in OP0,
|
||
except that if VALUE is -1 we need not bother. */
|
||
/* We keep the intermediates in registers to allow CSE to combine
|
||
consecutive bitfield assignments. */
|
||
|
||
temp = force_reg (mode, op0);
|
||
|
||
if (! all_one)
|
||
{
|
||
rtx mask = mask_rtx (mode, bitnum, bitsize, 1);
|
||
if (reverse)
|
||
mask = flip_storage_order (mode, mask);
|
||
temp = expand_binop (mode, and_optab, temp, mask,
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
temp = force_reg (mode, temp);
|
||
}
|
||
|
||
/* Now logical-or VALUE into OP0, unless it is zero. */
|
||
|
||
if (! all_zero)
|
||
{
|
||
temp = expand_binop (mode, ior_optab, temp, value,
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
temp = force_reg (mode, temp);
|
||
}
|
||
|
||
if (op0 != temp)
|
||
{
|
||
op0 = copy_rtx (op0);
|
||
emit_move_insn (op0, temp);
|
||
}
|
||
}
|
||
|
||
/* Store a bit field that is split across multiple accessible memory objects.
|
||
|
||
OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
|
||
BITSIZE is the field width; BITPOS the position of its first bit
|
||
(within the word).
|
||
VALUE is the value to store, which has mode VALUE_MODE.
|
||
If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
|
||
a BLKmode MEM.
|
||
|
||
If REVERSE is true, the store is to be done in reverse order.
|
||
|
||
This does not yet handle fields wider than BITS_PER_WORD. */
|
||
|
||
static void
|
||
store_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
|
||
unsigned HOST_WIDE_INT bitsize,
|
||
unsigned HOST_WIDE_INT bitpos,
|
||
poly_uint64 bitregion_start, poly_uint64 bitregion_end,
|
||
rtx value, scalar_int_mode value_mode, bool reverse)
|
||
{
|
||
unsigned int unit, total_bits, bitsdone = 0;
|
||
|
||
/* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
|
||
much at a time. */
|
||
if (REG_P (op0) || GET_CODE (op0) == SUBREG)
|
||
unit = BITS_PER_WORD;
|
||
else
|
||
unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
|
||
|
||
/* If OP0 is a memory with a mode, then UNIT must not be larger than
|
||
OP0's mode as well. Otherwise, store_fixed_bit_field will call us
|
||
again, and we will mutually recurse forever. */
|
||
if (MEM_P (op0) && op0_mode.exists ())
|
||
unit = MIN (unit, GET_MODE_BITSIZE (op0_mode.require ()));
|
||
|
||
/* If VALUE is a constant other than a CONST_INT, get it into a register in
|
||
WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
|
||
that VALUE might be a floating-point constant. */
|
||
if (CONSTANT_P (value) && !CONST_INT_P (value))
|
||
{
|
||
rtx word = gen_lowpart_common (word_mode, value);
|
||
|
||
if (word && (value != word))
|
||
value = word;
|
||
else
|
||
value = gen_lowpart_common (word_mode, force_reg (value_mode, value));
|
||
value_mode = word_mode;
|
||
}
|
||
|
||
total_bits = GET_MODE_BITSIZE (value_mode);
|
||
|
||
while (bitsdone < bitsize)
|
||
{
|
||
unsigned HOST_WIDE_INT thissize;
|
||
unsigned HOST_WIDE_INT thispos;
|
||
unsigned HOST_WIDE_INT offset;
|
||
rtx part;
|
||
|
||
offset = (bitpos + bitsdone) / unit;
|
||
thispos = (bitpos + bitsdone) % unit;
|
||
|
||
/* When region of bytes we can touch is restricted, decrease
|
||
UNIT close to the end of the region as needed. If op0 is a REG
|
||
or SUBREG of REG, don't do this, as there can't be data races
|
||
on a register and we can expand shorter code in some cases. */
|
||
if (maybe_ne (bitregion_end, 0U)
|
||
&& unit > BITS_PER_UNIT
|
||
&& maybe_gt (bitpos + bitsdone - thispos + unit, bitregion_end + 1)
|
||
&& !REG_P (op0)
|
||
&& (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
|
||
{
|
||
unit = unit / 2;
|
||
continue;
|
||
}
|
||
|
||
/* THISSIZE must not overrun a word boundary. Otherwise,
|
||
store_fixed_bit_field will call us again, and we will mutually
|
||
recurse forever. */
|
||
thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
|
||
thissize = MIN (thissize, unit - thispos);
|
||
|
||
if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
|
||
{
|
||
/* Fetch successively less significant portions. */
|
||
if (CONST_INT_P (value))
|
||
part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
|
||
>> (bitsize - bitsdone - thissize))
|
||
& ((HOST_WIDE_INT_1 << thissize) - 1));
|
||
/* Likewise, but the source is little-endian. */
|
||
else if (reverse)
|
||
part = extract_fixed_bit_field (word_mode, value, value_mode,
|
||
thissize,
|
||
bitsize - bitsdone - thissize,
|
||
NULL_RTX, 1, false);
|
||
else
|
||
/* The args are chosen so that the last part includes the
|
||
lsb. Give extract_bit_field the value it needs (with
|
||
endianness compensation) to fetch the piece we want. */
|
||
part = extract_fixed_bit_field (word_mode, value, value_mode,
|
||
thissize,
|
||
total_bits - bitsize + bitsdone,
|
||
NULL_RTX, 1, false);
|
||
}
|
||
else
|
||
{
|
||
/* Fetch successively more significant portions. */
|
||
if (CONST_INT_P (value))
|
||
part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
|
||
>> bitsdone)
|
||
& ((HOST_WIDE_INT_1 << thissize) - 1));
|
||
/* Likewise, but the source is big-endian. */
|
||
else if (reverse)
|
||
part = extract_fixed_bit_field (word_mode, value, value_mode,
|
||
thissize,
|
||
total_bits - bitsdone - thissize,
|
||
NULL_RTX, 1, false);
|
||
else
|
||
part = extract_fixed_bit_field (word_mode, value, value_mode,
|
||
thissize, bitsdone, NULL_RTX,
|
||
1, false);
|
||
}
|
||
|
||
/* If OP0 is a register, then handle OFFSET here. */
|
||
rtx op0_piece = op0;
|
||
opt_scalar_int_mode op0_piece_mode = op0_mode;
|
||
if (SUBREG_P (op0) || REG_P (op0))
|
||
{
|
||
scalar_int_mode imode;
|
||
if (op0_mode.exists (&imode)
|
||
&& GET_MODE_SIZE (imode) < UNITS_PER_WORD)
|
||
{
|
||
if (offset)
|
||
op0_piece = const0_rtx;
|
||
}
|
||
else
|
||
{
|
||
op0_piece = operand_subword_force (op0,
|
||
offset * unit / BITS_PER_WORD,
|
||
GET_MODE (op0));
|
||
op0_piece_mode = word_mode;
|
||
}
|
||
offset &= BITS_PER_WORD / unit - 1;
|
||
}
|
||
|
||
/* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
|
||
it is just an out-of-bounds access. Ignore it. */
|
||
if (op0_piece != const0_rtx)
|
||
store_fixed_bit_field (op0_piece, op0_piece_mode, thissize,
|
||
offset * unit + thispos, bitregion_start,
|
||
bitregion_end, part, word_mode, reverse);
|
||
bitsdone += thissize;
|
||
}
|
||
}
|
||
|
||
/* A subroutine of extract_bit_field_1 that converts return value X
|
||
to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
|
||
to extract_bit_field. */
|
||
|
||
static rtx
|
||
convert_extracted_bit_field (rtx x, machine_mode mode,
|
||
machine_mode tmode, bool unsignedp)
|
||
{
|
||
if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
|
||
return x;
|
||
|
||
/* If the x mode is not a scalar integral, first convert to the
|
||
integer mode of that size and then access it as a floating-point
|
||
value via a SUBREG. */
|
||
if (!SCALAR_INT_MODE_P (tmode))
|
||
{
|
||
scalar_int_mode int_mode = int_mode_for_mode (tmode).require ();
|
||
x = convert_to_mode (int_mode, x, unsignedp);
|
||
x = force_reg (int_mode, x);
|
||
return gen_lowpart (tmode, x);
|
||
}
|
||
|
||
return convert_to_mode (tmode, x, unsignedp);
|
||
}
|
||
|
||
/* Try to use an ext(z)v pattern to extract a field from OP0.
|
||
Return the extracted value on success, otherwise return null.
|
||
EXTV describes the extraction instruction to use. If OP0_MODE
|
||
is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM.
|
||
The other arguments are as for extract_bit_field. */
|
||
|
||
static rtx
|
||
extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
|
||
opt_scalar_int_mode op0_mode,
|
||
unsigned HOST_WIDE_INT bitsize,
|
||
unsigned HOST_WIDE_INT bitnum,
|
||
int unsignedp, rtx target,
|
||
machine_mode mode, machine_mode tmode)
|
||
{
|
||
struct expand_operand ops[4];
|
||
rtx spec_target = target;
|
||
rtx spec_target_subreg = 0;
|
||
scalar_int_mode ext_mode = extv->field_mode;
|
||
unsigned unit = GET_MODE_BITSIZE (ext_mode);
|
||
|
||
if (bitsize == 0 || unit < bitsize)
|
||
return NULL_RTX;
|
||
|
||
if (MEM_P (op0))
|
||
/* Get a reference to the first byte of the field. */
|
||
op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
|
||
&bitnum);
|
||
else
|
||
{
|
||
/* Convert from counting within OP0 to counting in EXT_MODE. */
|
||
if (BYTES_BIG_ENDIAN)
|
||
bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
|
||
|
||
/* If op0 is a register, we need it in EXT_MODE to make it
|
||
acceptable to the format of ext(z)v. */
|
||
if (GET_CODE (op0) == SUBREG && op0_mode.require () != ext_mode)
|
||
return NULL_RTX;
|
||
if (REG_P (op0) && op0_mode.require () != ext_mode)
|
||
op0 = gen_lowpart_SUBREG (ext_mode, op0);
|
||
}
|
||
|
||
/* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
|
||
"backwards" from the size of the unit we are extracting from.
|
||
Otherwise, we count bits from the most significant on a
|
||
BYTES/BITS_BIG_ENDIAN machine. */
|
||
|
||
if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
|
||
bitnum = unit - bitsize - bitnum;
|
||
|
||
if (target == 0)
|
||
target = spec_target = gen_reg_rtx (tmode);
|
||
|
||
if (GET_MODE (target) != ext_mode)
|
||
{
|
||
/* Don't use LHS paradoxical subreg if explicit truncation is needed
|
||
between the mode of the extraction (word_mode) and the target
|
||
mode. Instead, create a temporary and use convert_move to set
|
||
the target. */
|
||
if (REG_P (target)
|
||
&& TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
|
||
{
|
||
target = gen_lowpart (ext_mode, target);
|
||
if (partial_subreg_p (GET_MODE (spec_target), ext_mode))
|
||
spec_target_subreg = target;
|
||
}
|
||
else
|
||
target = gen_reg_rtx (ext_mode);
|
||
}
|
||
|
||
create_output_operand (&ops[0], target, ext_mode);
|
||
create_fixed_operand (&ops[1], op0);
|
||
create_integer_operand (&ops[2], bitsize);
|
||
create_integer_operand (&ops[3], bitnum);
|
||
if (maybe_expand_insn (extv->icode, 4, ops))
|
||
{
|
||
target = ops[0].value;
|
||
if (target == spec_target)
|
||
return target;
|
||
if (target == spec_target_subreg)
|
||
return spec_target;
|
||
return convert_extracted_bit_field (target, mode, tmode, unsignedp);
|
||
}
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* See whether it would be valid to extract the part of OP0 described
|
||
by BITNUM and BITSIZE into a value of mode MODE using a subreg
|
||
operation. Return the subreg if so, otherwise return null. */
|
||
|
||
static rtx
|
||
extract_bit_field_as_subreg (machine_mode mode, rtx op0,
|
||
poly_uint64 bitsize, poly_uint64 bitnum)
|
||
{
|
||
poly_uint64 bytenum;
|
||
if (multiple_p (bitnum, BITS_PER_UNIT, &bytenum)
|
||
&& known_eq (bitsize, GET_MODE_BITSIZE (mode))
|
||
&& lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
|
||
&& TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op0)))
|
||
return simplify_gen_subreg (mode, op0, GET_MODE (op0), bytenum);
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* A subroutine of extract_bit_field, with the same arguments.
|
||
If FALLBACK_P is true, fall back to extract_fixed_bit_field
|
||
if we can find no other means of implementing the operation.
|
||
if FALLBACK_P is false, return NULL instead. */
|
||
|
||
static rtx
|
||
extract_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
|
||
int unsignedp, rtx target, machine_mode mode,
|
||
machine_mode tmode, bool reverse, bool fallback_p,
|
||
rtx *alt_rtl)
|
||
{
|
||
rtx op0 = str_rtx;
|
||
machine_mode mode1;
|
||
|
||
if (tmode == VOIDmode)
|
||
tmode = mode;
|
||
|
||
while (GET_CODE (op0) == SUBREG)
|
||
{
|
||
bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
|
||
op0 = SUBREG_REG (op0);
|
||
}
|
||
|
||
/* If we have an out-of-bounds access to a register, just return an
|
||
uninitialized register of the required mode. This can occur if the
|
||
source code contains an out-of-bounds access to a small array. */
|
||
if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
|
||
return gen_reg_rtx (tmode);
|
||
|
||
if (REG_P (op0)
|
||
&& mode == GET_MODE (op0)
|
||
&& known_eq (bitnum, 0U)
|
||
&& known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
|
||
{
|
||
if (reverse)
|
||
op0 = flip_storage_order (mode, op0);
|
||
/* We're trying to extract a full register from itself. */
|
||
return op0;
|
||
}
|
||
|
||
/* First try to check for vector from vector extractions. */
|
||
if (VECTOR_MODE_P (GET_MODE (op0))
|
||
&& !MEM_P (op0)
|
||
&& VECTOR_MODE_P (tmode)
|
||
&& known_eq (bitsize, GET_MODE_BITSIZE (tmode))
|
||
&& maybe_gt (GET_MODE_SIZE (GET_MODE (op0)), GET_MODE_SIZE (tmode)))
|
||
{
|
||
machine_mode new_mode = GET_MODE (op0);
|
||
if (GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode))
|
||
{
|
||
scalar_mode inner_mode = GET_MODE_INNER (tmode);
|
||
poly_uint64 nunits;
|
||
if (!multiple_p (GET_MODE_BITSIZE (GET_MODE (op0)),
|
||
GET_MODE_UNIT_BITSIZE (tmode), &nunits)
|
||
|| !mode_for_vector (inner_mode, nunits).exists (&new_mode)
|
||
|| !VECTOR_MODE_P (new_mode)
|
||
|| maybe_ne (GET_MODE_SIZE (new_mode),
|
||
GET_MODE_SIZE (GET_MODE (op0)))
|
||
|| GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode)
|
||
|| !targetm.vector_mode_supported_p (new_mode))
|
||
new_mode = VOIDmode;
|
||
}
|
||
poly_uint64 pos;
|
||
if (new_mode != VOIDmode
|
||
&& (convert_optab_handler (vec_extract_optab, new_mode, tmode)
|
||
!= CODE_FOR_nothing)
|
||
&& multiple_p (bitnum, GET_MODE_BITSIZE (tmode), &pos))
|
||
{
|
||
struct expand_operand ops[3];
|
||
machine_mode outermode = new_mode;
|
||
machine_mode innermode = tmode;
|
||
enum insn_code icode
|
||
= convert_optab_handler (vec_extract_optab, outermode, innermode);
|
||
|
||
if (new_mode != GET_MODE (op0))
|
||
op0 = gen_lowpart (new_mode, op0);
|
||
create_output_operand (&ops[0], target, innermode);
|
||
ops[0].target = 1;
|
||
create_input_operand (&ops[1], op0, outermode);
|
||
create_integer_operand (&ops[2], pos);
|
||
if (maybe_expand_insn (icode, 3, ops))
|
||
{
|
||
if (alt_rtl && ops[0].target)
|
||
*alt_rtl = target;
|
||
target = ops[0].value;
|
||
if (GET_MODE (target) != mode)
|
||
return gen_lowpart (tmode, target);
|
||
return target;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See if we can get a better vector mode before extracting. */
|
||
if (VECTOR_MODE_P (GET_MODE (op0))
|
||
&& !MEM_P (op0)
|
||
&& GET_MODE_INNER (GET_MODE (op0)) != tmode)
|
||
{
|
||
machine_mode new_mode;
|
||
|
||
if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
|
||
new_mode = MIN_MODE_VECTOR_FLOAT;
|
||
else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
|
||
new_mode = MIN_MODE_VECTOR_FRACT;
|
||
else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
|
||
new_mode = MIN_MODE_VECTOR_UFRACT;
|
||
else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
|
||
new_mode = MIN_MODE_VECTOR_ACCUM;
|
||
else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
|
||
new_mode = MIN_MODE_VECTOR_UACCUM;
|
||
else
|
||
new_mode = MIN_MODE_VECTOR_INT;
|
||
|
||
FOR_EACH_MODE_FROM (new_mode, new_mode)
|
||
if (known_eq (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (GET_MODE (op0)))
|
||
&& known_eq (GET_MODE_UNIT_SIZE (new_mode), GET_MODE_SIZE (tmode))
|
||
&& targetm.vector_mode_supported_p (new_mode))
|
||
break;
|
||
if (new_mode != VOIDmode)
|
||
op0 = gen_lowpart (new_mode, op0);
|
||
}
|
||
|
||
/* Use vec_extract patterns for extracting parts of vectors whenever
|
||
available. If that fails, see whether the current modes and bitregion
|
||
give a natural subreg. */
|
||
machine_mode outermode = GET_MODE (op0);
|
||
if (VECTOR_MODE_P (outermode) && !MEM_P (op0))
|
||
{
|
||
scalar_mode innermode = GET_MODE_INNER (outermode);
|
||
enum insn_code icode
|
||
= convert_optab_handler (vec_extract_optab, outermode, innermode);
|
||
poly_uint64 pos;
|
||
if (icode != CODE_FOR_nothing
|
||
&& known_eq (bitsize, GET_MODE_BITSIZE (innermode))
|
||
&& multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos))
|
||
{
|
||
struct expand_operand ops[3];
|
||
|
||
create_output_operand (&ops[0], target, innermode);
|
||
ops[0].target = 1;
|
||
create_input_operand (&ops[1], op0, outermode);
|
||
create_integer_operand (&ops[2], pos);
|
||
if (maybe_expand_insn (icode, 3, ops))
|
||
{
|
||
if (alt_rtl && ops[0].target)
|
||
*alt_rtl = target;
|
||
target = ops[0].value;
|
||
if (GET_MODE (target) != mode)
|
||
return gen_lowpart (tmode, target);
|
||
return target;
|
||
}
|
||
}
|
||
/* Using subregs is useful if we're extracting one register vector
|
||
from a multi-register vector. extract_bit_field_as_subreg checks
|
||
for valid bitsize and bitnum, so we don't need to do that here. */
|
||
if (VECTOR_MODE_P (mode))
|
||
{
|
||
rtx sub = extract_bit_field_as_subreg (mode, op0, bitsize, bitnum);
|
||
if (sub)
|
||
return sub;
|
||
}
|
||
}
|
||
|
||
/* Make sure we are playing with integral modes. Pun with subregs
|
||
if we aren't. */
|
||
opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
|
||
scalar_int_mode imode;
|
||
if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
|
||
{
|
||
if (MEM_P (op0))
|
||
op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
|
||
0, MEM_SIZE (op0));
|
||
else if (op0_mode.exists (&imode))
|
||
{
|
||
op0 = gen_lowpart (imode, op0);
|
||
|
||
/* If we got a SUBREG, force it into a register since we
|
||
aren't going to be able to do another SUBREG on it. */
|
||
if (GET_CODE (op0) == SUBREG)
|
||
op0 = force_reg (imode, op0);
|
||
}
|
||
else
|
||
{
|
||
poly_int64 size = GET_MODE_SIZE (GET_MODE (op0));
|
||
rtx mem = assign_stack_temp (GET_MODE (op0), size);
|
||
emit_move_insn (mem, op0);
|
||
op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
|
||
}
|
||
}
|
||
|
||
/* ??? We currently assume TARGET is at least as big as BITSIZE.
|
||
If that's wrong, the solution is to test for it and set TARGET to 0
|
||
if needed. */
|
||
|
||
/* Get the mode of the field to use for atomic access or subreg
|
||
conversion. */
|
||
if (!SCALAR_INT_MODE_P (tmode)
|
||
|| !mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0).exists (&mode1))
|
||
mode1 = mode;
|
||
gcc_assert (mode1 != BLKmode);
|
||
|
||
/* Extraction of a full MODE1 value can be done with a subreg as long
|
||
as the least significant bit of the value is the least significant
|
||
bit of either OP0 or a word of OP0. */
|
||
if (!MEM_P (op0) && !reverse)
|
||
{
|
||
rtx sub = extract_bit_field_as_subreg (mode1, op0, bitsize, bitnum);
|
||
if (sub)
|
||
return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
|
||
}
|
||
|
||
/* Extraction of a full MODE1 value can be done with a load as long as
|
||
the field is on a byte boundary and is sufficiently aligned. */
|
||
poly_uint64 bytenum;
|
||
if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1, &bytenum))
|
||
{
|
||
op0 = adjust_bitfield_address (op0, mode1, bytenum);
|
||
if (reverse)
|
||
op0 = flip_storage_order (mode1, op0);
|
||
return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
|
||
}
|
||
|
||
/* If we have a memory source and a non-constant bit offset, restrict
|
||
the memory to the referenced bytes. This is a worst-case fallback
|
||
but is useful for things like vector booleans. */
|
||
if (MEM_P (op0) && !bitnum.is_constant ())
|
||
{
|
||
bytenum = bits_to_bytes_round_down (bitnum);
|
||
bitnum = num_trailing_bits (bitnum);
|
||
poly_uint64 bytesize = bits_to_bytes_round_up (bitnum + bitsize);
|
||
op0 = adjust_bitfield_address_size (op0, BLKmode, bytenum, bytesize);
|
||
op0_mode = opt_scalar_int_mode ();
|
||
}
|
||
|
||
/* It's possible we'll need to handle other cases here for
|
||
polynomial bitnum and bitsize. */
|
||
|
||
/* From here on we need to be looking at a fixed-size insertion. */
|
||
return extract_integral_bit_field (op0, op0_mode, bitsize.to_constant (),
|
||
bitnum.to_constant (), unsignedp,
|
||
target, mode, tmode, reverse, fallback_p);
|
||
}
|
||
|
||
/* Subroutine of extract_bit_field_1, with the same arguments, except
|
||
that BITSIZE and BITNUM are constant. Handle cases specific to
|
||
integral modes. If OP0_MODE is defined, it is the mode of OP0,
|
||
otherwise OP0 is a BLKmode MEM. */
|
||
|
||
static rtx
|
||
extract_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
|
||
unsigned HOST_WIDE_INT bitsize,
|
||
unsigned HOST_WIDE_INT bitnum, int unsignedp,
|
||
rtx target, machine_mode mode, machine_mode tmode,
|
||
bool reverse, bool fallback_p)
|
||
{
|
||
/* Handle fields bigger than a word. */
|
||
|
||
if (bitsize > BITS_PER_WORD)
|
||
{
|
||
/* Here we transfer the words of the field
|
||
in the order least significant first.
