579c1bf349
PR bootstrap/45445 * ira-lives.c (mark_pseudo_reg_live, mark_pseudo_reg_dead): New static functions. (mark_ref_live, mark_ref_dead): Use them. (make_pseudo_conflict): New arg ORIG_DREG. All callers changed. Save the original reg, and use the new functions. (check_and_make_def_use_conflict): New arg ORIG_DREG. All callers changed. (check_and_make_def_conflict): Save the original reg. From-SVN: r165329
1508 lines
43 KiB
C
1508 lines
43 KiB
C
/* IRA processing allocno lives to build allocno live ranges.
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010
|
|
Free Software Foundation, Inc.
|
|
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "regs.h"
|
|
#include "rtl.h"
|
|
#include "tm_p.h"
|
|
#include "target.h"
|
|
#include "flags.h"
|
|
#include "except.h"
|
|
#include "hard-reg-set.h"
|
|
#include "basic-block.h"
|
|
#include "insn-config.h"
|
|
#include "recog.h"
|
|
#include "diagnostic-core.h"
|
|
#include "toplev.h"
|
|
#include "params.h"
|
|
#include "df.h"
|
|
#include "sbitmap.h"
|
|
#include "sparseset.h"
|
|
#include "ira-int.h"
|
|
|
|
/* The code in this file is similar to one in global but the code
|
|
works on the allocno basis and creates live ranges instead of
|
|
pseudo-register conflicts. */
|
|
|
|
/* Program points are enumerated by numbers from range
|
|
0..IRA_MAX_POINT-1. There are approximately two times more program
|
|
points than insns. Program points are places in the program where
|
|
liveness info can be changed. In most general case (there are more
|
|
complicated cases too) some program points correspond to places
|
|
where input operand dies and other ones correspond to places where
|
|
output operands are born. */
|
|
int ira_max_point;
|
|
|
|
/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
|
|
live ranges with given start/finish point. */
|
|
live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
|
|
|
|
/* Number of the current program point. */
|
|
static int curr_point;
|
|
|
|
/* Point where register pressure excess started or -1 if there is no
|
|
register pressure excess. Excess pressure for a register class at
|
|
some point means that there are more allocnos of given register
|
|
class living at the point than number of hard-registers of the
|
|
class available for the allocation. It is defined only for cover
|
|
classes. */
|
|
static int high_pressure_start_point[N_REG_CLASSES];
|
|
|
|
/* Objects live at current point in the scan. */
|
|
static sparseset objects_live;
|
|
|
|
/* A temporary bitmap used in functions that wish to avoid visiting an allocno
|
|
multiple times. */
|
|
static sparseset allocnos_processed;
|
|
|
|
/* Set of hard regs (except eliminable ones) currently live. */
|
|
static HARD_REG_SET hard_regs_live;
|
|
|
|
/* The loop tree node corresponding to the current basic block. */
|
|
static ira_loop_tree_node_t curr_bb_node;
|
|
|
|
/* The number of the last processed call. */
|
|
static int last_call_num;
|
|
/* The number of last call at which given allocno was saved. */
|
|
static int *allocno_saved_at_call;
|
|
|
|
/* Record the birth of hard register REGNO, updating hard_regs_live and
|
|
hard reg conflict information for living allocnos. */
|
|
static void
|
|
make_hard_regno_born (int regno)
|
|
{
|
|
unsigned int i;
|
|
|
|
SET_HARD_REG_BIT (hard_regs_live, regno);
|
|
EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
|
|
{
|
|
ira_object_t obj = ira_object_id_map[i];
|
|
SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
|
|
SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
|
|
}
|
|
}
|
|
|
|
/* Process the death of hard register REGNO. This updates
|
|
hard_regs_live. */
|
|
static void
|
|
make_hard_regno_dead (int regno)
|
|
{
|
|
CLEAR_HARD_REG_BIT (hard_regs_live, regno);
|
|
}
|
|
|
|
/* Record the birth of object OBJ. Set a bit for it in objects_live,
|
|
start a new live range for it if necessary and update hard register
|
|
conflicts. */
|
|
static void
|
|
make_object_born (ira_object_t obj)
|
|
{
|
|
live_range_t lr = OBJECT_LIVE_RANGES (obj);
|
|
|