|
||
This is because the most significant word is the one which may
|
||
be less than full. */
|
||
|
||
const bool backwards = WORDS_BIG_ENDIAN;
|
||
unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
|
||
unsigned int i;
|
||
rtx_insn *last;
|
||
|
||
if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
|
||
target = gen_reg_rtx (mode);
|
||
|
||
/* In case we're about to clobber a base register or something
|
||
(see gcc.c-torture/execute/20040625-1.c). */
|
||
if (reg_mentioned_p (target, op0))
|
||
target = gen_reg_rtx (mode);
|
||
|
||
/* Indicate for flow that the entire target reg is being set. */
|
||
emit_clobber (target);
|
||
|
||
/* The mode must be fixed-size, since extract_bit_field_1 handles
|
||
extractions from variable-sized objects before calling this
|
||
function. */
|
||
unsigned int target_size
|
||
= GET_MODE_SIZE (GET_MODE (target)).to_constant ();
|
||
last = get_last_insn ();
|
||
for (i = 0; i < nwords; i++)
|
||
{
|
||
/* If I is 0, use the low-order word in both field and target;
|
||
if I is 1, use the next to lowest word; and so on. */
|
||
/* Word number in TARGET to use. */
|
||
unsigned int wordnum
|
||
= (backwards ? target_size / UNITS_PER_WORD - i - 1 : i);
|
||
/* Offset from start of field in OP0. */
|
||
unsigned int bit_offset = (backwards ^ reverse
|
||
? MAX ((int) bitsize - ((int) i + 1)
|
||
* BITS_PER_WORD,
|
||
0)
|
||
: (int) i * BITS_PER_WORD);
|
||
rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
|
||
rtx result_part
|
||
= extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
|
||
bitsize - i * BITS_PER_WORD),
|
||
bitnum + bit_offset, 1, target_part,
|
||
mode, word_mode, reverse, fallback_p, NULL);
|
||
|
||
gcc_assert (target_part);
|
||
if (!result_part)
|
||
{
|
||
delete_insns_since (last);
|
||
return NULL;
|
||
}
|
||
|
||
if (result_part != target_part)
|
||
emit_move_insn (target_part, result_part);
|
||
}
|
||
|
||
if (unsignedp)
|
||
{
|
||
/* Unless we've filled TARGET, the upper regs in a multi-reg value
|
||
need to be zero'd out. */
|
||
if (target_size > nwords * UNITS_PER_WORD)
|
||
{
|
||
unsigned int i, total_words;
|
||
|
||
total_words = target_size / UNITS_PER_WORD;
|
||
for (i = nwords; i < total_words; i++)
|
||
emit_move_insn
|
||
(operand_subword (target,
|
||
backwards ? total_words - i - 1 : i,
|
||
1, VOIDmode),
|
||
const0_rtx);
|
||
}
|
||
return target;
|
||
}
|
||
|
||
/* Signed bit field: sign-extend with two arithmetic shifts. */
|
||
target = expand_shift (LSHIFT_EXPR, mode, target,
|
||
GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
|
||
return expand_shift (RSHIFT_EXPR, mode, target,
|
||
GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
|
||
}
|
||
|
||
/* If OP0 is a multi-word register, narrow it to the affected word.
|
||
If the region spans two words, defer to extract_split_bit_field. */
|
||
if (!MEM_P (op0) && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD)
|
||
{
|
||
if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
|
||
{
|
||
if (!fallback_p)
|
||
return NULL_RTX;
|
||
target = extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
|
||
unsignedp, reverse);
|
||
return convert_extracted_bit_field (target, mode, tmode, unsignedp);
|
||
}
|
||
op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
|
||
bitnum / BITS_PER_WORD * UNITS_PER_WORD);
|
||
op0_mode = word_mode;
|
||
bitnum %= BITS_PER_WORD;
|
||
}
|
||
|
||
/* From here on we know the desired field is smaller than a word.
|
||
If OP0 is a register, it too fits within a word. */
|
||
enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
|
||
extraction_insn extv;
|
||
if (!MEM_P (op0)
|
||
&& !reverse
|
||
/* ??? We could limit the structure size to the part of OP0 that
|
||
contains the field, with appropriate checks for endianness
|
||
and TARGET_TRULY_NOOP_TRUNCATION. */
|
||
&& get_best_reg_extraction_insn (&extv, pattern,
|
||
GET_MODE_BITSIZE (op0_mode.require ()),
|
||
tmode))
|
||
{
|
||
rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
|
||
bitsize, bitnum,
|
||
unsignedp, target, mode,
|
||
tmode);
|
||
if (result)
|
||
return result;
|
||
}
|
||
|
||
/* If OP0 is a memory, try copying it to a register and seeing if a
|
||
cheap register alternative is available. */
|
||
if (MEM_P (op0) & !reverse)
|
||
{
|
||
if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
|
||
tmode))
|
||
{
|
||
rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
|
||
bitsize, bitnum,
|
||
unsignedp, target, mode,
|
||
tmode);
|
||
if (result)
|
||
return result;
|
||
}
|
||
|
||
rtx_insn *last = get_last_insn ();
|
||
|
||
/* Try loading part of OP0 into a register and extracting the
|
||
bitfield from that. */
|
||
unsigned HOST_WIDE_INT bitpos;
|
||
rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
|
||
0, 0, tmode, &bitpos);
|
||
if (xop0)
|
||
{
|
||
xop0 = copy_to_reg (xop0);
|
||
rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
|
||
unsignedp, target,
|
||
mode, tmode, reverse, false, NULL);
|
||
if (result)
|
||
return result;
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
|
||
if (!fallback_p)
|
||
return NULL;
|
||
|
||
/* Find a correspondingly-sized integer field, so we can apply
|
||
shifts and masks to it. */
|
||
scalar_int_mode int_mode;
|
||
if (!int_mode_for_mode (tmode).exists (&int_mode))
|
||
/* If this fails, we should probably push op0 out to memory and then
|
||
do a load. */
|
||
int_mode = int_mode_for_mode (mode).require ();
|
||
|
||
target = extract_fixed_bit_field (int_mode, op0, op0_mode, bitsize,
|
||
bitnum, target, unsignedp, reverse);
|
||
|
||
/* Complex values must be reversed piecewise, so we need to undo the global
|
||
reversal, convert to the complex mode and reverse again. */
|
||
if (reverse && COMPLEX_MODE_P (tmode))
|
||
{
|
||
target = flip_storage_order (int_mode, target);
|
||
target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
|
||
target = flip_storage_order (tmode, target);
|
||
}
|
||
else
|
||
target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Generate code to extract a byte-field from STR_RTX
|
||
containing BITSIZE bits, starting at BITNUM,
|
||
and put it in TARGET if possible (if TARGET is nonzero).
|
||
Regardless of TARGET, we return the rtx for where the value is placed.
|
||
|
||
STR_RTX is the structure containing the byte (a REG or MEM).
|
||
UNSIGNEDP is nonzero if this is an unsigned bit field.
|
||
MODE is the natural mode of the field value once extracted.
|
||
TMODE is the mode the caller would like the value to have;
|
||
but the value may be returned with type MODE instead.
|
||
|
||
If REVERSE is true, the extraction is to be done in reverse order.
|
||
|
||
If a TARGET is specified and we can store in it at no extra cost,
|
||
we do so, and return TARGET.
|
||
Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
|
||
if they are equally easy. */
|
||
|
||
rtx
|
||
extract_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
|
||
int unsignedp, rtx target, machine_mode mode,
|
||
machine_mode tmode, bool reverse, rtx *alt_rtl)
|
||
{
|
||
machine_mode mode1;
|
||
|
||
/* Handle -fstrict-volatile-bitfields in the cases where it applies. */
|
||
if (maybe_ne (GET_MODE_BITSIZE (GET_MODE (str_rtx)), 0))
|
||
mode1 = GET_MODE (str_rtx);
|
||
else if (target && maybe_ne (GET_MODE_BITSIZE (GET_MODE (target)), 0))
|
||
mode1 = GET_MODE (target);
|
||
else
|
||
mode1 = tmode;
|
||
|
||
unsigned HOST_WIDE_INT ibitsize, ibitnum;
|
||
scalar_int_mode int_mode;
|
||
if (bitsize.is_constant (&ibitsize)
|
||
&& bitnum.is_constant (&ibitnum)
|
||
&& is_a <scalar_int_mode> (mode1, &int_mode)
|
||
&& strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum,
|
||
int_mode, 0, 0))
|
||
{
|
||
/* Extraction of a full INT_MODE value can be done with a simple load.
|
||
We know here that the field can be accessed with one single
|
||
instruction. For targets that support unaligned memory,
|
||
an unaligned access may be necessary. */
|
||
if (ibitsize == GET_MODE_BITSIZE (int_mode))
|
||
{
|
||
rtx result = adjust_bitfield_address (str_rtx, int_mode,
|
||
ibitnum / BITS_PER_UNIT);
|
||
if (reverse)
|
||
result = flip_storage_order (int_mode, result);
|
||
gcc_assert (ibitnum % BITS_PER_UNIT == 0);
|
||
return convert_extracted_bit_field (result, mode, tmode, unsignedp);
|
||
}
|
||
|
||
str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize, ibitnum,
|
||
&ibitnum);
|
||
gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
|
||
str_rtx = copy_to_reg (str_rtx);
|
||
return extract_bit_field_1 (str_rtx, ibitsize, ibitnum, unsignedp,
|
||
target, mode, tmode, reverse, true, alt_rtl);
|
||
}
|
||
|
||
return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
|
||
target, mode, tmode, reverse, true, alt_rtl);
|
||
}
|
||
|
||
/* Use shifts and boolean operations to extract a field of BITSIZE bits
|
||
from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0,
|
||
otherwise OP0 is a BLKmode MEM.
|
||
|
||
UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
|
||
If REVERSE is true, the extraction is to be done in reverse order.
|
||
|
||
If TARGET is nonzero, attempts to store the value there
|
||
and return TARGET, but this is not guaranteed.
|
||
If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
|
||
|
||
static rtx
|
||
extract_fixed_bit_field (machine_mode tmode, rtx op0,
|
||
opt_scalar_int_mode op0_mode,
|
||
unsigned HOST_WIDE_INT bitsize,
|
||
unsigned HOST_WIDE_INT bitnum, rtx target,
|
||
int unsignedp, bool reverse)
|
||
{
|
||
scalar_int_mode mode;
|
||
if (MEM_P (op0))
|
||
{
|
||
if (!get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0),
|
||
BITS_PER_WORD, MEM_VOLATILE_P (op0), &mode))
|
||
/* The only way this should occur is if the field spans word
|
||
boundaries. */
|
||
return extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
|
||
unsignedp, reverse);
|
||
|
||
op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
|
||
}
|
||
else
|
||
mode = op0_mode.require ();
|
||
|
||
return extract_fixed_bit_field_1 (tmode, op0, mode, bitsize, bitnum,
|
||
target, unsignedp, reverse);
|
||
}
|
||
|
||
/* Helper function for extract_fixed_bit_field, extracts
|
||
the bit field always using MODE, which is the mode of OP0.
|
||
The other arguments are as for extract_fixed_bit_field. */
|
||
|
||
static rtx
|
||
extract_fixed_bit_field_1 (machine_mode tmode, rtx op0, scalar_int_mode mode,
|
||
unsigned HOST_WIDE_INT bitsize,
|
||
unsigned HOST_WIDE_INT bitnum, rtx target,
|
||
int unsignedp, bool reverse)
|
||
{
|
||
/* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
|
||
for invalid input, such as extract equivalent of f5 from
|
||
gcc.dg/pr48335-2.c. */
|
||
|
||
if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
|
||
/* BITNUM is the distance between our msb and that of OP0.
|
||
Convert it to the distance from the lsb. */
|
||
bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
|
||
|
||
/* Now BITNUM is always the distance between the field's lsb and that of OP0.
|
||
We have reduced the big-endian case to the little-endian case. */
|
||
if (reverse)
|
||
op0 = flip_storage_order (mode, op0);
|
||
|
||
if (unsignedp)
|
||
{
|
||
if (bitnum)
|
||
{
|
||
/* If the field does not already start at the lsb,
|
||
shift it so it does. */
|
||
/* Maybe propagate the target for the shift. */
|
||
rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
|
||
if (tmode != mode)
|
||
subtarget = 0;
|
||
op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
|
||
}
|
||
/* Convert the value to the desired mode. TMODE must also be a
|
||
scalar integer for this conversion to make sense, since we
|
||
shouldn't reinterpret the bits. */
|
||
scalar_int_mode new_mode = as_a <scalar_int_mode> (tmode);
|
||
if (mode != new_mode)
|
||
op0 = convert_to_mode (new_mode, op0, 1);
|
||
|
||
/* Unless the msb of the field used to be the msb when we shifted,
|
||
mask out the upper bits. */
|
||
|
||
if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
|
||
return expand_binop (new_mode, and_optab, op0,
|
||
mask_rtx (new_mode, 0, bitsize, 0),
|
||
target, 1, OPTAB_LIB_WIDEN);
|
||
return op0;
|
||
}
|
||
|
||
/* To extract a signed bit-field, first shift its msb to the msb of the word,
|
||
then arithmetic-shift its lsb to the lsb of the word. */
|
||
op0 = force_reg (mode, op0);
|
||
|
||
/* Find the narrowest integer mode that contains the field. */
|
||
|
||
opt_scalar_int_mode mode_iter;
|
||
FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
|
||
if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize + bitnum)
|
||
break;
|
||
|
||
mode = mode_iter.require ();
|
||
op0 = convert_to_mode (mode, op0, 0);
|
||
|
||
if (mode != tmode)
|
||
target = 0;
|
||
|
||
if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
|
||
{
|
||
int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
|
||
/* Maybe propagate the target for the shift. */
|
||
rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
|
||
op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
|
||
}
|
||
|
||
return expand_shift (RSHIFT_EXPR, mode, op0,
|
||
GET_MODE_BITSIZE (mode) - bitsize, target, 0);
|
||
}
|
||
|
||
/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
|
||
VALUE << BITPOS. */
|
||
|
||
static rtx
|
||
lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
|
||
int bitpos)
|
||
{
|
||
return immed_wide_int_const (wi::lshift (value, bitpos), mode);
|
||
}
|
||
|
||
/* Extract a bit field that is split across two words
|
||
and return an RTX for the result.
|
||
|
||
OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
|
||
BITSIZE is the field width; BITPOS, position of its first bit, in the word.
|
||
UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
|
||
If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
|
||
a BLKmode MEM.
|
||
|
||
If REVERSE is true, the extraction is to be done in reverse order. */
|
||
|
||
static rtx
|
||
extract_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
|
||
unsigned HOST_WIDE_INT bitsize,
|
||
unsigned HOST_WIDE_INT bitpos, int unsignedp,
|
||
bool reverse)
|
||
{
|
||
unsigned int unit;
|
||
unsigned int bitsdone = 0;
|
||
rtx result = NULL_RTX;
|
||
int first = 1;
|
||
|
||
/* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
|
||
much at a time. */
|
||
if (REG_P (op0) || GET_CODE (op0) == SUBREG)
|
||
unit = BITS_PER_WORD;
|
||
else
|
||
unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
|
||
|
||
while (bitsdone < bitsize)
|
||
{
|
||
unsigned HOST_WIDE_INT thissize;
|
||
rtx part;
|
||
unsigned HOST_WIDE_INT thispos;
|
||
unsigned HOST_WIDE_INT offset;
|
||
|
||
offset = (bitpos + bitsdone) / unit;
|
||
thispos = (bitpos + bitsdone) % unit;
|
||
|
||
/* THISSIZE must not overrun a word boundary. Otherwise,
|
||
extract_fixed_bit_field will call us again, and we will mutually
|
||
recurse forever. */
|
||
thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
|
||
thissize = MIN (thissize, unit - thispos);
|
||
|
||
/* If OP0 is a register, then handle OFFSET here. */
|
||
rtx op0_piece = op0;
|
||
opt_scalar_int_mode op0_piece_mode = op0_mode;
|
||
if (SUBREG_P (op0) || REG_P (op0))
|
||
{
|
||
op0_piece = operand_subword_force (op0, offset, op0_mode.require ());
|
||
op0_piece_mode = word_mode;
|
||
offset = 0;
|
||
}
|
||
|
||
/* Extract the parts in bit-counting order,
|
||
whose meaning is determined by BYTES_PER_UNIT.
|
||
OFFSET is in UNITs, and UNIT is in bits. */
|
||
part = extract_fixed_bit_field (word_mode, op0_piece, op0_piece_mode,
|
||
thissize, offset * unit + thispos,
|
||
0, 1, reverse);
|
||
bitsdone += thissize;
|
||
|
||
/* Shift this part into place for the result. */
|
||
if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
|
||
{
|
||
if (bitsize != bitsdone)
|
||
part = expand_shift (LSHIFT_EXPR, word_mode, part,
|
||
bitsize - bitsdone, 0, 1);
|
||
}
|
||
else
|
||
{
|
||
if (bitsdone != thissize)
|
||
part = expand_shift (LSHIFT_EXPR, word_mode, part,
|
||
bitsdone - thissize, 0, 1);
|
||
}
|
||
|
||
if (first)
|
||
result = part;
|
||
else
|
||
/* Combine the parts with bitwise or. This works
|
||
because we extracted each part as an unsigned bit field. */
|
||
result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
|
||
OPTAB_LIB_WIDEN);
|
||
|
||
first = 0;
|
||
}
|
||
|
||
/* Unsigned bit field: we are done. */
|
||
if (unsignedp)
|
||
return result;
|
||
/* Signed bit field: sign-extend with two arithmetic shifts. */
|
||
result = expand_shift (LSHIFT_EXPR, word_mode, result,
|
||
BITS_PER_WORD - bitsize, NULL_RTX, 0);
|
||
return expand_shift (RSHIFT_EXPR, word_mode, result,
|
||
BITS_PER_WORD - bitsize, NULL_RTX, 0);
|
||
}
|
||
|
||
/* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
|
||
the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
|
||
MODE, fill the upper bits with zeros. Fail if the layout of either
|
||
mode is unknown (as for CC modes) or if the extraction would involve
|
||
unprofitable mode punning. Return the value on success, otherwise
|
||
return null.
|
||
|
||
This is different from gen_lowpart* in these respects:
|
||
|
||
- the returned value must always be considered an rvalue
|
||
|
||
- when MODE is wider than SRC_MODE, the extraction involves
|
||
a zero extension
|
||
|
||
- when MODE is smaller than SRC_MODE, the extraction involves
|
||
a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION).
|
||
|
||
In other words, this routine performs a computation, whereas the
|
||
gen_lowpart* routines are conceptually lvalue or rvalue subreg
|
||
operations. */
|
||
|
||
rtx
|
||
extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
|
||
{
|
||
scalar_int_mode int_mode, src_int_mode;
|
||
|
||
if (mode == src_mode)
|
||
return src;
|
||
|
||
if (CONSTANT_P (src))
|
||
{
|
||
/* simplify_gen_subreg can't be used here, as if simplify_subreg
|
||
fails, it will happily create (subreg (symbol_ref)) or similar
|
||
invalid SUBREGs. */
|
||
poly_uint64 byte = subreg_lowpart_offset (mode, src_mode);
|
||
rtx ret = simplify_subreg (mode, src, src_mode, byte);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (GET_MODE (src) == VOIDmode
|
||
|| !validate_subreg (mode, src_mode, src, byte))
|
||
return NULL_RTX;
|
||
|
||
src = force_reg (GET_MODE (src), src);
|
||
return gen_rtx_SUBREG (mode, src, byte);
|
||
}
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
|
||
return NULL_RTX;
|
||
|
||
if (known_eq (GET_MODE_BITSIZE (mode), GET_MODE_BITSIZE (src_mode))
|
||
&& targetm.modes_tieable_p (mode, src_mode))
|
||
{
|
||
rtx x = gen_lowpart_common (mode, src);
|
||
if (x)
|
||
return x;
|
||
}
|
||
|
||
if (!int_mode_for_mode (src_mode).exists (&src_int_mode)
|
||
|| !int_mode_for_mode (mode).exists (&int_mode))
|
||
return NULL_RTX;
|
||
|
||
if (!targetm.modes_tieable_p (src_int_mode, src_mode))
|
||
return NULL_RTX;
|
||
if (!targetm.modes_tieable_p (int_mode, mode))
|
||
return NULL_RTX;
|
||
|
||
src = gen_lowpart (src_int_mode, src);
|
||
if (!validate_subreg (int_mode, src_int_mode, src,
|
||
subreg_lowpart_offset (int_mode, src_int_mode)))
|
||
return NULL_RTX;
|
||
|
||
src = convert_modes (int_mode, src_int_mode, src, true);
|
||
src = gen_lowpart (mode, src);
|
||
return src;
|
||
}
|
||
|
||
/* Add INC into TARGET. */
|
||
|
||
void
|
||
expand_inc (rtx target, rtx inc)
|
||
{
|
||
rtx value = expand_binop (GET_MODE (target), add_optab,
|
||
target, inc,
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
if (value != target)
|
||
emit_move_insn (target, value);
|
||
}
|
||
|
||
/* Subtract DEC from TARGET. */
|
||
|
||
void
|
||
expand_dec (rtx target, rtx dec)
|
||
{
|
||
rtx value = expand_binop (GET_MODE (target), sub_optab,
|
||
target, dec,
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
if (value != target)
|
||
emit_move_insn (target, value);
|
||
}
|
||
|
||
/* Output a shift instruction for expression code CODE,
|
||
with SHIFTED being the rtx for the value to shift,
|
||
and AMOUNT the rtx for the amount to shift by.
|
||
Store the result in the rtx TARGET, if that is convenient.
|
||
If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
|
||
Return the rtx for where the value is.
|
||
If that cannot be done, abort the compilation unless MAY_FAIL is true,
|
||
in which case 0 is returned. */
|
||
|
||
static rtx
|
||
expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
|
||
rtx amount, rtx target, int unsignedp, bool may_fail = false)
|
||
{
|
||
rtx op1, temp = 0;
|
||
int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
|
||
int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
|
||
optab lshift_optab = ashl_optab;
|
||
optab rshift_arith_optab = ashr_optab;
|
||
optab rshift_uns_optab = lshr_optab;
|
||
optab lrotate_optab = rotl_optab;
|
||
optab rrotate_optab = rotr_optab;
|
||
machine_mode op1_mode;
|
||
scalar_mode scalar_mode = GET_MODE_INNER (mode);
|
||
int attempt;
|
||
bool speed = optimize_insn_for_speed_p ();
|
||
|
||
op1 = amount;
|
||
op1_mode = GET_MODE (op1);
|
||
|
||
/* Determine whether the shift/rotate amount is a vector, or scalar. If the
|
||
shift amount is a vector, use the vector/vector shift patterns. */
|
||
if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
|
||
{
|
||
lshift_optab = vashl_optab;
|
||
rshift_arith_optab = vashr_optab;
|
||
rshift_uns_optab = vlshr_optab;
|
||
lrotate_optab = vrotl_optab;
|
||
rrotate_optab = vrotr_optab;
|
||
}
|
||
|
||
/* Previously detected shift-counts computed by NEGATE_EXPR
|
||
and shifted in the other direction; but that does not work
|
||
on all machines. */
|
||
|
||
if (SHIFT_COUNT_TRUNCATED)
|
||
{
|
||
if (CONST_INT_P (op1)
|
||
&& ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
|
||
(unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
|
||
op1 = gen_int_shift_amount (mode,
|
||
(unsigned HOST_WIDE_INT) INTVAL (op1)
|
||
% GET_MODE_BITSIZE (scalar_mode));
|
||
else if (GET_CODE (op1) == SUBREG
|
||
&& subreg_lowpart_p (op1)
|
||
&& SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
|
||
&& SCALAR_INT_MODE_P (GET_MODE (op1)))
|
||
op1 = SUBREG_REG (op1);
|
||
}
|
||
|
||
/* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
|
||
prefer left rotation, if op1 is from bitsize / 2 + 1 to
|
||
bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
|
||
amount instead. */
|
||
if (rotate
|
||
&& CONST_INT_P (op1)
|
||
&& IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
|
||
GET_MODE_BITSIZE (scalar_mode) - 1))
|
||
{
|
||
op1 = gen_int_shift_amount (mode, (GET_MODE_BITSIZE (scalar_mode)
|
||
- INTVAL (op1)));
|
||
left = !left;
|
||
code = left ? LROTATE_EXPR : RROTATE_EXPR;
|
||
}
|
||
|
||
/* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
|
||
Note that this is not the case for bigger values. For instance a rotation
|
||
of 0x01020304 by 16 bits gives 0x03040102 which is different from
|
||
0x04030201 (bswapsi). */
|
||
if (rotate
|
||
&& CONST_INT_P (op1)
|
||
&& INTVAL (op1) == BITS_PER_UNIT
|
||
&& GET_MODE_SIZE (scalar_mode) == 2
|
||
&& optab_handler (bswap_optab, mode) != CODE_FOR_nothing)
|
||
return expand_unop (mode, bswap_optab, shifted, NULL_RTX, unsignedp);
|
||
|
||
if (op1 == const0_rtx)
|
||
return shifted;
|
||
|
||
/* Check whether its cheaper to implement a left shift by a constant
|
||
bit count by a sequence of additions. */
|
||
if (code == LSHIFT_EXPR
|
||
&& CONST_INT_P (op1)
|
||
&& INTVAL (op1) > 0
|
||
&& INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
|
||
&& INTVAL (op1) < MAX_BITS_PER_WORD
|
||
&& (shift_cost (speed, mode, INTVAL (op1))
|
||
> INTVAL (op1) * add_cost (speed, mode))
|
||
&& shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
|
||
{
|
||
int i;
|
||
for (i = 0; i < INTVAL (op1); i++)
|
||
{
|
||
temp = force_reg (mode, shifted);
|
||
shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
|
||
unsignedp, OPTAB_LIB_WIDEN);
|
||
}
|
||
return shifted;
|
||
}
|
||
|
||
for (attempt = 0; temp == 0 && attempt < 3; attempt++)
|
||
{
|
||
enum optab_methods methods;
|
||
|
||
if (attempt == 0)
|
||
methods = OPTAB_DIRECT;
|
||
else if (attempt == 1)
|
||
methods = OPTAB_WIDEN;
|
||
else
|
||
methods = OPTAB_LIB_WIDEN;
|
||
|
||
if (rotate)
|
||
{
|
||
/* Widening does not work for rotation. */
|
||
if (methods == OPTAB_WIDEN)
|
||
continue;
|
||
else if (methods == OPTAB_LIB_WIDEN)
|
||
{
|
||
/* If we have been unable to open-code this by a rotation,
|
||
do it as the IOR of two shifts. I.e., to rotate A
|
||
by N bits, compute
|
||
(A << N) | ((unsigned) A >> ((-N) & (C - 1)))
|
||
where C is the bitsize of A.
|
||
|
||
It is theoretically possible that the target machine might
|
||
not be able to perform either shift and hence we would
|
||
be making two libcalls rather than just the one for the
|
||
shift (similarly if IOR could not be done). We will allow
|
||
this extremely unlikely lossage to avoid complicating the
|
||
code below. */
|
||
|
||
rtx subtarget = target == shifted ? 0 : target;
|
||
rtx new_amount, other_amount;
|
||
rtx temp1;
|
||
|
||
new_amount = op1;
|
||
if (op1 == const0_rtx)
|
||
return shifted;
|
||
else if (CONST_INT_P (op1))
|
||
other_amount = gen_int_shift_amount
|
||
(mode, GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
|
||
else
|
||
{
|
||
other_amount
|
||
= simplify_gen_unary (NEG, GET_MODE (op1),
|
||
op1, GET_MODE (op1));
|
||
HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
|
||
other_amount
|
||
= simplify_gen_binary (AND, GET_MODE (op1), other_amount,
|
||
gen_int_mode (mask, GET_MODE (op1)));
|
||
}
|
||
|
||
shifted = force_reg (mode, shifted);
|
||
|
||
temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
|
||
mode, shifted, new_amount, 0, 1);
|
||
temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
|
||
mode, shifted, other_amount,
|
||
subtarget, 1);
|
||
return expand_binop (mode, ior_optab, temp, temp1, target,
|
||
unsignedp, methods);
|
||
}
|
||
|
||
temp = expand_binop (mode,
|
||
left ? lrotate_optab : rrotate_optab,
|
||
shifted, op1, target, unsignedp, methods);
|
||
}
|
||
else if (unsignedp)
|
||
temp = expand_binop (mode,
|
||
left ? lshift_optab : rshift_uns_optab,
|
||
shifted, op1, target, unsignedp, methods);
|
||
|
||
/* Do arithmetic shifts.
|
||
Also, if we are going to widen the operand, we can just as well
|
||
use an arithmetic right-shift instead of a logical one. */
|
||
if (temp == 0 && ! rotate
|
||
&& (! unsignedp || (! left && methods == OPTAB_WIDEN)))
|
||
{
|
||
enum optab_methods methods1 = methods;
|
||
|
||
/* If trying to widen a log shift to an arithmetic shift,
|
||
don't accept an arithmetic shift of the same size. */
|
||
if (unsignedp)
|
||
methods1 = OPTAB_MUST_WIDEN;
|
||
|
||
/* Arithmetic shift */
|
||
|
||
temp = expand_binop (mode,
|
||
left ? lshift_optab : rshift_arith_optab,
|
||
shifted, op1, target, unsignedp, methods1);
|
||
}
|
||
|
||
/* We used to try extzv here for logical right shifts, but that was
|
||
only useful for one machine, the VAX, and caused poor code
|
||
generation there for lshrdi3, so the code was deleted and a
|
||
define_expand for lshrsi3 was added to vax.md. */
|
||
}
|
||
|
||
gcc_assert (temp != NULL_RTX || may_fail);
|
||
return temp;
|
||
}
|
||
|
||
/* Output a shift instruction for expression code CODE,
|
||
with SHIFTED being the rtx for the value to shift,
|
||
and AMOUNT the amount to shift by.
|
||
Store the result in the rtx TARGET, if that is convenient.
|
||
If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
|
||
Return the rtx for where the value is. */
|
||
|
||
rtx
|
||
expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
|
||
poly_int64 amount, rtx target, int unsignedp)
|
||
{
|
||
return expand_shift_1 (code, mode, shifted,
|
||
gen_int_shift_amount (mode, amount),
|
||
target, unsignedp);
|
||
}
|
||
|
||
/* Likewise, but return 0 if that cannot be done. */
|
||
|
||
static rtx
|
||
maybe_expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
|
||
int amount, rtx target, int unsignedp)
|
||
{
|
||
return expand_shift_1 (code, mode,
|
||
shifted, GEN_INT (amount), target, unsignedp, true);
|
||
}
|
||
|
||
/* Output a shift instruction for expression code CODE,
|
||
with SHIFTED being the rtx for the value to shift,
|
||
and AMOUNT the tree for the amount to shift by.
|
||
Store the result in the rtx TARGET, if that is convenient.
|
||
If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
|
||
Return the rtx for where the value is. */
|
||
|
||
rtx
|
||
expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
|
||
tree amount, rtx target, int unsignedp)
|
||
{
|
||
return expand_shift_1 (code, mode,
|
||
shifted, expand_normal (amount), target, unsignedp);
|
||
}
|
||
|
||
|
||
static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
|
||
const struct mult_cost *, machine_mode mode);
|
||
static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
|
||
const struct algorithm *, enum mult_variant);
|
||
static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
|
||
static rtx extract_high_half (scalar_int_mode, rtx);
|
||
static rtx expmed_mult_highpart (scalar_int_mode, rtx, rtx, rtx, int, int);
|
||
static rtx expmed_mult_highpart_optab (scalar_int_mode, rtx, rtx, rtx,
|
||
int, int);
|
||
/* Compute and return the best algorithm for multiplying by T.
|
||
The algorithm must cost less than cost_limit
|
||
If retval.cost >= COST_LIMIT, no algorithm was found and all
|
||
other field of the returned struct are undefined.
|
||
MODE is the machine mode of the multiplication. */
|
||
|
||
static void
|
||
synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
|
||
const struct mult_cost *cost_limit, machine_mode mode)
|
||
{
|
||
int m;
|
||
struct algorithm *alg_in, *best_alg;
|
||
struct mult_cost best_cost;
|
||
struct mult_cost new_limit;
|
||
int op_cost, op_latency;
|
||
unsigned HOST_WIDE_INT orig_t = t;
|
||
unsigned HOST_WIDE_INT q;
|
||
int maxm, hash_index;
|
||
bool cache_hit = false;
|
||
enum alg_code cache_alg = alg_zero;
|
||
bool speed = optimize_insn_for_speed_p ();
|
||
scalar_int_mode imode;
|
||
struct alg_hash_entry *entry_ptr;
|
||
|
||
/* Indicate that no algorithm is yet found. If no algorithm
|
||
is found, this value will be returned and indicate failure. */
|
||
alg_out->cost.cost = cost_limit->cost + 1;
|
||
alg_out->cost.latency = cost_limit->latency + 1;
|
||
|
||
if (cost_limit->cost < 0
|
||
|| (cost_limit->cost == 0 && cost_limit->latency <= 0))
|
||
return;
|
||
|
||
/* Be prepared for vector modes. */
|
||
imode = as_a <scalar_int_mode> (GET_MODE_INNER (mode));
|
||
|
||
maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
|
||
|
||
/* Restrict the bits of "t" to the multiplication's mode. */
|
||
t &= GET_MODE_MASK (imode);
|
||
|
||
/* t == 1 can be done in zero cost. */
|
||
if (t == 1)
|
||
{
|
||
alg_out->ops = 1;
|
||
alg_out->cost.cost = 0;
|
||
alg_out->cost.latency = 0;
|
||
alg_out->op[0] = alg_m;
|
||
return;
|
||
}
|
||
|
||
/* t == 0 sometimes has a cost. If it does and it exceeds our limit,
|
||
fail now. */
|
||
if (t == 0)
|
||
{
|
||
if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
|
||
return;
|
||
else
|
||
{
|
||
alg_out->ops = 1;
|
||
alg_out->cost.cost = zero_cost (speed);
|
||
alg_out->cost.latency = zero_cost (speed);
|
||
alg_out->op[0] = alg_zero;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* We'll be needing a couple extra algorithm structures now. */
|
||
|
||
alg_in = XALLOCA (struct algorithm);
|
||
best_alg = XALLOCA (struct algorithm);
|
||
best_cost = *cost_limit;
|
||
|
||
/* Compute the hash index. */
|
||
hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
|
||
|
||
/* See if we already know what to do for T. */
|
||
entry_ptr = alg_hash_entry_ptr (hash_index);
|
||
if (entry_ptr->t == t
|
||
&& entry_ptr->mode == mode
|
||
&& entry_ptr->speed == speed
|
||
&& entry_ptr->alg != alg_unknown)
|
||
{
|
||
cache_alg = entry_ptr->alg;
|
||
|
||
if (cache_alg == alg_impossible)
|
||
{
|
||
/* The cache tells us that it's impossible to synthesize
|
||
multiplication by T within entry_ptr->cost. */
|
||
if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
|
||
/* COST_LIMIT is at least as restrictive as the one
|
||
recorded in the hash table, in which case we have no
|
||
hope of synthesizing a multiplication. Just
|
||
return. */
|
||
return;
|
||
|
||
/* If we get here, COST_LIMIT is less restrictive than the
|
||
one recorded in the hash table, so we may be able to
|
||
synthesize a multiplication. Proceed as if we didn't
|
||
have the cache entry. */
|
||
}
|
||
else
|
||
{
|
||
if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
|
||
/* The cached algorithm shows that this multiplication
|
||
requires more cost than COST_LIMIT. Just return. This
|
||
way, we don't clobber this cache entry with
|
||
alg_impossible but retain useful information. */
|
||
return;
|
||
|
||
cache_hit = true;
|
||
|
||
switch (cache_alg)
|
||
{
|
||
case alg_shift:
|
||
goto do_alg_shift;
|
||
|
||
case alg_add_t_m2:
|
||
case alg_sub_t_m2:
|
||
goto do_alg_addsub_t_m2;
|
||
|
||
case alg_add_factor:
|
||
case alg_sub_factor:
|
||
goto do_alg_addsub_factor;
|
||
|
||
case alg_add_t2_m:
|
||
goto do_alg_add_t2_m;
|
||
|
||
case alg_sub_t2_m:
|
||
goto do_alg_sub_t2_m;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we have a group of zero bits at the low-order part of T, try
|
||
multiplying by the remaining bits and then doing a shift. */
|
||
|
||
if ((t & 1) == 0)
|
||
{
|
||
do_alg_shift:
|
||
m = ctz_or_zero (t); /* m = number of low zero bits */
|
||
if (m < maxm)
|
||
{
|
||
q = t >> m;
|
||
/* The function expand_shift will choose between a shift and
|
||
a sequence of additions, so the observed cost is given as
|
||
MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
|
||
op_cost = m * add_cost (speed, mode);
|
||
if (shift_cost (speed, mode, m) < op_cost)
|
||
op_cost = shift_cost (speed, mode, m);
|
||
new_limit.cost = best_cost.cost - op_cost;
|
||
new_limit.latency = best_cost.latency - op_cost;
|
||
synth_mult (alg_in, q, &new_limit, mode);
|
||
|
||
alg_in->cost.cost += op_cost;
|
||
alg_in->cost.latency += op_cost;
|
||
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
||
{
|
||
best_cost = alg_in->cost;
|
||
std::swap (alg_in, best_alg);
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops] = alg_shift;
|
||
}
|
||
|
||
/* See if treating ORIG_T as a signed number yields a better
|
||
sequence. Try this sequence only for a negative ORIG_T
|
||
as it would be useless for a non-negative ORIG_T. */
|
||
if ((HOST_WIDE_INT) orig_t < 0)
|
||
{
|
||
/* Shift ORIG_T as follows because a right shift of a
|
||
negative-valued signed type is implementation
|
||
defined. */
|
||
q = ~(~orig_t >> m);
|
||
/* The function expand_shift will choose between a shift
|
||
and a sequence of additions, so the observed cost is
|
||
given as MIN (m * add_cost(speed, mode),
|
||
shift_cost(speed, mode, m)). */
|
||
op_cost = m * add_cost (speed, mode);
|
||
if (shift_cost (speed, mode, m) < op_cost)
|
||
op_cost = shift_cost (speed, mode, m);
|
||
new_limit.cost = best_cost.cost - op_cost;
|
||
new_limit.latency = best_cost.latency - op_cost;
|
||
synth_mult (alg_in, q, &new_limit, mode);
|
||
|
||
alg_in->cost.cost += op_cost;
|
||
alg_in->cost.latency += op_cost;
|
||
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
||
{
|
||
best_cost = alg_in->cost;
|
||
std::swap (alg_in, best_alg);
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops] = alg_shift;
|
||
}
|
||
}
|
||
}
|
||
if (cache_hit)
|
||
goto done;
|
||
}
|
||
|
||
/* If we have an odd number, add or subtract one. */
|
||
if ((t & 1) != 0)
|
||
{
|
||
unsigned HOST_WIDE_INT w;
|
||
|
||
do_alg_addsub_t_m2:
|
||
for (w = 1; (w & t) != 0; w <<= 1)
|
||
;
|
||
/* If T was -1, then W will be zero after the loop. This is another
|
||
case where T ends with ...111. Handling this with (T + 1) and
|
||
subtract 1 produces slightly better code and results in algorithm
|
||
selection much faster than treating it like the ...0111 case
|
||
below. */
|
||
if (w == 0
|
||
|| (w > 2
|
||
/* Reject the case where t is 3.
|
||
Thus we prefer addition in that case. */
|
||
&& t != 3))
|
||
{
|
||
/* T ends with ...111. Multiply by (T + 1) and subtract T. */
|
||
|
||
op_cost = add_cost (speed, mode);
|
||
new_limit.cost = best_cost.cost - op_cost;
|
||
new_limit.latency = best_cost.latency - op_cost;
|
||
synth_mult (alg_in, t + 1, &new_limit, mode);
|
||
|
||
alg_in->cost.cost += op_cost;
|
||
alg_in->cost.latency += op_cost;
|
||
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
||
{
|
||
best_cost = alg_in->cost;
|
||
std::swap (alg_in, best_alg);
|
||
best_alg->log[best_alg->ops] = 0;
|
||
best_alg->op[best_alg->ops] = alg_sub_t_m2;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
|
||
|
||
op_cost = add_cost (speed, mode);
|
||
new_limit.cost = best_cost.cost - op_cost;
|
||
new_limit.latency = best_cost.latency - op_cost;
|
||
synth_mult (alg_in, t - 1, &new_limit, mode);
|
||
|
||
alg_in->cost.cost += op_cost;
|
||
alg_in->cost.latency += op_cost;
|
||
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
||
{
|
||
best_cost = alg_in->cost;
|
||
std::swap (alg_in, best_alg);
|
||
best_alg->log[best_alg->ops] = 0;
|
||
best_alg->op[best_alg->ops] = alg_add_t_m2;
|
||
}
|
||
}
|
||
|
||
/* We may be able to calculate a * -7, a * -15, a * -31, etc
|
||
quickly with a - a * n for some appropriate constant n. */
|
||
m = exact_log2 (-orig_t + 1);
|
||
if (m >= 0 && m < maxm)
|
||
{
|
||
op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
|
||
/* If the target has a cheap shift-and-subtract insn use
|
||
that in preference to a shift insn followed by a sub insn.
|
||
Assume that the shift-and-sub is "atomic" with a latency
|
||
equal to it's cost, otherwise assume that on superscalar
|
||
hardware the shift may be executed concurrently with the
|
||
earlier steps in the algorithm. */
|
||
if (shiftsub1_cost (speed, mode, m) <= op_cost)
|
||
{
|
||
op_cost = shiftsub1_cost (speed, mode, m);
|
||
op_latency = op_cost;
|
||
}
|
||
else
|
||
op_latency = add_cost (speed, mode);
|
||
|
||
new_limit.cost = best_cost.cost - op_cost;
|
||
new_limit.latency = best_cost.latency - op_latency;
|
||
synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
|
||
&new_limit, mode);
|
||
|
||
alg_in->cost.cost += op_cost;
|
||
alg_in->cost.latency += op_latency;
|
||
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
||
{
|
||
best_cost = alg_in->cost;
|
||
std::swap (alg_in, best_alg);
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops] = alg_sub_t_m2;
|
||
}
|
||
}
|
||
|
||
if (cache_hit)
|
||
goto done;
|
||
}
|
||
|
||
/* Look for factors of t of the form
|
||
t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
|
||
If we find such a factor, we can multiply by t using an algorithm that
|
||
multiplies by q, shift the result by m and add/subtract it to itself.