|
sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
|
|
IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
|
|
IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
|
|
|
|
if (lr == NULL
|
|
|| (lr->finish != curr_point && lr->finish + 1 != curr_point))
|
|
ira_add_live_range_to_object (obj, curr_point, -1);
|
|
}
|
|
|
|
/* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
|
|
associated with object OBJ. */
|
|
static void
|
|
update_allocno_pressure_excess_length (ira_object_t obj)
|
|
{
|
|
ira_allocno_t a = OBJECT_ALLOCNO (obj);
|
|
int start, i;
|
|
enum reg_class cover_class, cl;
|
|
live_range_t p;
|
|
|
|
cover_class = ALLOCNO_COVER_CLASS (a);
|
|
for (i = 0;
|
|
(cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
|
|
i++)
|
|
{
|
|
if (high_pressure_start_point[cl] < 0)
|
|
continue;
|
|
p = OBJECT_LIVE_RANGES (obj);
|
|
ira_assert (p != NULL);
|
|
start = (high_pressure_start_point[cl] > p->start
|
|
? high_pressure_start_point[cl] : p->start);
|
|
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
|
|
}
|
|
}
|
|
|
|
/* Process the death of object OBJ, which is associated with allocno
|
|
A. This finishes the current live range for it. */
|
|
static void
|
|
make_object_dead (ira_object_t obj)
|
|
{
|
|
live_range_t lr;
|
|
|
|
sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
|
|
lr = OBJECT_LIVE_RANGES (obj);
|
|
ira_assert (lr != NULL);
|
|
lr->finish = curr_point;
|
|
update_allocno_pressure_excess_length (obj);
|
|
}
|
|
|
|
/* The current register pressures for each cover class for the current
|
|
basic block. */
|
|
static int curr_reg_pressure[N_REG_CLASSES];
|
|
|
|
/* Record that register pressure for COVER_CLASS increased by N
|
|
registers. Update the current register pressure, maximal register
|
|
pressure for the current BB and the start point of the register
|
|
pressure excess. */
|
|
static void
|
|
inc_register_pressure (enum reg_class cover_class, int n)
|
|
{
|
|
int i;
|
|
enum reg_class cl;
|
|
|
|
for (i = 0;
|
|
(cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
|
|
i++)
|
|
{
|
|
curr_reg_pressure[cl] += n;
|
|
if (high_pressure_start_point[cl] < 0
|
|
&& (curr_reg_pressure[cl] > ira_available_class_regs[cl]))
|
|
high_pressure_start_point[cl] = curr_point;
|
|
if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
|
|
curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
|
|
}
|
|
}
|
|
|
|
/* Record that register pressure for COVER_CLASS has decreased by
|
|
NREGS registers; update current register pressure, start point of
|
|
the register pressure excess, and register pressure excess length
|
|
for living allocnos. */
|
|
|
|
static void
|
|
dec_register_pressure (enum reg_class cover_class, int nregs)
|
|
{
|
|
int i;
|
|
unsigned int j;
|
|
enum reg_class cl;
|
|
bool set_p = false;
|
|
|
|
for (i = 0;
|
|
(cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
|
|
i++)
|
|
{
|
|
curr_reg_pressure[cl] -= nregs;
|
|
ira_assert (curr_reg_pressure[cl] >= 0);
|
|
if (high_pressure_start_point[cl] >= 0
|
|
&& curr_reg_pressure[cl] <= ira_available_class_regs[cl])
|
|
set_p = true;
|
|
}
|
|
if (set_p)
|
|
{
|
|
EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
|
|
update_allocno_pressure_excess_length (ira_object_id_map[j]);
|
|
for (i = 0;
|
|
(cl = ira_reg_class_super_classes[cover_class][i])
|
|
!= LIM_REG_CLASSES;
|
|
i++)
|
|
if (high_pressure_start_point[cl] >= 0
|
|
&& curr_reg_pressure[cl] <= ira_available_class_regs[cl])
|
|
high_pressure_start_point[cl] = -1;
|
|
}
|
|
}
|
|
|
|
/* Mark the pseudo register REGNO as live. Update all information about
|
|
live ranges and register pressure. */
|
|
static void
|
|
mark_pseudo_regno_live (int regno)
|
|
{
|
|
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
|
|
int i, n, nregs;
|
|
enum reg_class cl;
|
|
|
|
if (a == NULL)
|
|
return;
|
|
|
|
/* Invalidate because it is referenced. */
|
|
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
|
|
|
|
n = ALLOCNO_NUM_OBJECTS (a);
|
|
cl = ALLOCNO_COVER_CLASS (a);
|
|
nregs = ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