|
||
|
||
We search for large factors first and loop down, even if large factors
|
||
are less probable than small; if we find a large factor we will find a
|
||
good sequence quickly, and therefore be able to prune (by decreasing
|
||
COST_LIMIT) the search. */
|
||
|
||
do_alg_addsub_factor:
|
||
for (m = floor_log2 (t - 1); m >= 2; m--)
|
||
{
|
||
unsigned HOST_WIDE_INT d;
|
||
|
||
d = (HOST_WIDE_INT_1U << m) + 1;
|
||
if (t % d == 0 && t > d && m < maxm
|
||
&& (!cache_hit || cache_alg == alg_add_factor))
|
||
{
|
||
op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
|
||
if (shiftadd_cost (speed, mode, m) <= op_cost)
|
||
op_cost = shiftadd_cost (speed, mode, m);
|
||
|
||
op_latency = op_cost;
|
||
|
||
|
||
new_limit.cost = best_cost.cost - op_cost;
|
||
new_limit.latency = best_cost.latency - op_latency;
|
||
synth_mult (alg_in, t / d, &new_limit, mode);
|
||
|
||
alg_in->cost.cost += op_cost;
|
||
alg_in->cost.latency += op_latency;
|
||
if (alg_in->cost.latency < op_cost)
|
||
alg_in->cost.latency = op_cost;
|
||
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
||
{
|
||
best_cost = alg_in->cost;
|
||
std::swap (alg_in, best_alg);
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops] = alg_add_factor;
|
||
}
|
||
/* Other factors will have been taken care of in the recursion. */
|
||
break;
|
||
}
|
||
|
||
d = (HOST_WIDE_INT_1U << m) - 1;
|
||
if (t % d == 0 && t > d && m < maxm
|
||
&& (!cache_hit || cache_alg == alg_sub_factor))
|
||
{
|
||
op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
|
||
if (shiftsub0_cost (speed, mode, m) <= op_cost)
|
||
op_cost = shiftsub0_cost (speed, mode, m);
|
||
|
||
op_latency = op_cost;
|
||
|
||
new_limit.cost = best_cost.cost - op_cost;
|
||
new_limit.latency = best_cost.latency - op_latency;
|
||
synth_mult (alg_in, t / d, &new_limit, mode);
|
||
|
||
alg_in->cost.cost += op_cost;
|
||
alg_in->cost.latency += op_latency;
|
||
if (alg_in->cost.latency < op_cost)
|
||
alg_in->cost.latency = op_cost;
|
||
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
||
{
|
||
best_cost = alg_in->cost;
|
||
std::swap (alg_in, best_alg);
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops] = alg_sub_factor;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
if (cache_hit)
|
||
goto done;
|
||
|
||
/* Try shift-and-add (load effective address) instructions,
|
||
i.e. do a*3, a*5, a*9. */
|
||
if ((t & 1) != 0)
|
||
{
|
||
do_alg_add_t2_m:
|
||
q = t - 1;
|
||
m = ctz_hwi (q);
|
||
if (q && m < maxm)
|
||
{
|
||
op_cost = shiftadd_cost (speed, mode, m);
|
||
new_limit.cost = best_cost.cost - op_cost;
|
||
new_limit.latency = best_cost.latency - op_cost;
|
||
synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
|
||
|
||
alg_in->cost.cost += op_cost;
|
||
alg_in->cost.latency += op_cost;
|
||
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
||
{
|
||
best_cost = alg_in->cost;
|
||
std::swap (alg_in, best_alg);
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops] = alg_add_t2_m;
|
||
}
|
||
}
|
||
if (cache_hit)
|
||
goto done;
|
||
|
||
do_alg_sub_t2_m:
|
||
q = t + 1;
|
||
m = ctz_hwi (q);
|
||
if (q && m < maxm)
|
||
{
|
||
op_cost = shiftsub0_cost (speed, mode, m);
|
||
new_limit.cost = best_cost.cost - op_cost;
|
||
new_limit.latency = best_cost.latency - op_cost;
|
||
synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
|
||
|
||
alg_in->cost.cost += op_cost;
|
||
alg_in->cost.latency += op_cost;
|
||
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
||
{
|
||
best_cost = alg_in->cost;
|
||
std::swap (alg_in, best_alg);
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops] = alg_sub_t2_m;
|
||
}
|
||
}
|
||
if (cache_hit)
|
||
goto done;
|
||
}
|
||
|
||
done:
|
||
/* If best_cost has not decreased, we have not found any algorithm. */
|
||
if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
|
||
{
|
||
/* We failed to find an algorithm. Record alg_impossible for
|
||
this case (that is, <T, MODE, COST_LIMIT>) so that next time
|
||
we are asked to find an algorithm for T within the same or
|
||
lower COST_LIMIT, we can immediately return to the
|
||
caller. */
|
||
entry_ptr->t = t;
|
||
entry_ptr->mode = mode;
|
||
entry_ptr->speed = speed;
|
||
entry_ptr->alg = alg_impossible;
|
||
entry_ptr->cost = *cost_limit;
|
||
return;
|
||
}
|
||
|
||
/* Cache the result. */
|
||
if (!cache_hit)
|
||
{
|
||
entry_ptr->t = t;
|
||
entry_ptr->mode = mode;
|
||
entry_ptr->speed = speed;
|
||
entry_ptr->alg = best_alg->op[best_alg->ops];
|
||
entry_ptr->cost.cost = best_cost.cost;
|
||
entry_ptr->cost.latency = best_cost.latency;
|
||
}
|
||
|
||
/* If we are getting a too long sequence for `struct algorithm'
|
||
to record, make this search fail. */
|
||
if (best_alg->ops == MAX_BITS_PER_WORD)
|
||
return;
|
||
|
||
/* Copy the algorithm from temporary space to the space at alg_out.
|
||
We avoid using structure assignment because the majority of
|
||
best_alg is normally undefined, and this is a critical function. */
|
||
alg_out->ops = best_alg->ops + 1;
|
||
alg_out->cost = best_cost;
|
||
memcpy (alg_out->op, best_alg->op,
|
||
alg_out->ops * sizeof *alg_out->op);
|
||
memcpy (alg_out->log, best_alg->log,
|
||
alg_out->ops * sizeof *alg_out->log);
|
||
}
|
||
|
||
/* Find the cheapest way of multiplying a value of mode MODE by VAL.
|
||
Try three variations:
|
||
|
||
- a shift/add sequence based on VAL itself
|
||
- a shift/add sequence based on -VAL, followed by a negation
|
||
- a shift/add sequence based on VAL - 1, followed by an addition.
|
||
|
||
Return true if the cheapest of these cost less than MULT_COST,
|
||
describing the algorithm in *ALG and final fixup in *VARIANT. */
|
||
|
||
bool
|
||
choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
|
||
struct algorithm *alg, enum mult_variant *variant,
|
||
int mult_cost)
|
||
{
|
||
struct algorithm alg2;
|
||
struct mult_cost limit;
|
||
int op_cost;
|
||
bool speed = optimize_insn_for_speed_p ();
|
||
|
||
/* Fail quickly for impossible bounds. */
|
||
if (mult_cost < 0)
|
||
return false;
|
||
|
||
/* Ensure that mult_cost provides a reasonable upper bound.
|
||
Any constant multiplication can be performed with less
|
||
than 2 * bits additions. */
|
||
op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
|
||
if (mult_cost > op_cost)
|
||
mult_cost = op_cost;
|
||
|
||
*variant = basic_variant;
|
||
limit.cost = mult_cost;
|
||
limit.latency = mult_cost;
|
||
synth_mult (alg, val, &limit, mode);
|
||
|
||
/* This works only if the inverted value actually fits in an
|
||
`unsigned int' */
|
||
if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
|
||
{
|
||
op_cost = neg_cost (speed, mode);
|
||
if (MULT_COST_LESS (&alg->cost, mult_cost))
|
||
{
|
||
limit.cost = alg->cost.cost - op_cost;
|
||
limit.latency = alg->cost.latency - op_cost;
|
||
}
|
||
else
|
||
{
|
||
limit.cost = mult_cost - op_cost;
|
||
limit.latency = mult_cost - op_cost;
|
||
}
|
||
|
||
synth_mult (&alg2, -val, &limit, mode);
|
||
alg2.cost.cost += op_cost;
|
||
alg2.cost.latency += op_cost;
|
||
if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
|
||
*alg = alg2, *variant = negate_variant;
|
||
}
|
||
|
||
/* This proves very useful for division-by-constant. */
|
||
op_cost = add_cost (speed, mode);
|
||
if (MULT_COST_LESS (&alg->cost, mult_cost))
|
||
{
|
||
limit.cost = alg->cost.cost - op_cost;
|
||
limit.latency = alg->cost.latency - op_cost;
|
||
}
|
||
else
|
||
{
|
||
limit.cost = mult_cost - op_cost;
|
||
limit.latency = mult_cost - op_cost;
|
||
}
|
||
|
||
synth_mult (&alg2, val - 1, &limit, mode);
|
||
alg2.cost.cost += op_cost;
|
||
alg2.cost.latency += op_cost;
|
||
if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
|
||
*alg = alg2, *variant = add_variant;
|
||
|
||
return MULT_COST_LESS (&alg->cost, mult_cost);
|
||
}
|
||
|
||
/* A subroutine of expand_mult, used for constant multiplications.
|
||
Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
|
||
convenient. Use the shift/add sequence described by ALG and apply
|
||
the final fixup specified by VARIANT. */
|
||
|
||
static rtx
|
||
expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
|
||
rtx target, const struct algorithm *alg,
|
||
enum mult_variant variant)
|
||
{
|
||
unsigned HOST_WIDE_INT val_so_far;
|
||
rtx_insn *insn;
|
||
rtx accum, tem;
|
||
int opno;
|
||
machine_mode nmode;
|
||
|
||
/* Avoid referencing memory over and over and invalid sharing
|
||
on SUBREGs. */
|
||
op0 = force_reg (mode, op0);
|
||
|
||
/* ACCUM starts out either as OP0 or as a zero, depending on
|
||
the first operation. */
|
||
|
||
if (alg->op[0] == alg_zero)
|
||
{
|
||
accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
|
||
val_so_far = 0;
|
||
}
|
||
else if (alg->op[0] == alg_m)
|
||
{
|
||
accum = copy_to_mode_reg (mode, op0);
|
||
val_so_far = 1;
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
for (opno = 1; opno < alg->ops; opno++)
|
||
{
|
||
int log = alg->log[opno];
|
||
rtx shift_subtarget = optimize ? 0 : accum;
|
||
rtx add_target
|
||
= (opno == alg->ops - 1 && target != 0 && variant != add_variant
|
||
&& !optimize)
|
||
? target : 0;
|
||
rtx accum_target = optimize ? 0 : accum;
|
||
rtx accum_inner;
|
||
|
||
switch (alg->op[opno])
|
||
{
|
||
case alg_shift:
|
||
tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
|
||
/* REG_EQUAL note will be attached to the following insn. */
|
||
emit_move_insn (accum, tem);
|
||
val_so_far <<= log;
|
||
break;
|
||
|
||
case alg_add_t_m2:
|
||
tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
|
||
accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
|
||
add_target ? add_target : accum_target);
|
||
val_so_far += HOST_WIDE_INT_1U << log;
|
||
break;
|
||
|
||
case alg_sub_t_m2:
|
||
tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
|
||
accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
|
||
add_target ? add_target : accum_target);
|
||
val_so_far -= HOST_WIDE_INT_1U << log;
|
||
break;
|
||
|
||
case alg_add_t2_m:
|
||
accum = expand_shift (LSHIFT_EXPR, mode, accum,
|
||
log, shift_subtarget, 0);
|
||
accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
|
||
add_target ? add_target : accum_target);
|
||
val_so_far = (val_so_far << log) + 1;
|
||
break;
|
||
|
||
case alg_sub_t2_m:
|
||
accum = expand_shift (LSHIFT_EXPR, mode, accum,
|
||
log, shift_subtarget, 0);
|
||
accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
|
||
add_target ? add_target : accum_target);
|
||
val_so_far = (val_so_far << log) - 1;
|
||
break;
|
||
|
||
case alg_add_factor:
|
||
tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
|
||
accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
|
||
add_target ? add_target : accum_target);
|
||
val_so_far += val_so_far << log;
|
||
break;
|
||
|
||
case alg_sub_factor:
|
||
tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
|
||
accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
|
||
(add_target
|
||
? add_target : (optimize ? 0 : tem)));
|
||
val_so_far = (val_so_far << log) - val_so_far;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (SCALAR_INT_MODE_P (mode))
|
||
{
|
||
/* Write a REG_EQUAL note on the last insn so that we can cse
|
||
multiplication sequences. Note that if ACCUM is a SUBREG,
|
||
we've set the inner register and must properly indicate that. */
|
||
tem = op0, nmode = mode;
|
||
accum_inner = accum;
|
||
if (GET_CODE (accum) == SUBREG)
|
||
{
|
||
accum_inner = SUBREG_REG (accum);
|
||
nmode = GET_MODE (accum_inner);
|
||
tem = gen_lowpart (nmode, op0);
|
||
}
|
||
|
||
insn = get_last_insn ();
|
||
wide_int wval_so_far
|
||
= wi::uhwi (val_so_far,
|
||
GET_MODE_PRECISION (as_a <scalar_mode> (nmode)));
|
||
rtx c = immed_wide_int_const (wval_so_far, nmode);
|
||
set_dst_reg_note (insn, REG_EQUAL, gen_rtx_MULT (nmode, tem, c),
|
||
accum_inner);
|
||
}
|
||
}
|
||
|
||
if (variant == negate_variant)
|
||
{
|
||
val_so_far = -val_so_far;
|
||
accum = expand_unop (mode, neg_optab, accum, target, 0);
|
||
}
|
||
else if (variant == add_variant)
|
||
{
|
||
val_so_far = val_so_far + 1;
|
||
accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
|
||
}
|
||
|
||
/* Compare only the bits of val and val_so_far that are significant
|
||
in the result mode, to avoid sign-/zero-extension confusion. */
|
||
nmode = GET_MODE_INNER (mode);
|
||
val &= GET_MODE_MASK (nmode);
|
||
val_so_far &= GET_MODE_MASK (nmode);
|
||
gcc_assert (val == (HOST_WIDE_INT) val_so_far);
|
||
|
||
return accum;
|
||
}
|
||
|
||
/* Perform a multiplication and return an rtx for the result.
|
||
MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
|
||
TARGET is a suggestion for where to store the result (an rtx).
|
||
|
||
We check specially for a constant integer as OP1.
|
||
If you want this check for OP0 as well, then before calling
|
||
you should swap the two operands if OP0 would be constant. */
|
||
|
||
rtx
|
||
expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
|
||
int unsignedp, bool no_libcall)
|
||
{
|
||
enum mult_variant variant;
|
||
struct algorithm algorithm;
|
||
rtx scalar_op1;
|
||
int max_cost;
|
||
bool speed = optimize_insn_for_speed_p ();
|
||
bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
|
||
|
||
if (CONSTANT_P (op0))
|
||
std::swap (op0, op1);
|
||
|
||
/* For vectors, there are several simplifications that can be made if
|
||
all elements of the vector constant are identical. */
|
||
scalar_op1 = unwrap_const_vec_duplicate (op1);
|
||
|
||
if (INTEGRAL_MODE_P (mode))
|
||
{
|
||
rtx fake_reg;
|
||
HOST_WIDE_INT coeff;
|
||
bool is_neg;
|
||
int mode_bitsize;
|
||
|
||
if (op1 == CONST0_RTX (mode))
|
||
return op1;
|
||
if (op1 == CONST1_RTX (mode))
|
||
return op0;
|
||
if (op1 == CONSTM1_RTX (mode))
|
||
return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
|
||
op0, target, 0);
|
||
|
||
if (do_trapv)
|
||
goto skip_synth;
|
||
|
||
/* If mode is integer vector mode, check if the backend supports
|
||
vector lshift (by scalar or vector) at all. If not, we can't use
|
||
synthetized multiply. */
|
||
if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
|
||
&& optab_handler (vashl_optab, mode) == CODE_FOR_nothing
|
||
&& optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
|
||
goto skip_synth;
|
||
|
||
/* These are the operations that are potentially turned into
|
||
a sequence of shifts and additions. */
|
||
mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
|
||
|
||
/* synth_mult does an `unsigned int' multiply. As long as the mode is
|
||
less than or equal in size to `unsigned int' this doesn't matter.
|
||
If the mode is larger than `unsigned int', then synth_mult works
|
||
only if the constant value exactly fits in an `unsigned int' without
|
||
any truncation. This means that multiplying by negative values does
|
||
not work; results are off by 2^32 on a 32 bit machine. */
|
||
if (CONST_INT_P (scalar_op1))
|
||
{
|
||
coeff = INTVAL (scalar_op1);
|
||
is_neg = coeff < 0;
|
||
}
|
||
#if TARGET_SUPPORTS_WIDE_INT
|
||
else if (CONST_WIDE_INT_P (scalar_op1))
|
||
#else
|
||
else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
|
||
#endif
|
||
{
|
||
int shift = wi::exact_log2 (rtx_mode_t (scalar_op1, mode));
|
||
/* Perfect power of 2 (other than 1, which is handled above). */
|
||
if (shift > 0)
|
||
return expand_shift (LSHIFT_EXPR, mode, op0,
|
||
shift, target, unsignedp);
|
||
else
|
||
goto skip_synth;
|
||
}
|
||
else
|
||
goto skip_synth;
|
||
|
||
/* We used to test optimize here, on the grounds that it's better to
|
||
produce a smaller program when -O is not used. But this causes
|
||
such a terrible slowdown sometimes that it seems better to always
|
||
use synth_mult. */
|
||
|
||
/* Special case powers of two. */
|
||
if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
|
||
&& !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
|
||
return expand_shift (LSHIFT_EXPR, mode, op0,
|
||
floor_log2 (coeff), target, unsignedp);
|
||
|
||
fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
|
||
|
||
/* Attempt to handle multiplication of DImode values by negative
|
||
coefficients, by performing the multiplication by a positive
|
||
multiplier and then inverting the result. */
|
||
if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
/* Its safe to use -coeff even for INT_MIN, as the
|
||
result is interpreted as an unsigned coefficient.
|
||
Exclude cost of op0 from max_cost to match the cost
|
||
calculation of the synth_mult. */
|
||
coeff = -(unsigned HOST_WIDE_INT) coeff;
|
||
max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
|
||
mode, speed)
|
||
- neg_cost (speed, mode));
|
||
if (max_cost <= 0)
|
||
goto skip_synth;
|
||
|
||
/* Special case powers of two. */
|
||
if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
|
||
{
|
||
rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
|
||
floor_log2 (coeff), target, unsignedp);
|
||
return expand_unop (mode, neg_optab, temp, target, 0);
|
||
}
|
||
|
||
if (choose_mult_variant (mode, coeff, &algorithm, &variant,
|
||
max_cost))
|
||
{
|
||
rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
|
||
&algorithm, variant);
|
||
return expand_unop (mode, neg_optab, temp, target, 0);
|
||
}
|
||
goto skip_synth;
|
||
}
|
||
|
||
/* Exclude cost of op0 from max_cost to match the cost
|
||
calculation of the synth_mult. */
|
||
max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed);
|
||
if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
|
||
return expand_mult_const (mode, op0, coeff, target,
|
||
&algorithm, variant);
|
||
}
|
||
skip_synth:
|
||
|
||
/* Expand x*2.0 as x+x. */
|
||
if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1)
|
||
&& real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1), &dconst2))
|
||
{
|
||
op0 = force_reg (GET_MODE (op0), op0);
|
||
return expand_binop (mode, add_optab, op0, op0,
|
||
target, unsignedp,
|
||
no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
|
||
}
|
||
|
||
/* This used to use umul_optab if unsigned, but for non-widening multiply
|
||
there is no difference between signed and unsigned. */
|
||
op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
|
||
op0, op1, target, unsignedp,
|
||
no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
|
||
gcc_assert (op0 || no_libcall);
|
||
return op0;
|
||
}
|
||
|
||
/* Return a cost estimate for multiplying a register by the given
|
||
COEFFicient in the given MODE and SPEED. */
|
||
|
||
int
|
||
mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
|
||
{
|
||
int max_cost;
|
||
struct algorithm algorithm;
|
||
enum mult_variant variant;
|
||
|
||
rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
|
||
max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg),
|
||
mode, speed);
|
||
if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
|
||
return algorithm.cost.cost;
|
||
else
|
||
return max_cost;
|
||
}
|
||
|
||
/* Perform a widening multiplication and return an rtx for the result.
|
||
MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
|
||
TARGET is a suggestion for where to store the result (an rtx).
|
||
THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
|
||
or smul_widen_optab.
|
||
|
||
We check specially for a constant integer as OP1, comparing the
|
||
cost of a widening multiply against the cost of a sequence of shifts
|
||
and adds. */
|
||
|
||
rtx
|
||
expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
|
||
int unsignedp, optab this_optab)
|
||
{
|
||
bool speed = optimize_insn_for_speed_p ();
|
||
rtx cop1;
|
||
|
||
if (CONST_INT_P (op1)
|
||
&& GET_MODE (op0) != VOIDmode
|
||
&& (cop1 = convert_modes (mode, GET_MODE (op0), op1,
|
||
this_optab == umul_widen_optab))
|
||
&& CONST_INT_P (cop1)
|
||
&& (INTVAL (cop1) >= 0
|
||
|| HWI_COMPUTABLE_MODE_P (mode)))
|
||
{
|
||
HOST_WIDE_INT coeff = INTVAL (cop1);
|
||
int max_cost;
|
||
enum mult_variant variant;
|
||
struct algorithm algorithm;
|
||
|
||
if (coeff == 0)
|
||
return CONST0_RTX (mode);
|
||
|
||
/* Special case powers of two. */
|
||
if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
|
||
{
|
||
op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
|
||
return expand_shift (LSHIFT_EXPR, mode, op0,
|
||
floor_log2 (coeff), target, unsignedp);
|
||
}
|
||
|
||
/* Exclude cost of op0 from max_cost to match the cost
|
||
calculation of the synth_mult. */
|
||
max_cost = mul_widen_cost (speed, mode);
|
||
if (choose_mult_variant (mode, coeff, &algorithm, &variant,
|
||
max_cost))
|
||
{
|
||
op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
|
||
return expand_mult_const (mode, op0, coeff, target,
|
||
&algorithm, variant);
|
||
}
|
||
}
|
||
return expand_binop (mode, this_optab, op0, op1, target,
|
||
unsignedp, OPTAB_LIB_WIDEN);
|
||
}
|
||
|
||
/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
|
||
replace division by D, and put the least significant N bits of the result
|
||
in *MULTIPLIER_PTR and return the most significant bit.
|
||
|
||
The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
|
||
needed precision is in PRECISION (should be <= N).
|
||
|
||
PRECISION should be as small as possible so this function can choose
|
||
multiplier more freely.
|
||
|
||
The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
|
||
is to be used for a final right shift is placed in *POST_SHIFT_PTR.
|
||
|
||
Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
|
||
where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
|
||
|
||
unsigned HOST_WIDE_INT
|
||
choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
|
||
unsigned HOST_WIDE_INT *multiplier_ptr,
|
||
int *post_shift_ptr, int *lgup_ptr)
|
||
{
|
||
int lgup, post_shift;
|
||
int pow, pow2;
|
||
|
||
/* lgup = ceil(log2(divisor)); */
|
||
lgup = ceil_log2 (d);
|
||
|
||
gcc_assert (lgup <= n);
|
||
|
||
pow = n + lgup;
|
||
pow2 = n + lgup - precision;
|
||
|
||
/* mlow = 2^(N + lgup)/d */
|
||
wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
|
||
wide_int mlow = wi::udiv_trunc (val, d);
|
||
|
||
/* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
|
||
val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
|
||
wide_int mhigh = wi::udiv_trunc (val, d);
|
||
|
||
/* If precision == N, then mlow, mhigh exceed 2^N
|
||
(but they do not exceed 2^(N+1)). */
|
||
|
||
/* Reduce to lowest terms. */
|
||
for (post_shift = lgup; post_shift > 0; post_shift--)
|
||
{
|
||
unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
|
||
HOST_BITS_PER_WIDE_INT);
|
||
unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
|
||
HOST_BITS_PER_WIDE_INT);
|
||
if (ml_lo >= mh_lo)
|
||
break;
|
||
|
||
mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
|
||
mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
|
||
}
|
||
|
||
*post_shift_ptr = post_shift;
|
||
*lgup_ptr = lgup;
|
||
if (n < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << n) - 1;
|
||
*multiplier_ptr = mhigh.to_uhwi () & mask;
|
||
return mhigh.to_uhwi () > mask;
|
||
}
|
||
else
|
||
{
|
||
*multiplier_ptr = mhigh.to_uhwi ();
|
||
return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
|
||
}
|
||
}
|
||
|
||
/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
|
||
congruent to 1 (mod 2**N). */
|
||
|
||
static unsigned HOST_WIDE_INT
|
||
invert_mod2n (unsigned HOST_WIDE_INT x, int n)
|
||
{
|
||
/* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
|
||
|
||
/* The algorithm notes that the choice y = x satisfies
|
||
x*y == 1 mod 2^3, since x is assumed odd.
|
||
Each iteration doubles the number of bits of significance in y. */
|
||
|
||
unsigned HOST_WIDE_INT mask;
|
||
unsigned HOST_WIDE_INT y = x;
|
||
int nbit = 3;
|
||
|
||
mask = (n == HOST_BITS_PER_WIDE_INT
|
||
? HOST_WIDE_INT_M1U
|
||
: (HOST_WIDE_INT_1U << n) - 1);
|
||
|
||
while (nbit < n)
|
||
{
|
||
y = y * (2 - x*y) & mask; /* Modulo 2^N */
|
||
nbit *= 2;
|
||
}
|
||
return y;
|
||
}
|
||
|
||
/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
|
||
flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
|
||
product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
|
||
to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
|
||
become signed.