|
|
if (n > 1)
|
|
{
|
|
/* We track every subobject separately. */
|
|
gcc_assert (nregs == n);
|
|
nregs = 1;
|
|
}
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
|
if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
|
|
continue;
|
|
|
|
inc_register_pressure (cl, nregs);
|
|
make_object_born (obj);
|
|
}
|
|
}
|
|
|
|
/* Like mark_pseudo_regno_live, but try to only mark one subword of
|
|
the pseudo as live. SUBWORD indicates which; a value of 0
|
|
indicates the low part. */
|
|
static void
|
|
mark_pseudo_regno_subword_live (int regno, int subword)
|
|
{
|
|
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
|
|
int n, nregs;
|
|
enum reg_class cl;
|
|
ira_object_t obj;
|
|
|
|
if (a == NULL)
|
|
return;
|
|
|
|
/* Invalidate because it is referenced. */
|
|
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
|
|
|
|
n = ALLOCNO_NUM_OBJECTS (a);
|
|
if (n == 1)
|
|
{
|
|
mark_pseudo_regno_live (regno);
|
|
return;
|
|
}
|
|
|
|
cl = ALLOCNO_COVER_CLASS (a);
|
|
nregs = ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
|
|
gcc_assert (nregs == n);
|
|
obj = ALLOCNO_OBJECT (a, subword);
|
|
|
|
if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
|
|
return;
|
|
|
|
inc_register_pressure (cl, nregs);
|
|
make_object_born (obj);
|
|
}
|
|
|
|
/* Mark the register REG as live. Store a 1 in hard_regs_live for
|
|
this register, record how many consecutive hardware registers it
|
|
actually needs. */
|
|
static void
|
|
mark_hard_reg_live (rtx reg)
|
|
{
|
|
int regno = REGNO (reg);
|
|
|
|
if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
|
|
{
|
|
int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
|
|
|
|
while (regno < last)
|
|
{
|
|
if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
|
|
&& ! TEST_HARD_REG_BIT (eliminable_regset, regno))
|
|
{
|
|
enum reg_class cover_class = ira_hard_regno_cover_class[regno];
|
|
inc_register_pressure (cover_class, 1);
|
|
make_hard_regno_born (regno);
|
|
}
|
|
regno++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
|
|
register number; ORIG_REG is the access in the insn, which may be a
|
|
subreg. */
|
|
static void
|
|
mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
|
|
{
|
|
if (df_read_modify_subreg_p (orig_reg))
|
|
{
|
|
mark_pseudo_regno_subword_live (regno,
|
|
subreg_lowpart_p (orig_reg) ? 0 : 1);
|
|
}
|
|
else
|
|
mark_pseudo_regno_live (regno);
|
|
}
|
|
|
|
/* Mark the register referenced by use or def REF as live. */
|
|
static void
|
|
mark_ref_live (df_ref ref)
|
|
{
|
|
rtx reg = DF_REF_REG (ref);
|
|
rtx orig_reg = reg;
|
|
|
|
if (GET_CODE (reg) == SUBREG)
|
|
reg = SUBREG_REG (reg);
|
|
|
|
if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
|
|
mark_pseudo_reg_live (orig_reg, REGNO (reg));
|
|
else
|
|
mark_hard_reg_live (reg);
|
|
}
|
|
|
|
/* Mark the pseudo register REGNO as dead. Update all information about
|
|
live ranges and register pressure. */
|
|
static void
|
|
mark_pseudo_regno_dead (int regno)
|
|
{
|
|
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
|
|
int n, i, nregs;
|
|
enum reg_class cl;
|
|
|
|
if (a == NULL)
|
|
return;
|
|
|
|
/* Invalidate because it is referenced. */
|
|
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
|
|
|
|
n = ALLOCNO_NUM_OBJECTS (a);
|
|
cl = ALLOCNO_COVER_CLASS (a);
|
|
nregs = ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
|
|
if (n > 1)
|
|
{
|
|
/* We track every subobject separately. */
|
|
gcc_assert (nregs == n);
|
|
nregs = 1;
|
|
}
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
|
if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
|
|
continue;
|
|
|
|
dec_register_pressure (cl, nregs);
|
|
make_object_dead (obj);
|
|
}
|
|
}
|
|
|
|
/* Like mark_pseudo_regno_dead, but called when we know that only part of the
|
|
register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
|
|
static void
|
|
mark_pseudo_regno_subword_dead (int regno, int subword)
|
|
{
|
|
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
|
|
int n, nregs;
|
|
enum reg_class cl;
|
|