|
||
|
||
The result is put in TARGET if that is convenient.
|
||
|
||
MODE is the mode of operation. */
|
||
|
||
rtx
|
||
expand_mult_highpart_adjust (scalar_int_mode mode, rtx adj_operand, rtx op0,
|
||
rtx op1, rtx target, int unsignedp)
|
||
{
|
||
rtx tem;
|
||
enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
|
||
|
||
tem = expand_shift (RSHIFT_EXPR, mode, op0,
|
||
GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
|
||
tem = expand_and (mode, tem, op1, NULL_RTX);
|
||
adj_operand
|
||
= force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
|
||
adj_operand);
|
||
|
||
tem = expand_shift (RSHIFT_EXPR, mode, op1,
|
||
GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
|
||
tem = expand_and (mode, tem, op0, NULL_RTX);
|
||
target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
|
||
target);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
|
||
|
||
static rtx
|
||
extract_high_half (scalar_int_mode mode, rtx op)
|
||
{
|
||
if (mode == word_mode)
|
||
return gen_highpart (mode, op);
|
||
|
||
scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
|
||
|
||
op = expand_shift (RSHIFT_EXPR, wider_mode, op,
|
||
GET_MODE_BITSIZE (mode), 0, 1);
|
||
return convert_modes (mode, wider_mode, op, 0);
|
||
}
|
||
|
||
/* Like expmed_mult_highpart, but only consider using a multiplication
|
||
optab. OP1 is an rtx for the constant operand. */
|
||
|
||
static rtx
|
||
expmed_mult_highpart_optab (scalar_int_mode mode, rtx op0, rtx op1,
|
||
rtx target, int unsignedp, int max_cost)
|
||
{
|
||
rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
|
||
optab moptab;
|
||
rtx tem;
|
||
int size;
|
||
bool speed = optimize_insn_for_speed_p ();
|
||
|
||
scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
|
||
|
||
size = GET_MODE_BITSIZE (mode);
|
||
|
||
/* Firstly, try using a multiplication insn that only generates the needed
|
||
high part of the product, and in the sign flavor of unsignedp. */
|
||
if (mul_highpart_cost (speed, mode) < max_cost)
|
||
{
|
||
moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
|
||
tem = expand_binop (mode, moptab, op0, narrow_op1, target,
|
||
unsignedp, OPTAB_DIRECT);
|
||
if (tem)
|
||
return tem;
|
||
}
|
||
|
||
/* Secondly, same as above, but use sign flavor opposite of unsignedp.
|
||
Need to adjust the result after the multiplication. */
|
||
if (size - 1 < BITS_PER_WORD
|
||
&& (mul_highpart_cost (speed, mode)
|
||
+ 2 * shift_cost (speed, mode, size-1)
|
||
+ 4 * add_cost (speed, mode) < max_cost))
|
||
{
|
||
moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
|
||
tem = expand_binop (mode, moptab, op0, narrow_op1, target,
|
||
unsignedp, OPTAB_DIRECT);
|
||
if (tem)
|
||
/* We used the wrong signedness. Adjust the result. */
|
||
return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
|
||
tem, unsignedp);
|
||
}
|
||
|
||
/* Try widening multiplication. */
|
||
moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
|
||
if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
|
||
&& mul_widen_cost (speed, wider_mode) < max_cost)
|
||
{
|
||
tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
|
||
unsignedp, OPTAB_WIDEN);
|
||
if (tem)
|
||
return extract_high_half (mode, tem);
|
||
}
|
||
|
||
/* Try widening the mode and perform a non-widening multiplication. */
|
||
if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
|
||
&& size - 1 < BITS_PER_WORD
|
||
&& (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
|
||
< max_cost))
|
||
{
|
||
rtx_insn *insns;
|
||
rtx wop0, wop1;
|
||
|
||
/* We need to widen the operands, for example to ensure the
|
||
constant multiplier is correctly sign or zero extended.
|
||
Use a sequence to clean-up any instructions emitted by
|
||
the conversions if things don't work out. */
|
||
start_sequence ();
|
||
wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
|
||
wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
|
||
tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
|
||
unsignedp, OPTAB_WIDEN);
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (tem)
|
||
{
|
||
emit_insn (insns);
|
||
return extract_high_half (mode, tem);
|
||
}
|
||
}
|
||
|
||
/* Try widening multiplication of opposite signedness, and adjust. */
|
||
moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
|
||
if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
|
||
&& size - 1 < BITS_PER_WORD
|
||
&& (mul_widen_cost (speed, wider_mode)
|
||
+ 2 * shift_cost (speed, mode, size-1)
|
||
+ 4 * add_cost (speed, mode) < max_cost))
|
||
{
|
||
tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
|
||
NULL_RTX, ! unsignedp, OPTAB_WIDEN);
|
||
if (tem != 0)
|
||
{
|
||
tem = extract_high_half (mode, tem);
|
||
/* We used the wrong signedness. Adjust the result. */
|
||
return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
|
||
target, unsignedp);
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
|
||
putting the high half of the result in TARGET if that is convenient,
|
||
and return where the result is. If the operation can not be performed,
|
||
0 is returned.
|
||
|
||
MODE is the mode of operation and result.
|
||
|
||
UNSIGNEDP nonzero means unsigned multiply.
|
||
|
||
MAX_COST is the total allowed cost for the expanded RTL. */
|
||
|
||
static rtx
|
||
expmed_mult_highpart (scalar_int_mode mode, rtx op0, rtx op1,
|
||
rtx target, int unsignedp, int max_cost)
|
||
{
|
||
unsigned HOST_WIDE_INT cnst1;
|
||
int extra_cost;
|
||
bool sign_adjust = false;
|
||
enum mult_variant variant;
|
||
struct algorithm alg;
|
||
rtx tem;
|
||
bool speed = optimize_insn_for_speed_p ();
|
||
|
||
/* We can't support modes wider than HOST_BITS_PER_INT. */
|
||
gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
|
||
|
||
cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
|
||
|
||
/* We can't optimize modes wider than BITS_PER_WORD.
|
||
??? We might be able to perform double-word arithmetic if
|
||
mode == word_mode, however all the cost calculations in
|
||
synth_mult etc. assume single-word operations. */
|
||
scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
|
||
if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
|
||
return expmed_mult_highpart_optab (mode, op0, op1, target,
|
||
unsignedp, max_cost);
|
||
|
||
extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
|
||
|
||
/* Check whether we try to multiply by a negative constant. */
|
||
if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
|
||
{
|
||
sign_adjust = true;
|
||
extra_cost += add_cost (speed, mode);
|
||
}
|
||
|
||
/* See whether shift/add multiplication is cheap enough. */
|
||
if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
|
||
max_cost - extra_cost))
|
||
{
|
||
/* See whether the specialized multiplication optabs are
|
||
cheaper than the shift/add version. */
|
||
tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
|
||
alg.cost.cost + extra_cost);
|
||
if (tem)
|
||
return tem;
|
||
|
||
tem = convert_to_mode (wider_mode, op0, unsignedp);
|
||
tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
|
||
tem = extract_high_half (mode, tem);
|
||
|
||
/* Adjust result for signedness. */
|
||
if (sign_adjust)
|
||
tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
|
||
|
||
return tem;
|
||
}
|
||
return expmed_mult_highpart_optab (mode, op0, op1, target,
|
||
unsignedp, max_cost);
|
||
}
|
||
|
||
|
||
/* Expand signed modulus of OP0 by a power of two D in mode MODE. */
|
||
|
||
static rtx
|
||
expand_smod_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
|
||
{
|
||
rtx result, temp, shift;
|
||
rtx_code_label *label;
|
||
int logd;
|
||
int prec = GET_MODE_PRECISION (mode);
|
||
|
||
logd = floor_log2 (d);
|
||
result = gen_reg_rtx (mode);
|
||
|
||
/* Avoid conditional branches when they're expensive. */
|
||
if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
|
||
&& optimize_insn_for_speed_p ())
|
||
{
|
||
rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
|
||
mode, 0, -1);
|
||
if (signmask)
|
||
{
|
||
HOST_WIDE_INT masklow = (HOST_WIDE_INT_1 << logd) - 1;
|
||
signmask = force_reg (mode, signmask);
|
||
shift = gen_int_shift_amount (mode, GET_MODE_BITSIZE (mode) - logd);
|
||
|
||
/* Use the rtx_cost of a LSHIFTRT instruction to determine
|
||
which instruction sequence to use. If logical right shifts
|
||
are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
|
||
use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
|
||
|
||
temp = gen_rtx_LSHIFTRT (mode, result, shift);
|
||
if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
|
||
|| (set_src_cost (temp, mode, optimize_insn_for_speed_p ())
|
||
> COSTS_N_INSNS (2)))
|
||
{
|
||
temp = expand_binop (mode, xor_optab, op0, signmask,
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
temp = expand_binop (mode, sub_optab, temp, signmask,
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
temp = expand_binop (mode, and_optab, temp,
|
||
gen_int_mode (masklow, mode),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
temp = expand_binop (mode, xor_optab, temp, signmask,
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
temp = expand_binop (mode, sub_optab, temp, signmask,
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
}
|
||
else
|
||
{
|
||
signmask = expand_binop (mode, lshr_optab, signmask, shift,
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
signmask = force_reg (mode, signmask);
|
||
|
||
temp = expand_binop (mode, add_optab, op0, signmask,
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
temp = expand_binop (mode, and_optab, temp,
|
||
gen_int_mode (masklow, mode),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
temp = expand_binop (mode, sub_optab, temp, signmask,
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
}
|
||
return temp;
|
||
}
|
||
}
|
||
|
||
/* Mask contains the mode's signbit and the significant bits of the
|
||
modulus. By including the signbit in the operation, many targets
|
||
can avoid an explicit compare operation in the following comparison
|
||
against zero. */
|
||
wide_int mask = wi::mask (logd, false, prec);
|
||
mask = wi::set_bit (mask, prec - 1);
|
||
|
||
temp = expand_binop (mode, and_optab, op0,
|
||
immed_wide_int_const (mask, mode),
|
||
result, 1, OPTAB_LIB_WIDEN);
|
||
if (temp != result)
|
||
emit_move_insn (result, temp);
|
||
|
||
label = gen_label_rtx ();
|
||
do_cmp_and_jump (result, const0_rtx, GE, mode, label);
|
||
|
||
temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
|
||
0, OPTAB_LIB_WIDEN);
|
||
|
||
mask = wi::mask (logd, true, prec);
|
||
temp = expand_binop (mode, ior_optab, temp,
|
||
immed_wide_int_const (mask, mode),
|
||
result, 1, OPTAB_LIB_WIDEN);
|
||
temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
|
||
0, OPTAB_LIB_WIDEN);
|
||
if (temp != result)
|
||
emit_move_insn (result, temp);
|
||
emit_label (label);
|
||
return result;
|
||
}
|
||
|
||
/* Expand signed division of OP0 by a power of two D in mode MODE.
|
||
This routine is only called for positive values of D. */
|
||
|
||
static rtx
|
||
expand_sdiv_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
|
||
{
|
||
rtx temp;
|
||
rtx_code_label *label;
|
||
int logd;
|
||
|
||
logd = floor_log2 (d);
|
||
|
||
if (d == 2
|
||
&& BRANCH_COST (optimize_insn_for_speed_p (),
|
||
false) >= 1)
|
||
{
|
||
temp = gen_reg_rtx (mode);
|
||
temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
|
||
temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
|
||
0, OPTAB_LIB_WIDEN);
|
||
return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
|
||
}
|
||
|
||
if (HAVE_conditional_move
|
||
&& BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
|
||
{
|
||
rtx temp2;
|
||
|
||
start_sequence ();
|
||
temp2 = copy_to_mode_reg (mode, op0);
|
||
temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
|
||
NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
||
temp = force_reg (mode, temp);
|
||
|
||
/* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
|
||
temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
|
||
mode, temp, temp2, mode, 0);
|
||
if (temp2)
|
||
{
|
||
rtx_insn *seq = get_insns ();
|
||
end_sequence ();
|
||
emit_insn (seq);
|
||
return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
|
||
}
|
||
end_sequence ();
|
||
}
|
||
|
||
if (BRANCH_COST (optimize_insn_for_speed_p (),
|
||
false) >= 2)
|
||
{
|
||
int ushift = GET_MODE_BITSIZE (mode) - logd;
|
||
|
||
temp = gen_reg_rtx (mode);
|
||
temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
|
||
if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
|
||
|| shift_cost (optimize_insn_for_speed_p (), mode, ushift)
|
||
> COSTS_N_INSNS (1))
|
||
temp = expand_binop (mode, and_optab, temp, gen_int_mode (d - 1, mode),
|
||
NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
||
else
|
||
temp = expand_shift (RSHIFT_EXPR, mode, temp,
|
||
ushift, NULL_RTX, 1);
|
||
temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
|
||
0, OPTAB_LIB_WIDEN);
|
||
return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
|
||
}
|
||
|
||
label = gen_label_rtx ();
|
||
temp = copy_to_mode_reg (mode, op0);
|
||
do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
|
||
expand_inc (temp, gen_int_mode (d - 1, mode));
|
||
emit_label (label);
|
||
return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
|
||
}
|
||
|
||
/* Emit the code to divide OP0 by OP1, putting the result in TARGET
|
||
if that is convenient, and returning where the result is.
|
||
You may request either the quotient or the remainder as the result;
|
||
specify REM_FLAG nonzero to get the remainder.
|
||
|
||
CODE is the expression code for which kind of division this is;
|
||
it controls how rounding is done. MODE is the machine mode to use.
|
||
UNSIGNEDP nonzero means do unsigned division. */
|
||
|
||
/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
|
||
and then correct it by or'ing in missing high bits
|
||
if result of ANDI is nonzero.
|
||
For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
|
||
This could optimize to a bfexts instruction.
|
||
But C doesn't use these operations, so their optimizations are
|
||
left for later. */
|
||
/* ??? For modulo, we don't actually need the highpart of the first product,
|
||
the low part will do nicely. And for small divisors, the second multiply
|
||
can also be a low-part only multiply or even be completely left out.
|
||
E.g. to calculate the remainder of a division by 3 with a 32 bit
|
||
multiply, multiply with 0x55555556 and extract the upper two bits;
|
||
the result is exact for inputs up to 0x1fffffff.
|
||
The input range can be reduced by using cross-sum rules.
|
||
For odd divisors >= 3, the following table gives right shift counts
|
||
so that if a number is shifted by an integer multiple of the given
|
||
amount, the remainder stays the same:
|
||
2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
|
||
14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
|
||
0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
|
||
20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
|
||
0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
|
||
|
||
Cross-sum rules for even numbers can be derived by leaving as many bits
|
||
to the right alone as the divisor has zeros to the right.
|
||
E.g. if x is an unsigned 32 bit number:
|
||
(x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
|
||
*/
|
||
|
||
rtx
|
||
expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
|
||
rtx op0, rtx op1, rtx target, int unsignedp)
|
||
{
|
||
machine_mode compute_mode;
|
||
rtx tquotient;
|
||
rtx quotient = 0, remainder = 0;
|
||
rtx_insn *last;
|
||
rtx_insn *insn;
|
||
optab optab1, optab2;
|
||
int op1_is_constant, op1_is_pow2 = 0;
|
||
int max_cost, extra_cost;
|
||
static HOST_WIDE_INT last_div_const = 0;
|
||
bool speed = optimize_insn_for_speed_p ();
|
||
|
||
op1_is_constant = CONST_INT_P (op1);
|
||
if (op1_is_constant)
|
||
{
|
||
wide_int ext_op1 = rtx_mode_t (op1, mode);
|
||
op1_is_pow2 = (wi::popcount (ext_op1) == 1
|
||
|| (! unsignedp
|
||
&& wi::popcount (wi::neg (ext_op1)) == 1));
|
||
}
|
||
|
||
/*
|
||
This is the structure of expand_divmod:
|
||
|
||
First comes code to fix up the operands so we can perform the operations
|
||
correctly and efficiently.
|
||
|
||
Second comes a switch statement with code specific for each rounding mode.
|
||
For some special operands this code emits all RTL for the desired
|
||
operation, for other cases, it generates only a quotient and stores it in
|
||
QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
|
||
to indicate that it has not done anything.
|
||
|
||
Last comes code that finishes the operation. If QUOTIENT is set and
|
||
REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
|
||
QUOTIENT is not set, it is computed using trunc rounding.
|
||
|
||
We try to generate special code for division and remainder when OP1 is a
|
||
constant. If |OP1| = 2**n we can use shifts and some other fast
|
||
operations. For other values of OP1, we compute a carefully selected
|
||
fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
|
||
by m.
|
||
|
||
In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
|
||
half of the product. Different strategies for generating the product are
|
||
implemented in expmed_mult_highpart.
|
||
|
||
If what we actually want is the remainder, we generate that by another
|
||
by-constant multiplication and a subtraction. */
|
||
|
||
/* We shouldn't be called with OP1 == const1_rtx, but some of the
|
||
code below will malfunction if we are, so check here and handle
|
||
the special case if so. */
|
||
if (op1 == const1_rtx)
|
||
return rem_flag ? const0_rtx : op0;
|
||
|
||
/* When dividing by -1, we could get an overflow.
|
||
negv_optab can handle overflows. */
|
||
if (! unsignedp && op1 == constm1_rtx)
|
||
{
|
||
if (rem_flag)
|
||
return const0_rtx;
|
||
return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
|
||
? negv_optab : neg_optab, op0, target, 0);
|
||
}
|
||
|
||
if (target
|
||
/* Don't use the function value register as a target
|
||
since we have to read it as well as write it,
|
||
and function-inlining gets confused by this. */
|
||
&& ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
|
||
/* Don't clobber an operand while doing a multi-step calculation. */
|
||
|| ((rem_flag || op1_is_constant)
|
||
&& (reg_mentioned_p (target, op0)
|
||
|| (MEM_P (op0) && MEM_P (target))))
|
||
|| reg_mentioned_p (target, op1)
|
||
|| (MEM_P (op1) && MEM_P (target))))
|
||
target = 0;
|
||
|
||
/* Get the mode in which to perform this computation. Normally it will
|
||
be MODE, but sometimes we can't do the desired operation in MODE.
|
||
If so, pick a wider mode in which we can do the operation. Convert
|
||
to that mode at the start to avoid repeated conversions.
|
||
|
||
First see what operations we need. These depend on the expression
|
||
we are evaluating. (We assume that divxx3 insns exist under the
|
||
same conditions that modxx3 insns and that these insns don't normally
|
||
fail. If these assumptions are not correct, we may generate less
|
||
efficient code in some cases.)
|
||
|
||
Then see if we find a mode in which we can open-code that operation
|
||
(either a division, modulus, or shift). Finally, check for the smallest
|
||
mode for which we can do the operation with a library call. */
|
||
|
||
/* We might want to refine this now that we have division-by-constant
|
||
optimization. Since expmed_mult_highpart tries so many variants, it is
|
||
not straightforward to generalize this. Maybe we should make an array
|
||
of possible modes in init_expmed? Save this for GCC 2.7. */
|
||
|
||
optab1 = (op1_is_pow2
|
||
? (unsignedp ? lshr_optab : ashr_optab)
|
||
: (unsignedp ? udiv_optab : sdiv_optab));
|
||
optab2 = (op1_is_pow2 ? optab1
|
||
: (unsignedp ? udivmod_optab : sdivmod_optab));
|
||
|
||
FOR_EACH_MODE_FROM (compute_mode, mode)
|
||
if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
|
||
|| optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
|
||
break;
|
||
|
||
if (compute_mode == VOIDmode)
|
||
FOR_EACH_MODE_FROM (compute_mode, mode)
|
||
if (optab_libfunc (optab1, compute_mode)
|
||
|| optab_libfunc (optab2, compute_mode))
|
||
break;
|
||
|
||
/* If we still couldn't find a mode, use MODE, but expand_binop will
|
||
probably die. */
|
||
if (compute_mode == VOIDmode)
|
||
compute_mode = mode;
|
||
|
||
if (target && GET_MODE (target) == compute_mode)
|
||
tquotient = target;
|
||
else
|
||
tquotient = gen_reg_rtx (compute_mode);
|
||
|
||
#if 0
|
||
/* It should be possible to restrict the precision to GET_MODE_BITSIZE
|
||
(mode), and thereby get better code when OP1 is a constant. Do that
|
||
later. It will require going over all usages of SIZE below. */
|
||
size = GET_MODE_BITSIZE (mode);
|
||
#endif
|
||
|
||
/* Only deduct something for a REM if the last divide done was
|
||
for a different constant. Then set the constant of the last
|
||
divide. */
|
||
max_cost = (unsignedp
|
||
? udiv_cost (speed, compute_mode)
|
||
: sdiv_cost (speed, compute_mode));
|
||
if (rem_flag && ! (last_div_const != 0 && op1_is_constant
|
||
&& INTVAL (op1) == last_div_const))
|
||
max_cost -= (mul_cost (speed, compute_mode)
|
||
+ add_cost (speed, compute_mode));
|
||
|
||
last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
|
||
|
||
/* Now convert to the best mode to use. */
|
||
if (compute_mode != mode)
|
||
{
|
||
op0 = convert_modes (compute_mode, mode, op0, unsignedp);
|
||
op1 = convert_modes (compute_mode, mode, op1, unsignedp);
|
||
|
||
/* convert_modes may have placed op1 into a register, so we
|
||
must recompute the following. */
|
||
op1_is_constant = CONST_INT_P (op1);
|
||
if (op1_is_constant)
|
||
{
|
||
wide_int ext_op1 = rtx_mode_t (op1, compute_mode);
|
||
op1_is_pow2 = (wi::popcount (ext_op1) == 1
|
||
|| (! unsignedp
|
||
&& wi::popcount (wi::neg (ext_op1)) == 1));
|
||
}
|
||
else
|
||
op1_is_pow2 = 0;
|
||
}
|
||
|
||
/* If one of the operands is a volatile MEM, copy it into a register. */
|
||
|
||
if (MEM_P (op0) && MEM_VOLATILE_P (op0))
|
||
op0 = force_reg (compute_mode, op0);
|
||
if (MEM_P (op1) && MEM_VOLATILE_P (op1))
|
||
op1 = force_reg (compute_mode, op1);
|
||
|
||
/* If we need the remainder or if OP1 is constant, we need to
|
||
put OP0 in a register in case it has any queued subexpressions. */
|
||
if (rem_flag || op1_is_constant)
|
||
op0 = force_reg (compute_mode, op0);
|
||
|
||
last = get_last_insn ();
|
||
|
||
/* Promote floor rounding to trunc rounding for unsigned operations. */
|
||
if (unsignedp)
|
||
{
|
||
if (code == FLOOR_DIV_EXPR)
|
||
code = TRUNC_DIV_EXPR;
|
||
if (code == FLOOR_MOD_EXPR)
|
||
code = TRUNC_MOD_EXPR;
|
||
if (code == EXACT_DIV_EXPR && op1_is_pow2)
|
||
code = TRUNC_DIV_EXPR;
|
||
}
|
||
|
||
if (op1 != const0_rtx)
|
||
switch (code)
|
||
{
|
||
case TRUNC_MOD_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
if (op1_is_constant)
|
||
{
|
||
scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
|
||
int size = GET_MODE_BITSIZE (int_mode);
|
||
if (unsignedp)
|
||
{
|
||
unsigned HOST_WIDE_INT mh, ml;
|
||
int pre_shift, post_shift;
|
||
int dummy;
|
||
wide_int wd = rtx_mode_t (op1, int_mode);
|
||
unsigned HOST_WIDE_INT d = wd.to_uhwi ();
|
||
|
||
if (wi::popcount (wd) == 1)
|
||
{
|
||
pre_shift = floor_log2 (d);
|
||
if (rem_flag)
|
||
{
|
||
unsigned HOST_WIDE_INT mask
|
||
= (HOST_WIDE_INT_1U << pre_shift) - 1;
|
||
remainder
|
||
= expand_binop (int_mode, and_optab, op0,
|
||
gen_int_mode (mask, int_mode),
|
||
remainder, 1,
|
||
OPTAB_LIB_WIDEN);
|
||
if (remainder)
|
||
return gen_lowpart (mode, remainder);
|
||
}
|
||
quotient = expand_shift (RSHIFT_EXPR, int_mode, op0,
|
||
pre_shift, tquotient, 1);
|
||
}
|
||
else if (size <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
if (d >= (HOST_WIDE_INT_1U << (size - 1)))
|
||
{
|
||
/* Most significant bit of divisor is set; emit an scc
|
||
insn. */
|
||
quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
|
||
int_mode, 1, 1);
|
||
}
|
||
else
|
||
{
|
||
/* Find a suitable multiplier and right shift count
|
||
instead of multiplying with D. */
|
||
|
||
mh = choose_multiplier (d, size, size,
|
||
&ml, &post_shift, &dummy);
|
||
|
||
/* If the suggested multiplier is more than SIZE bits,
|
||
we can do better for even divisors, using an
|
||
initial right shift. */
|
||
if (mh != 0 && (d & 1) == 0)
|
||
{
|
||
pre_shift = ctz_or_zero (d);
|
||
mh = choose_multiplier (d >> pre_shift, size,
|
||
size - pre_shift,
|
||
&ml, &post_shift, &dummy);
|
||
gcc_assert (!mh);
|
||
}
|
||
else
|
||
pre_shift = 0;
|
||
|
||
if (mh != 0)
|
||
{
|
||
rtx t1, t2, t3, t4;
|
||
|
||
if (post_shift - 1 >= BITS_PER_WORD)
|
||
goto fail1;
|
||
|
||
extra_cost
|
||
= (shift_cost (speed, int_mode, post_shift - 1)
|
||
+ shift_cost (speed, int_mode, 1)
|
||
+ 2 * add_cost (speed, int_mode));
|
||
t1 = expmed_mult_highpart
|
||
(int_mode, op0, gen_int_mode (ml, int_mode),
|
||
NULL_RTX, 1, max_cost - extra_cost);
|
||
if (t1 == 0)
|
||
goto fail1;
|
||
t2 = force_operand (gen_rtx_MINUS (int_mode,
|
||
op0, t1),
|
||
NULL_RTX);
|
||
t3 = expand_shift (RSHIFT_EXPR, int_mode,
|
||
t2, 1, NULL_RTX, 1);
|
||
t4 = force_operand (gen_rtx_PLUS (int_mode,
|
||
t1, t3),
|
||
NULL_RTX);
|
||
quotient = expand_shift
|
||
(RSHIFT_EXPR, int_mode, t4,
|
||
post_shift - 1, tquotient, 1);
|
||
}
|
||
else
|
||
{
|
||
rtx t1, t2;
|
||
|
||
if (pre_shift >= BITS_PER_WORD
|
||
|| post_shift >= BITS_PER_WORD)
|
||
goto fail1;
|
||
|
||
t1 = expand_shift
|
||
(RSHIFT_EXPR, int_mode, op0,
|
||
pre_shift, NULL_RTX, 1);
|
||
extra_cost
|
||
= (shift_cost (speed, int_mode, pre_shift)
|
||
+ shift_cost (speed, int_mode, post_shift));
|
||
t2 = expmed_mult_highpart
|
||
(int_mode, t1,
|
||
gen_int_mode (ml, int_mode),
|
||
NULL_RTX, 1, max_cost - extra_cost);
|
||
if (t2 == 0)
|
||
goto fail1;
|
||
quotient = expand_shift
|
||
(RSHIFT_EXPR, int_mode, t2,
|
||
post_shift, tquotient, 1);
|
||
}
|
||
}
|
||
}
|
||
else /* Too wide mode to use tricky code */
|
||
break;
|
||
|
||
insn = get_last_insn ();
|
||
if (insn != last)
|
||
set_dst_reg_note (insn, REG_EQUAL,
|
||
gen_rtx_UDIV (int_mode, op0, op1),
|
||
quotient);
|
||
}
|
||
else /* TRUNC_DIV, signed */
|
||
{
|
||
unsigned HOST_WIDE_INT ml;
|
||
int lgup, post_shift;
|
||
rtx mlr;
|
||
HOST_WIDE_INT d = INTVAL (op1);
|
||
unsigned HOST_WIDE_INT abs_d;
|
||
|
||
/* Not prepared to handle division/remainder by
|
||
0xffffffffffffffff8000000000000000 etc. */
|
||
if (d == HOST_WIDE_INT_MIN && size > HOST_BITS_PER_WIDE_INT)
|
||
break;
|
||
|
||
/* Since d might be INT_MIN, we have to cast to
|
||
unsigned HOST_WIDE_INT before negating to avoid
|
||
undefined signed overflow. */
|
||
abs_d = (d >= 0
|
||
? (unsigned HOST_WIDE_INT) d
|
||
: - (unsigned HOST_WIDE_INT) d);
|
||
|
||
/* n rem d = n rem -d */
|
||
if (rem_flag && d < 0)
|
||
{
|
||
d = abs_d;
|
||
op1 = gen_int_mode (abs_d, int_mode);
|
||
}
|
||
|
||
if (d == 1)
|
||
quotient = op0;
|
||
else if (d == -1)
|
||
quotient = expand_unop (int_mode, neg_optab, op0,
|
||
tquotient, 0);
|
||
else if (size <= HOST_BITS_PER_WIDE_INT
|
||
&& abs_d == HOST_WIDE_INT_1U << (size - 1))
|
||
{
|
||
/* This case is not handled correctly below. */
|
||
quotient = emit_store_flag (tquotient, EQ, op0, op1,
|
||
int_mode, 1, 1);
|
||
if (quotient == 0)
|
||
goto fail1;
|
||
}
|
||
else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
|
||
&& (size <= HOST_BITS_PER_WIDE_INT || d >= 0)
|
||
&& (rem_flag
|
||
? smod_pow2_cheap (speed, int_mode)
|
||
: sdiv_pow2_cheap (speed, int_mode))
|
||
/* We assume that cheap metric is true if the
|
||
optab has an expander for this mode. */
|
||
&& ((optab_handler ((rem_flag ? smod_optab
|
||
: sdiv_optab),
|
||
int_mode)
|
||
!= CODE_FOR_nothing)
|
||
|| (optab_handler (sdivmod_optab, int_mode)
|
||
!= CODE_FOR_nothing)))
|
||
;
|
||
else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
|
||
{
|
||
if (rem_flag)
|
||
{
|
||
remainder = expand_smod_pow2 (int_mode, op0, d);
|
||
if (remainder)
|
||
return gen_lowpart (mode, remainder);
|
||
}
|
||
|
||
if (sdiv_pow2_cheap (speed, int_mode)
|
||
&& ((optab_handler (sdiv_optab, int_mode)
|
||
!= CODE_FOR_nothing)
|
||
|| (optab_handler (sdivmod_optab, int_mode)
|
||
!= CODE_FOR_nothing)))
|
||
quotient = expand_divmod (0, TRUNC_DIV_EXPR,
|
||
int_mode, op0,
|
||
gen_int_mode (abs_d,
|
||
int_mode),
|
||
NULL_RTX, 0);
|
||
else
|
||
quotient = expand_sdiv_pow2 (int_mode, op0, abs_d);
|
||
|
||
/* We have computed OP0 / abs(OP1). If OP1 is negative,
|
||
negate the quotient. */
|
||
if (d < 0)
|
||
{
|
||
insn = get_last_insn ();
|
||
if (insn != last
|
||
&& abs_d < (HOST_WIDE_INT_1U
|
||
<< (HOST_BITS_PER_WIDE_INT - 1)))
|
||
set_dst_reg_note (insn, REG_EQUAL,
|
||
gen_rtx_DIV (int_mode, op0,
|
||
gen_int_mode
|
||
(abs_d,
|
||
int_mode)),
|
||
quotient);
|
||
|
||
quotient = expand_unop (int_mode, neg_optab,
|
||
quotient, quotient, 0);
|
||
}
|
||
}
|
||
else if (size <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
choose_multiplier (abs_d, size, size - 1,
|
||
&ml, &post_shift, &lgup);
|
||
if (ml < HOST_WIDE_INT_1U << (size - 1))
|
||
{
|
||
rtx t1, t2, t3;
|
||
|
||
if (post_shift >= BITS_PER_WORD
|
||
|| size - 1 >= BITS_PER_WORD)
|
||
goto fail1;
|
||
|
||
extra_cost = (shift_cost (speed, int_mode, post_shift)
|
||
+ shift_cost (speed, int_mode, size - 1)
|
||
+ add_cost (speed, int_mode));
|
||
t1 = expmed_mult_highpart
|
||
(int_mode, op0, gen_int_mode (ml, int_mode),
|
||
NULL_RTX, 0, max_cost - extra_cost);
|
||
if (t1 == 0)
|
||
goto fail1;
|
||
t2 = expand_shift
|
||
(RSHIFT_EXPR, int_mode, t1,
|
||
post_shift, NULL_RTX, 0);
|
||
t3 = expand_shift
|
||
(RSHIFT_EXPR, int_mode, op0,
|
||
size - 1, NULL_RTX, 0);
|
||
if (d < 0)
|
||
quotient
|
||
= force_operand (gen_rtx_MINUS (int_mode, t3, t2),
|
||
tquotient);
|
||
else
|
||
quotient
|
||
= force_operand (gen_rtx_MINUS (int_mode, t2, t3),
|
||
tquotient);
|
||
}
|
||
else
|
||
{
|
||
rtx t1, t2, t3, t4;
|
||
|
||
if (post_shift >= BITS_PER_WORD
|
||
|| size - 1 >= BITS_PER_WORD)
|
||
goto fail1;
|
||
|
||
ml |= HOST_WIDE_INT_M1U << (size - 1);
|
||
mlr = gen_int_mode (ml, int_mode);
|
||
extra_cost = (shift_cost (speed, int_mode, post_shift)
|
||
+ shift_cost (speed, int_mode, size - 1)
|
||
+ 2 * add_cost (speed, int_mode));
|
||
t1 = expmed_mult_highpart (int_mode, op0, mlr,
|
||
NULL_RTX, 0,
|
||
max_cost - extra_cost);
|
||
if (t1 == 0)
|
||
goto fail1;
|
||
t2 = force_operand (gen_rtx_PLUS (int_mode, t1, op0),
|
||
NULL_RTX);
|
||
t3 = expand_shift
|
||
(RSHIFT_EXPR, int_mode, t2,
|
||
post_shift, NULL_RTX, 0);
|
||
t4 = expand_shift
|
||
(RSHIFT_EXPR, int_mode, op0,
|
||
size - 1, NULL_RTX, 0);
|
||
if (d < 0)
|
||
quotient
|
||
= force_operand (gen_rtx_MINUS (int_mode, t4, t3),
|
||
tquotient);
|
||
else
|
||
quotient
|
||
= force_operand (gen_rtx_MINUS (int_mode, t3, t4),
|
||
tquotient);
|
||
}
|
||
}
|
||
else /* Too wide mode to use tricky code */
|
||
break;
|
||
|
||
insn = get_last_insn ();
|
||
if (insn != last)
|
||
set_dst_reg_note (insn, REG_EQUAL,
|
||
gen_rtx_DIV (int_mode, op0, op1),
|
||
quotient);
|
||
}
|
||
break;
|
||
}
|
||
fail1:
|
||
delete_insns_since (last);
|
||
break;
|
||
|
||
case FLOOR_DIV_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
/* We will come here only for signed operations. */
|
||
if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
|
||
{
|
||
scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
|
||
int size = GET_MODE_BITSIZE (int_mode);
|
||
unsigned HOST_WIDE_INT mh, ml;
|
||
int pre_shift, lgup, post_shift;
|
||
HOST_WIDE_INT d = INTVAL (op1);
|
||
|
||
if (d > 0)
|
||
{
|
||
/* We could just as easily deal with negative constants here,
|
||
but it does not seem worth the trouble for GCC 2.6. */
|
||
if (EXACT_POWER_OF_2_OR_ZERO_P (d))
|
||
{
|
||
pre_shift = floor_log2 (d);
|
||
if (rem_flag)
|
||
{
|
||
unsigned HOST_WIDE_INT mask
|
||
= (HOST_WIDE_INT_1U << pre_shift) - 1;
|
||
remainder = expand_binop
|
||
(int_mode, and_optab, op0,
|
||
gen_int_mode (mask, int_mode),
|
||
remainder, 0, OPTAB_LIB_WIDEN);
|
||
if (remainder)
|
||
return gen_lowpart (mode, remainder);
|
||
}
|
||
quotient = expand_shift
|
||
(RSHIFT_EXPR, int_mode, op0,
|
||
pre_shift, tquotient, 0);
|
||
}
|
||
else
|
||
{
|
||
rtx t1, t2, t3, t4;
|
||
|
||
mh = choose_multiplier (d, size, size - 1,
|
||
&ml, &post_shift, &lgup);
|
||
gcc_assert (!mh);
|
||
|
||
if (post_shift < BITS_PER_WORD
|
||
&& size - 1 < BITS_PER_WORD)
|
||
{
|
||
t1 = expand_shift
|
||
(RSHIFT_EXPR, int_mode, op0,
|
||
size - 1, NULL_RTX, 0);
|
||
t2 = expand_binop (int_mode, xor_optab, op0, t1,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
extra_cost = (shift_cost (speed, int_mode, post_shift)
|
||
+ shift_cost (speed, int_mode, size - 1)
|
||
+ 2 * add_cost (speed, int_mode));
|
||
t3 = expmed_mult_highpart
|
||
(int_mode, t2, gen_int_mode (ml, int_mode),
|
||
NULL_RTX, 1, max_cost - extra_cost);
|
||
if (t3 != 0)
|
||
{
|
||
t4 = expand_shift
|
||
(RSHIFT_EXPR, int_mode, t3,
|
||
post_shift, NULL_RTX, 1);
|
||
quotient = expand_binop (int_mode, xor_optab,
|
||
t4, t1, tquotient, 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
rtx nsign, t1, t2, t3, t4;
|
||
t1 = force_operand (gen_rtx_PLUS (int_mode,
|
||
op0, constm1_rtx), NULL_RTX);
|
||
t2 = expand_binop (int_mode, ior_optab, op0, t1, NULL_RTX,
|
||
0, OPTAB_WIDEN);
|
||
nsign = expand_shift (RSHIFT_EXPR, int_mode, t2,
|
||
size - 1, NULL_RTX, 0);
|
||
t3 = force_operand (gen_rtx_MINUS (int_mode, t1, nsign),
|
||
NULL_RTX);
|
||
t4 = expand_divmod (0, TRUNC_DIV_EXPR, int_mode, t3, op1,
|
||
NULL_RTX, 0);
|
||
if (t4)
|
||
{
|
||
rtx t5;
|
||
t5 = expand_unop (int_mode, one_cmpl_optab, nsign,
|
||
NULL_RTX, 0);
|
||
quotient = force_operand (gen_rtx_PLUS (int_mode, t4, t5),
|
||
tquotient);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (quotient != 0)
|
||
break;
|
||
delete_insns_since (last);
|
||
|
||
/* Try using an instruction that produces both the quotient and
|
||
remainder, using truncation. We can easily compensate the quotient
|
||
or remainder to get floor rounding, once we have the remainder.
|
||
Notice that we compute also the final remainder value here,
|
||
and return the result right away. */
|
||
if (target == 0 || GET_MODE (target) != compute_mode)
|
||
target = gen_reg_rtx (compute_mode);
|
||
|
||
if (rem_flag)
|
||
{
|
||
remainder
|
||
= REG_P (target) ? target : gen_reg_rtx (compute_mode);
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
}
|
||
else
|
||
{
|
||
quotient
|
||
= REG_P (target) ? target : gen_reg_rtx (compute_mode);
|
||
remainder = gen_reg_rtx (compute_mode);
|
||
}
|
||
|
||
if (expand_twoval_binop (sdivmod_optab, op0, op1,
|
||
quotient, remainder, 0))
|
||
{
|
||
/* This could be computed with a branch-less sequence.
|
||
Save that for later. */
|
||
rtx tem;
|
||
rtx_code_label *label = gen_label_rtx ();
|
||
do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
|
||
tem = expand_binop (compute_mode, xor_optab, op0, op1,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
|
||
expand_dec (quotient, const1_rtx);
|
||
expand_inc (remainder, op1);
|
||
emit_label (label);
|
||
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
||
}
|
||
|
||
/* No luck with division elimination or divmod. Have to do it
|
||
by conditionally adjusting op0 *and* the result. */
|
||
{
|
||
rtx_code_label *label1, *label2, *label3, *label4, *label5;
|
||
rtx adjusted_op0;
|
||
rtx tem;
|
||
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
|
||
label1 = gen_label_rtx ();
|
||
label2 = gen_label_rtx ();
|
||
label3 = gen_label_rtx ();
|
||
label4 = gen_label_rtx ();
|
||
label5 = gen_label_rtx ();
|
||
do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
|
||
do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
|
||
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
||
quotient, 0, OPTAB_LIB_WIDEN);
|
||
if (tem != quotient)
|
||
emit_move_insn (quotient, tem);
|
||
emit_jump_insn (targetm.gen_jump (label5));
|
||
emit_barrier ();
|
||
emit_label (label1);
|
||
expand_inc (adjusted_op0, const1_rtx);
|
||
emit_jump_insn (targetm.gen_jump (label4));
|
||
emit_barrier ();
|
||
emit_label (label2);
|
||
do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
|
||
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
||
quotient, 0, OPTAB_LIB_WIDEN);
|
||
if (tem != quotient)
|
||
emit_move_insn (quotient, tem);
|
||
emit_jump_insn (targetm.gen_jump (label5));
|
||
emit_barrier ();
|
||
emit_label (label3);
|
||
expand_dec (adjusted_op0, const1_rtx);
|
||
emit_label (label4);
|
||
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
||
quotient, 0, OPTAB_LIB_WIDEN);
|
||
if (tem != quotient)
|
||
emit_move_insn (quotient, tem);
|
||
expand_dec (quotient, const1_rtx);
|
||
emit_label (label5);
|
||
}
|
||
break;
|
||
|
||
case CEIL_DIV_EXPR:
|
||
case CEIL_MOD_EXPR:
|
||
if (unsignedp)
|
||
{
|
||
if (op1_is_constant
|
||
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
|
||
&& (HWI_COMPUTABLE_MODE_P (compute_mode)
|
||
|| INTVAL (op1) >= 0))
|
||
{
|
||
scalar_int_mode int_mode
|
||
= as_a <scalar_int_mode> (compute_mode);
|
||
rtx t1, t2, t3;
|
||
unsigned HOST_WIDE_INT d = INTVAL (op1);
|
||
t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
|
||
floor_log2 (d), tquotient, 1);
|
||
t2 = expand_binop (int_mode, and_optab, op0,
|
||
gen_int_mode (d - 1, int_mode),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
t3 = gen_reg_rtx (int_mode);
|
||
t3 = emit_store_flag (t3, NE, t2, const0_rtx, int_mode, 1, 1);
|
||
if (t3 == 0)
|
||
{
|
||
rtx_code_label *lab;
|
||
lab = gen_label_rtx ();
|
||
do_cmp_and_jump (t2, const0_rtx, EQ, int_mode, lab);
|
||
expand_inc (t1, const1_rtx);
|
||
emit_label (lab);
|
||
quotient = t1;
|
||
}
|
||
else
|
||
quotient = force_operand (gen_rtx_PLUS (int_mode, t1, t3),
|
||
tquotient);
|
||
break;
|
||
}
|
||
|
||
/* Try using an instruction that produces both the quotient and
|
||
remainder, using truncation. We can easily compensate the
|
||
quotient or remainder to get ceiling rounding, once we have the
|
||
remainder. Notice that we compute also the final remainder
|
||
value here, and return the result right away. */
|
||
if (target == 0 || GET_MODE (target) != compute_mode)
|
||
target = gen_reg_rtx (compute_mode);
|
||
|
||
if (rem_flag)
|
||
{
|
||
remainder = (REG_P (target)
|
||
? target : gen_reg_rtx (compute_mode));
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
}
|
||
else
|
||
{
|
||
quotient = (REG_P (target)
|
||
? target : gen_reg_rtx (compute_mode));
|
||
remainder = gen_reg_rtx (compute_mode);
|
||
}
|
||
|
||
if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
|
||
remainder, 1))
|
||
{
|
||
/* This could be computed with a branch-less sequence.
|
||
Save that for later. */
|
||
rtx_code_label *label = gen_label_rtx ();
|
||
do_cmp_and_jump (remainder, const0_rtx, EQ,
|
||
compute_mode, label);
|
||
expand_inc (quotient, const1_rtx);
|
||
expand_dec (remainder, op1);
|
||
emit_label (label);
|
||
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
||
}
|
||
|
||
/* No luck with division elimination or divmod. Have to do it
|
||
by conditionally adjusting op0 *and* the result. */
|
||
{
|
||
rtx_code_label *label1, *label2;
|
||
rtx adjusted_op0, tem;
|
||
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
|
||
label1 = gen_label_rtx ();
|
||
label2 = gen_label_rtx ();
|
||
do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
|
||
compute_mode, label1);
|
||
emit_move_insn (quotient, const0_rtx);
|
||
emit_jump_insn (targetm.gen_jump (label2));
|
||
emit_barrier ();
|
||
emit_label (label1);
|
||
expand_dec (adjusted_op0, const1_rtx);
|
||
tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
|
||
quotient, 1, OPTAB_LIB_WIDEN);
|
||
if (tem != quotient)
|
||
emit_move_insn (quotient, tem);
|
||
expand_inc (quotient, const1_rtx);
|
||
emit_label (label2);
|
||
}
|
||
}
|
||
else /* signed */
|
||
{
|
||
if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
|
||
&& INTVAL (op1) >= 0)
|
||
{
|
||
/* This is extremely similar to the code for the unsigned case
|
||
above. For 2.7 we should merge these variants, but for
|
||
2.6.1 I don't want to touch the code for unsigned since that
|
||
get used in C. The signed case will only be used by other
|
||
languages (Ada). */
|
||
|
||
rtx t1, t2, t3;
|
||
unsigned HOST_WIDE_INT d = INTVAL (op1);
|
||
t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
||
floor_log2 (d), tquotient, 0);
|
||
t2 = expand_binop (compute_mode, and_optab, op0,
|
||
gen_int_mode (d - 1, compute_mode),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
t3 = gen_reg_rtx (compute_mode);
|
||
t3 = emit_store_flag (t3, NE, t2, const0_rtx,
|
||
compute_mode, 1, 1);
|
||
if (t3 == 0)
|
||
{
|
||
rtx_code_label *lab;
|
||
lab = gen_label_rtx ();
|
||
do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
|
||
expand_inc (t1, const1_rtx);
|
||
emit_label (lab);
|
||
quotient = t1;
|
||
}
|
||
else
|
||
quotient = force_operand (gen_rtx_PLUS (compute_mode,
|
||
t1, t3),
|
||
tquotient);
|
||
break;
|
||
}
|
||
|
||
/* Try using an instruction that produces both the quotient and
|
||
remainder, using truncation. We can easily compensate the
|
||
quotient or remainder to get ceiling rounding, once we have the
|
||
remainder. Notice that we compute also the final remainder
|
||
value here, and return the result right away. */
|
||
if (target == 0 || GET_MODE (target) != compute_mode)
|
||
target = gen_reg_rtx (compute_mode);
|
||
if (rem_flag)
|
||
{
|
||
remainder= (REG_P (target)
|
||
? target : gen_reg_rtx (compute_mode));
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
}
|
||
else
|
||
{
|
||
quotient = (REG_P (target)
|
||
? target : gen_reg_rtx (compute_mode));
|
||
remainder = gen_reg_rtx (compute_mode);
|
||
}
|
||
|
||
if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
|
||
remainder, 0))
|
||
{
|
||
/* This could be computed with a branch-less sequence.
|
||
Save that for later. */
|
||
rtx tem;
|
||
rtx_code_label *label = gen_label_rtx ();
|
||
do_cmp_and_jump (remainder, const0_rtx, EQ,
|
||
compute_mode, label);
|
||
tem = expand_binop (compute_mode, xor_optab, op0, op1,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
|
||
expand_inc (quotient, const1_rtx);
|
||
expand_dec (remainder, op1);
|
||
emit_label (label);
|
||
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
||
}
|
||
|
||
/* No luck with division elimination or divmod. Have to do it
|
||
by conditionally adjusting op0 *and* the result. */
|
||
{
|
||
rtx_code_label *label1, *label2, *label3, *label4, *label5;
|
||
rtx adjusted_op0;
|
||
rtx tem;
|
||
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
|
||
label1 = gen_label_rtx ();
|
||
label2 = gen_label_rtx ();
|
||
label3 = gen_label_rtx ();
|
||
label4 = gen_label_rtx ();
|
||
label5 = gen_label_rtx ();
|
||
do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
|
||
do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
|
||
compute_mode, label1);
|
||
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
||
quotient, 0, OPTAB_LIB_WIDEN);
|
||
if (tem != quotient)
|
||
emit_move_insn (quotient, tem);
|
||
emit_jump_insn (targetm.gen_jump (label5));
|
||
emit_barrier ();
|
||
emit_label (label1);
|
||
expand_dec (adjusted_op0, const1_rtx);
|
||
emit_jump_insn (targetm.gen_jump (label4));
|
||
emit_barrier ();
|
||
emit_label (label2);
|
||
do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
|
||
compute_mode, label3);
|
||
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
||
quotient, 0, OPTAB_LIB_WIDEN);
|
||
if (tem != quotient)
|
||
emit_move_insn (quotient, tem);
|
||
emit_jump_insn (targetm.gen_jump (label5));
|
||
emit_barrier ();
|
||
emit_label (label3);
|
||
expand_inc (adjusted_op0, const1_rtx);
|
||
emit_label (label4);
|
||
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
||
quotient, 0, OPTAB_LIB_WIDEN);
|
||
if (tem != quotient)
|
||
emit_move_insn (quotient, tem);
|
||
expand_inc (quotient, const1_rtx);
|
||
emit_label (label5);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case EXACT_DIV_EXPR:
|
||
if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
|
||
{
|
||
scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
|
||
int size = GET_MODE_BITSIZE (int_mode);
|
||
HOST_WIDE_INT d = INTVAL (op1);
|
||
unsigned HOST_WIDE_INT ml;
|
||
int pre_shift;
|
||
rtx t1;
|
||
|
||
pre_shift = ctz_or_zero (d);
|
||
ml = invert_mod2n (d >> pre_shift, size);
|
||
t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
|
||
pre_shift, NULL_RTX, unsignedp);
|
||
quotient = expand_mult (int_mode, t1, gen_int_mode (ml, int_mode),
|
||
NULL_RTX, 1);
|
||
|
||
insn = get_last_insn ();
|
||
set_dst_reg_note (insn, REG_EQUAL,
|
||
gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
|
||
int_mode, op0, op1),
|
||
quotient);
|
||
}
|
||
break;
|
||
|
||
case ROUND_DIV_EXPR:
|
||
case ROUND_MOD_EXPR:
|
||
if (unsignedp)
|
||
{
|
||
scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
|
||
rtx tem;
|
||
rtx_code_label *label;
|
||
label = gen_label_rtx ();
|
||
quotient = gen_reg_rtx (int_mode);
|
||
remainder = gen_reg_rtx (int_mode);
|
||
if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
|
||
{
|
||
rtx tem;
|
||
quotient = expand_binop (int_mode, udiv_optab, op0, op1,
|
||
quotient, 1, OPTAB_LIB_WIDEN);
|
||
tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 1);
|
||
remainder = expand_binop (int_mode, sub_optab, op0, tem,
|
||
remainder, 1, OPTAB_LIB_WIDEN);
|
||
}
|
||
tem = plus_constant (int_mode, op1, -1);
|
||
tem = expand_shift (RSHIFT_EXPR, int_mode, tem, 1, NULL_RTX, 1);
|
||
do_cmp_and_jump (remainder, tem, LEU, int_mode, label);
|
||
expand_inc (quotient, const1_rtx);
|
||
expand_dec (remainder, op1);
|
||
emit_label (label);
|
||
}
|
||
else
|
||
{
|
||
scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
|
||
int size = GET_MODE_BITSIZE (int_mode);
|
||
rtx abs_rem, abs_op1, tem, mask;
|
||
rtx_code_label *label;
|
||
label = gen_label_rtx ();
|
||
quotient = gen_reg_rtx (int_mode);
|
||
remainder = gen_reg_rtx (int_mode);
|
||
if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
|
||
{
|
||
rtx tem;
|
||
quotient = expand_binop (int_mode, sdiv_optab, op0, op1,
|
||
quotient, 0, OPTAB_LIB_WIDEN);
|
||
tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 0);
|
||
remainder = expand_binop (int_mode, sub_optab, op0, tem,
|
||
remainder, 0, OPTAB_LIB_WIDEN);
|
||
}
|
||
abs_rem = expand_abs (int_mode, remainder, NULL_RTX, 1, 0);
|
||
abs_op1 = expand_abs (int_mode, op1, NULL_RTX, 1, 0);
|
||
tem = expand_shift (LSHIFT_EXPR, int_mode, abs_rem,
|
||
1, NULL_RTX, 1);
|
||
do_cmp_and_jump (tem, abs_op1, LTU, int_mode, label);
|
||
tem = expand_binop (int_mode, xor_optab, op0, op1,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
mask = expand_shift (RSHIFT_EXPR, int_mode, tem,
|
||
size - 1, NULL_RTX, 0);
|
||
tem = expand_binop (int_mode, xor_optab, mask, const1_rtx,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
tem = expand_binop (int_mode, sub_optab, tem, mask,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
expand_inc (quotient, tem);
|
||
tem = expand_binop (int_mode, xor_optab, mask, op1,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
tem = expand_binop (int_mode, sub_optab, tem, mask,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
expand_dec (remainder, tem);
|
||
emit_label (label);
|
||
}
|
||
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (quotient == 0)
|
||
{
|
||
if (target && GET_MODE (target) != compute_mode)
|
||
target = 0;
|
||
|
||
if (rem_flag)
|
||
{
|
||
/* Try to produce the remainder without producing the quotient.
|
||
If we seem to have a divmod pattern that does not require widening,
|
||
don't try widening here. We should really have a WIDEN argument
|
||
to expand_twoval_binop, since what we'd really like to do here is
|
||
1) try a mod insn in compute_mode
|
||
2) try a divmod insn in compute_mode
|
||
3) try a div insn in compute_mode and multiply-subtract to get
|
||
remainder
|
||
4) try the same things with widening allowed. */
|
||
remainder
|
||
= sign_expand_binop (compute_mode, umod_optab, smod_optab,
|
||
op0, op1, target,
|
||
unsignedp,
|
||
((optab_handler (optab2, compute_mode)
|
||
!= CODE_FOR_nothing)
|
||
? OPTAB_DIRECT : OPTAB_WIDEN));
|
||
if (remainder == 0)
|
||
{
|
||
/* No luck there. Can we do remainder and divide at once
|
||
without a library call? */
|
||
remainder = gen_reg_rtx (compute_mode);
|
||
if (! expand_twoval_binop ((unsignedp
|
||
? udivmod_optab
|
||
: sdivmod_optab),
|
||
op0, op1,
|
||
NULL_RTX, remainder, unsignedp))
|
||
remainder = 0;
|
||
}
|
||
|
||
if (remainder)
|
||
return gen_lowpart (mode, remainder);
|
||
}
|
||
|
||
/* Produce the quotient. Try a quotient insn, but not a library call.
|
||
If we have a divmod in this mode, use it in preference to widening
|
||
the div (for this test we assume it will not fail). Note that optab2
|
||
is set to the one of the two optabs that the call below will use. */
|
||
quotient
|
||
= sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
|
||
op0, op1, rem_flag ? NULL_RTX : target,
|
||
unsignedp,
|
||
((optab_handler (optab2, compute_mode)
|
||
!= CODE_FOR_nothing)
|
||
? OPTAB_DIRECT : OPTAB_WIDEN));
|
||
|
||
if (quotient == 0)
|
||
{
|
||
/* No luck there. Try a quotient-and-remainder insn,
|
||
keeping the quotient alone. */
|
||
quotient = gen_reg_rtx (compute_mode);
|
||
if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
|
||
op0, op1,
|
||
quotient, NULL_RTX, unsignedp))
|
||
{
|
||
quotient = 0;
|
||
if (! rem_flag)
|
||
/* Still no luck. If we are not computing the remainder,
|
||
use a library call for the quotient. */
|
||
quotient = sign_expand_binop (compute_mode,
|
||
udiv_optab, sdiv_optab,
|
||
op0, op1, target,
|
||
unsignedp, OPTAB_LIB_WIDEN);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (rem_flag)
|
||
{
|
||
if (target && GET_MODE (target) != compute_mode)
|
||
target = 0;
|
||
|
||
if (quotient == 0)
|
||
{
|
||
/* No divide instruction either. Use library for remainder. */
|
||
remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
|
||
op0, op1, target,
|
||
unsignedp, OPTAB_LIB_WIDEN);
|
||
/* No remainder function. Try a quotient-and-remainder
|
||
function, keeping the remainder. */
|
||
if (!remainder)
|
||
{
|
||
remainder = gen_reg_rtx (compute_mode);
|
||
if (!expand_twoval_binop_libfunc
|
||
(unsignedp ? udivmod_optab : sdivmod_optab,
|
||
op0, op1,
|
||
NULL_RTX, remainder,
|
||
unsignedp ? UMOD : MOD))
|
||
remainder = NULL_RTX;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* We divided. Now finish doing X - Y * (X / Y). */
|
||
remainder = expand_mult (compute_mode, quotient, op1,
|
||
NULL_RTX, unsignedp);
|
||
remainder = expand_binop (compute_mode, sub_optab, op0,
|
||
remainder, target, unsignedp,
|
||
OPTAB_LIB_WIDEN);
|
||
}
|
||
}
|
||
|
||
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
||
}
|
||
|
||
/* Return a tree node with data type TYPE, describing the value of X.
|
||
Usually this is an VAR_DECL, if there is no obvious better choice.
|
||
X may be an expression, however we only support those expressions
|
||
generated by loop.c. */
|
||
|
||
tree
|
||
make_tree (tree type, rtx x)
|
||
{
|
||
tree t;
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case CONST_INT:
|
||
case CONST_WIDE_INT:
|
||
t = wide_int_to_tree (type, rtx_mode_t (x, TYPE_MODE (type)));
|
||
return t;
|
||
|
||
case CONST_DOUBLE:
|
||
STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
|
||
if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
|
||
t = wide_int_to_tree (type,
|
||
wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
|
||
HOST_BITS_PER_WIDE_INT * 2));
|
||
else
|
||
t = build_real (type, *CONST_DOUBLE_REAL_VALUE (x));
|
||
|
||
return t;
|
||
|
||
case CONST_VECTOR:
|
||
{
|
||
unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
|
||
unsigned int nelts_per_pattern = CONST_VECTOR_NELTS_PER_PATTERN (x);
|
||
tree itype = TREE_TYPE (type);
|
||
|
||
/* Build a tree with vector elements. */
|
||
tree_vector_builder elts (type, npatterns, nelts_per_pattern);
|
||
unsigned int count = elts.encoded_nelts ();
|
||
for (unsigned int i = 0; i < count; ++i)
|
||
{
|
||
rtx elt = CONST_VECTOR_ELT (x, i);
|
||
elts.quick_push (make_tree (itype, elt));
|
||
}
|
||
|
||
return elts.build ();
|
||
}
|
||
|
||
case PLUS:
|
||
return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1)));
|
||
|
||
case MINUS:
|
||
return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1)));
|
||
|
||
case NEG:
|
||
return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
|
||
|
||
case MULT:
|
||
return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1)));
|
||
|
||
case ASHIFT:
|
||
return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1)));
|
||
|
||
case LSHIFTRT:
|
||
t = unsigned_type_for (type);
|
||
return fold_convert (type, build2 (RSHIFT_EXPR, t,
|
||
make_tree (t, XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1))));
|
||
|
||
case ASHIFTRT:
|
||
t = signed_type_for (type);
|
||
return fold_convert (type, build2 (RSHIFT_EXPR, t,
|
||
make_tree (t, XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1))));
|
||
|
||
case DIV:
|
||
if (TREE_CODE (type) != REAL_TYPE)
|
||
t = signed_type_for (type);
|
||
else
|
||
t = type;
|
||
|
||
return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
|
||
make_tree (t, XEXP (x, 0)),
|
||
make_tree (t, XEXP (x, 1))));
|
||
case UDIV:
|
||
t = unsigned_type_for (type);
|
||
return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
|
||
make_tree (t, XEXP (x, 0)),
|
||
make_tree (t, XEXP (x, 1))));
|
||
|
||
case SIGN_EXTEND:
|
||
case ZERO_EXTEND:
|
||
t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
|
||
GET_CODE (x) == ZERO_EXTEND);
|
||
return fold_convert (type, make_tree (t, XEXP (x, 0)));
|
||
|
||
case CONST:
|
||
return make_tree (type, XEXP (x, 0));
|
||
|
||
case SYMBOL_REF:
|
||
t = SYMBOL_REF_DECL (x);
|
||
if (t)
|
||
return fold_convert (type, build_fold_addr_expr (t));
|
||
/* fall through. */
|
||
|
||
default:
|
||
if (CONST_POLY_INT_P (x))
|
||
return wide_int_to_tree (t, const_poly_int_value (x));
|
||
|
||
t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
|
||
|
||
/* If TYPE is a POINTER_TYPE, we might need to convert X from
|
||
address mode to pointer mode. */
|
||
if (POINTER_TYPE_P (type))
|
||
x = convert_memory_address_addr_space
|
||
(SCALAR_INT_TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
|
||
|
||
/* Note that we do *not* use SET_DECL_RTL here, because we do not
|
||
want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
|
||
t->decl_with_rtl.rtl = x;
|
||
|
||
return t;
|
||
}
|
||
}
|
||
|
||
/* Compute the logical-and of OP0 and OP1, storing it in TARGET
|
||
and returning TARGET.
|
||
|
||
If TARGET is 0, a pseudo-register or constant is returned. */
|
||
|
||
rtx
|
||
expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
|
||
{
|
||
rtx tem = 0;
|
||
|
||
if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
|
||
tem = simplify_binary_operation (AND, mode, op0, op1);
|
||
if (tem == 0)
|
||
tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
|
||
|
||
if (target == 0)
|
||
target = tem;
|
||
else if (tem != target)
|
||
emit_move_insn (target, tem);
|
||
return target;
|
||
}
|
||
|
||
/* Helper function for emit_store_flag. */
|
||
rtx
|
||
emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
|
||
machine_mode mode, machine_mode compare_mode,
|
||
int unsignedp, rtx x, rtx y, int normalizep,
|
||
machine_mode target_mode)
|
||
{
|
||
struct expand_operand ops[4];
|
||
rtx op0, comparison, subtarget;
|
||
rtx_insn *last;
|
||
scalar_int_mode result_mode = targetm.cstore_mode (icode);
|
||
scalar_int_mode int_target_mode;
|
||
|
||
last = get_last_insn ();
|
||
x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
|
||
y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
|
||
if (!x || !y)
|
||
{
|
||
delete_insns_since (last);
|
||
return NULL_RTX;
|
||
}
|
||
|
||
if (target_mode == VOIDmode)
|
||
int_target_mode = result_mode;
|
||
else
|
||
int_target_mode = as_a <scalar_int_mode> (target_mode);
|
||
if (!target)
|
||
target = gen_reg_rtx (int_target_mode);
|
||
|
||
comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
|
||
|
||
create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
|
||
create_fixed_operand (&ops[1], comparison);
|
||
create_fixed_operand (&ops[2], x);
|
||
create_fixed_operand (&ops[3], y);
|
||
if (!maybe_expand_insn (icode, 4, ops))
|
||
{
|
||
delete_insns_since (last);
|
||
return NULL_RTX;
|
||
}
|
||
subtarget = ops[0].value;
|
||
|
||
/* If we are converting to a wider mode, first convert to
|
||
INT_TARGET_MODE, then normalize. This produces better combining
|
||
opportunities on machines that have a SIGN_EXTRACT when we are
|
||
testing a single bit. This mostly benefits the 68k.
|
||
|
||
If STORE_FLAG_VALUE does not have the sign bit set when
|
||
interpreted in MODE, we can do this conversion as unsigned, which
|
||
is usually more efficient. */
|
||
if (GET_MODE_SIZE (int_target_mode) > GET_MODE_SIZE (result_mode))
|
||
{
|
||
convert_move (target, subtarget,
|
||
val_signbit_known_clear_p (result_mode,
|
||
STORE_FLAG_VALUE));
|
||
op0 = target;
|
||
result_mode = int_target_mode;
|
||
}
|
||
else
|
||
op0 = subtarget;
|
||
|
||
/* If we want to keep subexpressions around, don't reuse our last
|
||
target. */
|
||
if (optimize)
|
||
subtarget = 0;
|
||
|
||
/* Now normalize to the proper value in MODE. Sometimes we don't
|
||
have to do anything. */
|
||
if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
|
||
;
|
||
/* STORE_FLAG_VALUE might be the most negative number, so write
|
||
the comparison this way to avoid a compiler-time warning. */
|
||
else if (- normalizep == STORE_FLAG_VALUE)
|
||
op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
|
||
|
||
/* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
|
||
it hard to use a value of just the sign bit due to ANSI integer
|
||
constant typing rules. */
|
||
else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
|
||
op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
|
||
GET_MODE_BITSIZE (result_mode) - 1, subtarget,
|
||
normalizep == 1);
|
||
else
|
||
{
|
||
gcc_assert (STORE_FLAG_VALUE & 1);
|
||
|
||
op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
|
||
if (normalizep == -1)
|
||
op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
|
||
}
|
||
|
||
/* If we were converting to a smaller mode, do the conversion now. */
|
||
if (int_target_mode != result_mode)
|
||
{
|
||
convert_move (target, op0, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return op0;
|
||
}
|
||
|
||
|
||
/* A subroutine of emit_store_flag only including "tricks" that do not
|
||
need a recursive call. These are kept separate to avoid infinite
|
||
loops. */
|
||
|
||
static rtx
|
||
emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
||
machine_mode mode, int unsignedp, int normalizep,
|
||
machine_mode target_mode)
|
||
{
|
||
rtx subtarget;
|
||
enum insn_code icode;
|
||
machine_mode compare_mode;
|
||
enum mode_class mclass;
|
||
enum rtx_code scode;
|
||
|
||
if (unsignedp)
|
||
code = unsigned_condition (code);
|
||
scode = swap_condition (code);
|
||
|
||
/* If one operand is constant, make it the second one. Only do this
|
||
if the other operand is not constant as well. */
|
||
|
||
if (swap_commutative_operands_p (op0, op1))
|
||
{
|
||
std::swap (op0, op1);
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (op0);
|
||
|
||
if (CONST_SCALAR_INT_P (op1))
|
||
canonicalize_comparison (mode, &code, &op1);
|
||
|
||
/* For some comparisons with 1 and -1, we can convert this to
|
||
comparisons with zero. This will often produce more opportunities for
|
||
store-flag insns. */
|
||
|
||
switch (code)
|
||
{
|
||
case LT:
|
||
if (op1 == const1_rtx)
|
||
op1 = const0_rtx, code = LE;
|
||
break;
|
||
case LE:
|
||
if (op1 == constm1_rtx)
|
||
op1 = const0_rtx, code = LT;
|
||
break;
|
||
case GE:
|
||
if (op1 == const1_rtx)
|
||
op1 = const0_rtx, code = GT;
|
||
break;
|
||
case GT:
|
||
if (op1 == constm1_rtx)
|
||
op1 = const0_rtx, code = GE;
|
||
break;
|
||
case GEU:
|
||
if (op1 == const1_rtx)
|
||
op1 = const0_rtx, code = NE;
|
||
break;
|
||
case LTU:
|
||
if (op1 == const1_rtx)
|
||
op1 = const0_rtx, code = EQ;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If we are comparing a double-word integer with zero or -1, we can
|
||
convert the comparison into one involving a single word. */
|
||
scalar_int_mode int_mode;
|
||
if (is_int_mode (mode, &int_mode)
|
||
&& GET_MODE_BITSIZE (int_mode) == BITS_PER_WORD * 2
|
||
&& (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
|
||
{
|
||
rtx tem;
|
||
if ((code == EQ || code == NE)
|
||
&& (op1 == const0_rtx || op1 == constm1_rtx))
|
||
{
|
||
rtx op00, op01;
|
||
|
||
/* Do a logical OR or AND of the two words and compare the
|
||
result. */
|
||
op00 = simplify_gen_subreg (word_mode, op0, int_mode, 0);
|
||
op01 = simplify_gen_subreg (word_mode, op0, int_mode, UNITS_PER_WORD);
|
||
tem = expand_binop (word_mode,
|
||
op1 == const0_rtx ? ior_optab : and_optab,
|
||
op00, op01, NULL_RTX, unsignedp,
|
||
OPTAB_DIRECT);
|
||
|
||
if (tem != 0)
|
||
tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
|
||
unsignedp, normalizep);
|
||
}
|
||
else if ((code == LT || code == GE) && op1 == const0_rtx)
|
||
{
|
||
rtx op0h;
|
||
|
||
/* If testing the sign bit, can just test on high word. */
|
||
op0h = simplify_gen_subreg (word_mode, op0, int_mode,
|
||
subreg_highpart_offset (word_mode,
|
||
int_mode));
|
||
tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
|
||
unsignedp, normalizep);
|
||
}
|
||
else
|
||
tem = NULL_RTX;
|
||
|
||
if (tem)
|
||
{
|
||
if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
|
||
return tem;
|
||
if (!target)
|
||
target = gen_reg_rtx (target_mode);
|
||
|
||
convert_move (target, tem,
|
||
!val_signbit_known_set_p (word_mode,
|
||
(normalizep ? normalizep
|
||
: STORE_FLAG_VALUE)));
|
||
return target;
|
||
}
|
||
}
|
||
|
||
/* If this is A < 0 or A >= 0, we can do this by taking the ones
|
||
complement of A (for GE) and shifting the sign bit to the low bit. */
|
||
if (op1 == const0_rtx && (code == LT || code == GE)
|
||
&& is_int_mode (mode, &int_mode)
|
||
&& (normalizep || STORE_FLAG_VALUE == 1
|
||
|| val_signbit_p (int_mode, STORE_FLAG_VALUE)))
|
||
{
|
||
scalar_int_mode int_target_mode;
|
||
subtarget = target;
|
||
|
||
if (!target)
|
||
int_target_mode = int_mode;
|
||
else
|
||
{
|
||
/* If the result is to be wider than OP0, it is best to convert it
|
||
first. If it is to be narrower, it is *incorrect* to convert it
|
||
first. */
|
||
int_target_mode = as_a <scalar_int_mode> (target_mode);
|
||
if (GET_MODE_SIZE (int_target_mode) > GET_MODE_SIZE (int_mode))
|
||
{
|
||
op0 = convert_modes (int_target_mode, int_mode, op0, 0);
|
||
int_mode = int_target_mode;
|
||
}
|
||
}
|
||
|
||
if (int_target_mode != int_mode)
|
||
subtarget = 0;
|
||
|
||
if (code == GE)
|
||
op0 = expand_unop (int_mode, one_cmpl_optab, op0,
|
||
((STORE_FLAG_VALUE == 1 || normalizep)
|
||
? 0 : subtarget), 0);
|
||
|
||
if (STORE_FLAG_VALUE == 1 || normalizep)
|
||
/* If we are supposed to produce a 0/1 value, we want to do
|
||
a logical shift from the sign bit to the low-order bit; for
|
||
a -1/0 value, we do an arithmetic shift. */
|
||
op0 = expand_shift (RSHIFT_EXPR, int_mode, op0,
|
||
GET_MODE_BITSIZE (int_mode) - 1,
|
||
subtarget, normalizep != -1);
|
||
|
||
if (int_mode != int_target_mode)
|
||
op0 = convert_modes (int_target_mode, int_mode, op0, 0);
|
||
|
||
return op0;
|
||
}
|
||
|
||
mclass = GET_MODE_CLASS (mode);
|
||
FOR_EACH_MODE_FROM (compare_mode, mode)
|
||
{
|
||
machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
|
||
icode = optab_handler (cstore_optab, optab_mode);
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
do_pending_stack_adjust ();
|
||
rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
|
||
unsignedp, op0, op1, normalizep, target_mode);
|
||
if (tem)
|
||
return tem;
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
||
{
|
||
tem = emit_cstore (target, icode, scode, mode, compare_mode,
|
||
unsignedp, op1, op0, normalizep, target_mode);
|
||
if (tem)
|
||
return tem;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Subroutine of emit_store_flag that handles cases in which the operands
|
||
are scalar integers. SUBTARGET is the target to use for temporary
|
||
operations and TRUEVAL is the value to store when the condition is
|
||
true. All other arguments are as for emit_store_flag. */
|
||
|
||
rtx
|
||
emit_store_flag_int (rtx target, rtx subtarget, enum rtx_code code, rtx op0,
|
||
rtx op1, scalar_int_mode mode, int unsignedp,
|
||
int normalizep, rtx trueval)
|
||
{
|
||
machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
|
||
rtx_insn *last = get_last_insn ();
|
||
|
||
/* If this is an equality comparison of integers, we can try to exclusive-or
|
||
(or subtract) the two operands and use a recursive call to try the
|
||
comparison with zero. Don't do any of these cases if branches are
|
||
very cheap. */
|
||
|
||
if ((code == EQ || code == NE) && op1 != const0_rtx)
|
||
{
|
||
rtx tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
|
||
OPTAB_WIDEN);
|
||
|
||
if (tem == 0)
|
||
tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
|
||
OPTAB_WIDEN);
|
||
if (tem != 0)
|
||
tem = emit_store_flag (target, code, tem, const0_rtx,
|
||
mode, unsignedp, normalizep);
|
||
if (tem != 0)
|
||
return tem;
|
||
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* For integer comparisons, try the reverse comparison. However, for
|
||
small X and if we'd have anyway to extend, implementing "X != 0"
|
||
as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
|
||
rtx_code rcode = reverse_condition (code);
|
||
if (can_compare_p (rcode, mode, ccp_store_flag)
|
||
&& ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
|
||
&& code == NE
|
||
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD
|
||
&& op1 == const0_rtx))
|
||
{
|
||
int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
|
||
|| (STORE_FLAG_VALUE == -1 && normalizep == 1));
|
||
|
||
/* Again, for the reverse comparison, use either an addition or a XOR. */
|
||
if (want_add
|
||
&& rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
|
||
optimize_insn_for_speed_p ()) == 0)
|
||
{
|
||
rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
|
||
STORE_FLAG_VALUE, target_mode);
|
||
if (tem != 0)
|
||
tem = expand_binop (target_mode, add_optab, tem,
|
||
gen_int_mode (normalizep, target_mode),
|
||
target, 0, OPTAB_WIDEN);
|
||
if (tem != 0)
|
||
return tem;
|
||
}
|
||
else if (!want_add
|
||
&& rtx_cost (trueval, mode, XOR, 1,
|
||
optimize_insn_for_speed_p ()) == 0)
|
||
{
|
||
rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
|
||
normalizep, target_mode);
|
||
if (tem != 0)
|
||
tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
|
||
INTVAL (trueval) >= 0, OPTAB_WIDEN);
|
||
if (tem != 0)
|
||
return tem;
|
||
}
|
||
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* Some other cases we can do are EQ, NE, LE, and GT comparisons with
|
||
the constant zero. Reject all other comparisons at this point. Only
|
||
do LE and GT if branches are expensive since they are expensive on
|
||
2-operand machines. */
|
||
|
||
if (op1 != const0_rtx
|
||
|| (code != EQ && code != NE
|
||
&& (BRANCH_COST (optimize_insn_for_speed_p (),
|
||
false) <= 1 || (code != LE && code != GT))))
|
||
return 0;
|
||
|
||
/* Try to put the result of the comparison in the sign bit. Assume we can't
|
||
do the necessary operation below. */
|
||
|
||
rtx tem = 0;
|
||
|
||
/* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
|
||
the sign bit set. */
|
||
|
||
if (code == LE)
|
||
{
|
||
/* This is destructive, so SUBTARGET can't be OP0. */
|
||
if (rtx_equal_p (subtarget, op0))
|
||
subtarget = 0;
|
||
|
||
tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
|
||
OPTAB_WIDEN);
|
||
if (tem)
|
||
tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
|
||
/* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
|
||
number of bits in the mode of OP0, minus one. */
|
||
|
||
if (code == GT)
|
||
{
|
||
if (rtx_equal_p (subtarget, op0))
|
||
subtarget = 0;
|
||
|
||
tem = maybe_expand_shift (RSHIFT_EXPR, mode, op0,
|
||
GET_MODE_BITSIZE (mode) - 1,
|
||
subtarget, 0);
|
||
if (tem)
|
||
tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
|
||
if (code == EQ || code == NE)
|
||
{
|
||
/* For EQ or NE, one way to do the comparison is to apply an operation
|
||
that converts the operand into a positive number if it is nonzero
|
||
or zero if it was originally zero. Then, for EQ, we subtract 1 and
|
||
for NE we negate. This puts the result in the sign bit. Then we
|
||
normalize with a shift, if needed.
|
||
|
||
Two operations that can do the above actions are ABS and FFS, so try
|
||
them. If that doesn't work, and MODE is smaller than a full word,
|
||
we can use zero-extension to the wider mode (an unsigned conversion)
|
||
as the operation. */
|
||
|
||
/* Note that ABS doesn't yield a positive number for INT_MIN, but
|
||
that is compensated by the subsequent overflow when subtracting
|
||
one / negating. */
|
||
|
||
if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
|
||
tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
|
||
else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
|
||
tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
|
||
else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
|
||
{
|
||
tem = convert_modes (word_mode, mode, op0, 1);
|
||
mode = word_mode;
|
||
}
|
||
|
||
if (tem != 0)
|
||
{
|
||
if (code == EQ)
|
||
tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
|
||
0, OPTAB_WIDEN);
|
||
else
|
||
tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
|
||
}
|
||
|
||
/* If we couldn't do it that way, for NE we can "or" the two's complement
|
||
of the value with itself. For EQ, we take the one's complement of
|
||
that "or", which is an extra insn, so we only handle EQ if branches
|
||
are expensive. */
|
||
|
||
if (tem == 0
|
||
&& (code == NE
|
||
|| BRANCH_COST (optimize_insn_for_speed_p (),
|
||
false) > 1))
|
||
{
|
||
if (rtx_equal_p (subtarget, op0))
|
||
subtarget = 0;
|
||
|
||
tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
|
||
tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
|
||
OPTAB_WIDEN);
|
||
|
||
if (tem && code == EQ)
|
||
tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
|
||
}
|
||
}
|
||
|
||
if (tem && normalizep)
|
||
tem = maybe_expand_shift (RSHIFT_EXPR, mode, tem,
|
||
GET_MODE_BITSIZE (mode) - 1,
|
||
subtarget, normalizep == 1);
|
||
|
||
if (tem)
|
||
{
|
||
if (!target)
|
||
;
|
||
else if (GET_MODE (tem) != target_mode)
|
||
{
|
||
convert_move (target, tem, 0);
|
||
tem = target;
|
||
}
|
||
else if (!subtarget)
|
||
{
|
||
emit_move_insn (target, tem);
|
||
tem = target;
|
||
}
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
|
||
return tem;
|
||
}
|
||
|
||
/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
|
||
and storing in TARGET. Normally return TARGET.
|
||
Return 0 if that cannot be done.
|
||
|
||
MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
|
||
it is VOIDmode, they cannot both be CONST_INT.
|
||
|
||
UNSIGNEDP is for the case where we have to widen the operands
|
||
to perform the operation. It says to use zero-extension.
|
||
|
||
NORMALIZEP is 1 if we should convert the result to be either zero
|
||
or one. Normalize is -1 if we should convert the result to be
|
||
either zero or -1. If NORMALIZEP is zero, the result will be left
|
||
"raw" out of the scc insn. */
|
||
|
||
rtx
|
||
emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
||
machine_mode mode, int unsignedp, int normalizep)
|
||
{
|
||
machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
|
||
enum rtx_code rcode;
|
||
rtx subtarget;
|
||
rtx tem, trueval;
|
||
rtx_insn *last;
|
||
|
||
/* If we compare constants, we shouldn't use a store-flag operation,
|
||
but a constant load. We can get there via the vanilla route that
|
||
usually generates a compare-branch sequence, but will in this case
|
||
fold the comparison to a constant, and thus elide the branch. */
|
||
if (CONSTANT_P (op0) && CONSTANT_P (op1))
|
||
return NULL_RTX;
|
||
|
||
tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
|
||
target_mode);
|
||
if (tem)
|
||
return tem;
|
||
|
||
/* If we reached here, we can't do this with a scc insn, however there
|
||
are some comparisons that can be done in other ways. Don't do any
|
||
of these cases if branches are very cheap. */
|
||
if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
|
||
return 0;
|
||
|
||
/* See what we need to return. We can only return a 1, -1, or the
|
||
sign bit. */
|
||
|
||
if (normalizep == 0)
|
||
{
|
||
if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
|
||
normalizep = STORE_FLAG_VALUE;
|
||
|
||
else if (val_signbit_p (mode, STORE_FLAG_VALUE))
|
||
;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
last = get_last_insn ();
|
||
|
||
/* If optimizing, use different pseudo registers for each insn, instead
|
||
of reusing the same pseudo. This leads to better CSE, but slows
|
||
down the compiler, since there are more pseudos. */
|
||
subtarget = (!optimize
|
||
&& (target_mode == mode)) ? target : NULL_RTX;
|
||
trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
|
||
|
||
/* For floating-point comparisons, try the reverse comparison or try
|
||
changing the "orderedness" of the comparison. */
|
||
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
||
{
|
||
enum rtx_code first_code;
|
||
bool and_them;
|
||
|
||
rcode = reverse_condition_maybe_unordered (code);
|
||
if (can_compare_p (rcode, mode, ccp_store_flag)
|
||
&& (code == ORDERED || code == UNORDERED
|
||
|| (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
|
||
|| (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
|
||
{
|
||
int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
|
||
|| (STORE_FLAG_VALUE == -1 && normalizep == 1));
|
||
|
||
/* For the reverse comparison, use either an addition or a XOR. */
|
||
if (want_add
|
||
&& rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
|
||
optimize_insn_for_speed_p ()) == 0)
|
||
{
|
||
tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
|
||
STORE_FLAG_VALUE, target_mode);
|
||
if (tem)
|
||
return expand_binop (target_mode, add_optab, tem,
|
||
gen_int_mode (normalizep, target_mode),
|
||
target, 0, OPTAB_WIDEN);
|
||
}
|
||
else if (!want_add
|
||
&& rtx_cost (trueval, mode, XOR, 1,
|
||
optimize_insn_for_speed_p ()) == 0)
|
||
{
|
||
tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
|
||
normalizep, target_mode);
|
||
if (tem)
|
||
return expand_binop (target_mode, xor_optab, tem, trueval,
|
||
target, INTVAL (trueval) >= 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
}
|
||
|
||
delete_insns_since (last);
|
||
|
||
/* Cannot split ORDERED and UNORDERED, only try the above trick. */
|
||
if (code == ORDERED || code == UNORDERED)
|
||
return 0;
|
||
|
||
and_them = split_comparison (code, mode, &first_code, &code);
|
||
|
||
/* If there are no NaNs, the first comparison should always fall through.
|
||
Effectively change the comparison to the other one. */
|
||
if (!HONOR_NANS (mode))
|
||
{
|
||
gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
|
||
return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
|
||
target_mode);
|
||
}
|
||
|
||
if (!HAVE_conditional_move)
|
||
return 0;
|
||
|
||
/* Do not turn a trapping comparison into a non-trapping one. */
|
||
if ((code != EQ && code != NE && code != UNEQ && code != LTGT)
|
||
&& flag_trapping_math)
|
||
return 0;
|
||
|
||
/* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
|
||
conditional move. */
|
||
tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
|
||
normalizep, target_mode);
|
||
if (tem == 0)
|
||
return 0;
|
||
|
||
if (and_them)
|
||
tem = emit_conditional_move (target, code, op0, op1, mode,
|
||
tem, const0_rtx, GET_MODE (tem), 0);
|
||
else
|
||
tem = emit_conditional_move (target, code, op0, op1, mode,
|
||
trueval, tem, GET_MODE (tem), 0);
|
||
|
||
if (tem == 0)
|
||
delete_insns_since (last);
|
||
return tem;
|
||
}
|
||
|
||
/* The remaining tricks only apply to integer comparisons. */
|
||
|
||
scalar_int_mode int_mode;
|
||
if (is_int_mode (mode, &int_mode))
|
||
return emit_store_flag_int (target, subtarget, code, op0, op1, int_mode,
|
||
unsignedp, normalizep, trueval);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Like emit_store_flag, but always succeeds. */
|
||
|
||
rtx
|
||
emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
||
machine_mode mode, int unsignedp, int normalizep)
|
||
{
|
||
rtx tem;
|
||
rtx_code_label *label;
|
||
rtx trueval, falseval;
|
||
|
||
/* First see if emit_store_flag can do the job. */
|
||
tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
|
||
if (tem != 0)
|
||
return tem;
|
||
|
||
/* If one operand is constant, make it the second one. Only do this
|
||
if the other operand is not constant as well. */
|
||
if (swap_commutative_operands_p (op0, op1))
|
||
{
|
||
std::swap (op0, op1);
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (op0);
|
||
|
||
if (!target)
|
||
target = gen_reg_rtx (word_mode);
|
||
|
||
/* If this failed, we have to do this with set/compare/jump/set code.
|
||
For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
|
||
trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
|
||
if (code == NE
|
||
&& GET_MODE_CLASS (mode) == MODE_INT
|
||
&& REG_P (target)
|
||
&& op0 == target
|
||
&& op1 == const0_rtx)
|
||
{
|
||
label = gen_label_rtx ();
|
||
do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
|
||
NULL_RTX, NULL, label,
|
||
profile_probability::uninitialized ());
|
||
emit_move_insn (target, trueval);
|
||
emit_label (label);
|
||
return target;
|
||
}
|
||
|
||
if (!REG_P (target)
|
||
|| reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
|
||
target = gen_reg_rtx (GET_MODE (target));
|
||
|
||
/* Jump in the right direction if the target cannot implement CODE
|
||
but can jump on its reverse condition. */
|
||
falseval = const0_rtx;
|
||
if (! can_compare_p (code, mode, ccp_jump)
|
||
&& (! FLOAT_MODE_P (mode)
|
||
|| code == ORDERED || code == UNORDERED
|
||
|| (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
|
||
|| (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
|
||
{
|
||
enum rtx_code rcode;
|
||
if (FLOAT_MODE_P (mode))
|
||
rcode = reverse_condition_maybe_unordered (code);
|
||
else
|
||
rcode = reverse_condition (code);
|
||
|
||
/* Canonicalize to UNORDERED for the libcall. */
|
||
if (can_compare_p (rcode, mode, ccp_jump)
|
||
|| (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
|
||
{
|
||
falseval = trueval;
|
||
trueval = const0_rtx;
|
||
code = rcode;
|
||
}
|
||
}
|
||
|
||
emit_move_insn (target, trueval);
|
||
label = gen_label_rtx ();
|
||
do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
|
||
label, profile_probability::uninitialized ());
|
||
|
||
emit_move_insn (target, falseval);
|
||
emit_label (label);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Helper function for canonicalize_cmp_for_target. Swap between inclusive
|
||
and exclusive ranges in order to create an equivalent comparison. See
|
||
canonicalize_cmp_for_target for the possible cases. */
|
||
|
||
static enum rtx_code
|
||
equivalent_cmp_code (enum rtx_code code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case GT:
|
||
return GE;
|
||
case GE:
|
||
return GT;
|
||
case LT:
|
||
return LE;
|
||
case LE:
|
||
return LT;
|
||
case GTU:
|
||
return GEU;
|
||
case GEU:
|
||
return GTU;
|
||
case LTU:
|
||
return LEU;
|
||
case LEU:
|
||
return LTU;
|
||
|
||
default:
|
||
return code;
|
||
}
|
||
}
|
||
|
||
/* Choose the more appropiate immediate in scalar integer comparisons. The
|
||
purpose of this is to end up with an immediate which can be loaded into a
|
||
register in fewer moves, if possible.
|
||
|
||
For each integer comparison there exists an equivalent choice:
|
||
i) a > b or a >= b + 1
|
||
ii) a <= b or a < b + 1
|
||
iii) a >= b or a > b - 1
|
||
iv) a < b or a <= b - 1
|
||
|
||
MODE is the mode of the first operand.
|
||
CODE points to the comparison code.
|
||
IMM points to the rtx containing the immediate. *IMM must satisfy
|
||
CONST_SCALAR_INT_P on entry and continues to satisfy CONST_SCALAR_INT_P
|
||
on exit. */
|
||
|
||
void
|
||
canonicalize_comparison (machine_mode mode, enum rtx_code *code, rtx *imm)
|
||
{
|
||
if (!SCALAR_INT_MODE_P (mode))
|
||
return;
|
||
|
||
int to_add = 0;
|
||
enum signop sgn = unsigned_condition_p (*code) ? UNSIGNED : SIGNED;
|
||
|
||
/* Extract the immediate value from the rtx. */
|
||
wide_int imm_val = rtx_mode_t (*imm, mode);
|
||
|
||
if (*code == GT || *code == GTU || *code == LE || *code == LEU)
|
||
to_add = 1;
|
||
else if (*code == GE || *code == GEU || *code == LT || *code == LTU)
|
||
to_add = -1;
|
||
else
|
||
return;
|
||
|
||
/* Check for overflow/underflow in the case of signed values and
|
||
wrapping around in the case of unsigned values. If any occur
|
||
cancel the optimization. */
|
||
wi::overflow_type overflow = wi::OVF_NONE;
|
||
wide_int imm_modif;
|
||
|
||
if (to_add == 1)
|
||
imm_modif = wi::add (imm_val, 1, sgn, &overflow);
|
||
else
|
||
imm_modif = wi::sub (imm_val, 1, sgn, &overflow);
|
||
|
||
if (overflow)
|
||
return;
|
||
|
||
/* The following creates a pseudo; if we cannot do that, bail out. */
|
||
if (!can_create_pseudo_p ())
|
||
return;
|
||
|
||
rtx reg = gen_rtx_REG (mode, LAST_VIRTUAL_REGISTER + 1);
|
||
rtx new_imm = immed_wide_int_const (imm_modif, mode);
|
||
|
||
rtx_insn *old_rtx = gen_move_insn (reg, *imm);
|
||
rtx_insn *new_rtx = gen_move_insn (reg, new_imm);
|
||
|
||
/* Update the immediate and the code. */
|
||
if (insn_cost (old_rtx, true) > insn_cost (new_rtx, true))
|
||
{
|
||
*code = equivalent_cmp_code (*code);
|
||
*imm = new_imm;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Perform possibly multi-word comparison and conditional jump to LABEL
|
||
if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
|
||
now a thin wrapper around do_compare_rtx_and_jump. */
|
||
|
||
static void
|
||
do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
|
||
rtx_code_label *label)
|
||
{
|
||
int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
|
||
do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
|
||
NULL, label, profile_probability::uninitialized ());
|
||
}
|