ira_object_t obj;
|
|
|
|
if (a == NULL)
|
|
return;
|
|
|
|
/* Invalidate because it is referenced. */
|
|
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
|
|
|
|
n = ALLOCNO_NUM_OBJECTS (a);
|
|
if (n == 1)
|
|
/* The allocno as a whole doesn't die in this case. */
|
|
return;
|
|
|
|
cl = ALLOCNO_COVER_CLASS (a);
|
|
nregs = ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
|
|
gcc_assert (nregs == n);
|
|
|
|
obj = ALLOCNO_OBJECT (a, subword);
|
|
if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
|
|
return;
|
|
|
|
dec_register_pressure (cl, 1);
|
|
make_object_dead (obj);
|
|
}
|
|
|
|
/* Mark the hard register REG as dead. Store a 0 in hard_regs_live for the
|
|
register. */
|
|
static void
|
|
mark_hard_reg_dead (rtx reg)
|
|
{
|
|
int regno = REGNO (reg);
|
|
|
|
if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
|
|
{
|
|
int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
|
|
|
|
while (regno < last)
|
|
{
|
|
if (TEST_HARD_REG_BIT (hard_regs_live, regno))
|
|
{
|
|
enum reg_class cover_class = ira_hard_regno_cover_class[regno];
|
|
dec_register_pressure (cover_class, 1);
|
|
make_hard_regno_dead (regno);
|
|
}
|
|
regno++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
|
|
register number; ORIG_REG is the access in the insn, which may be a
|
|
subreg. */
|
|
static void
|
|
mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
|
|
{
|
|
if (df_read_modify_subreg_p (orig_reg))
|
|
{
|
|
mark_pseudo_regno_subword_dead (regno,
|
|
subreg_lowpart_p (orig_reg) ? 0 : 1);
|
|
}
|
|
else
|
|
mark_pseudo_regno_dead (regno);
|
|
}
|
|
|
|
/* Mark the register referenced by definition DEF as dead, if the
|
|
definition is a total one. */
|
|
static void
|
|
mark_ref_dead (df_ref def)
|
|
{
|
|
rtx reg = DF_REF_REG (def);
|
|
rtx orig_reg = reg;
|
|
|
|
if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
|
|
return;
|
|
|
|
if (GET_CODE (reg) == SUBREG)
|
|
reg = SUBREG_REG (reg);
|
|
|
|
if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
|
|
&& (GET_CODE (orig_reg) != SUBREG
|
|
|| REGNO (reg) < FIRST_PSEUDO_REGISTER
|
|
|| !df_read_modify_subreg_p (orig_reg)))
|
|
return;
|
|
|
|
if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
|
|
mark_pseudo_reg_dead (orig_reg, REGNO (reg));
|
|
else
|
|
mark_hard_reg_dead (reg);
|
|
}
|
|
|
|
/* If REG is a pseudo or a subreg of it, and the class of its allocno
|
|
intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
|
|
rtx actually accessed, it may be indentical to DREG or a subreg of it.
|
|
Advance the current program point before making the conflict if
|
|
ADVANCE_P. Return TRUE if we will need to advance the current
|
|
program point. */
|
|
static bool
|
|
make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
|
|
bool advance_p)
|
|
{
|
|
rtx orig_reg = reg;
|
|
ira_allocno_t a;
|
|
|
|
if (GET_CODE (reg) == SUBREG)
|
|
reg = SUBREG_REG (reg);
|
|
|
|
if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
|
|
return advance_p;
|
|
|
|
a = ira_curr_regno_allocno_map[REGNO (reg)];
|
|
if (! reg_classes_intersect_p (cl, ALLOCNO_COVER_CLASS (a)))
|
|
return advance_p;
|
|
|
|
if (advance_p)
|
|
curr_point++;
|
|
|
|
mark_pseudo_reg_live (orig_reg, REGNO (reg));
|
|
mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
|
|
mark_pseudo_reg_dead (orig_reg, REGNO (reg));
|
|
mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Check and make if necessary conflicts for pseudo DREG of class
|
|
DEF_CL of the current insn with input operand USE of class USE_CL.
|
|
ORIG_DREG is the rtx actually accessed, it may be indentical to
|
|
DREG or a subreg of it. Advance the current program point before
|
|
making the conflict if ADVANCE_P. Return TRUE if we will need to
|
|
advance the current program point. */
|
|
static bool
|
|
check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
|
|
enum reg_class def_cl, int use,
|
|
enum reg_class use_cl, bool advance_p)
|
|
{
|
|
if (! reg_classes_intersect_p (def_cl, use_cl))
|
|
return advance_p;
|
|
|
|
advance_p = make_pseudo_conflict (recog_data.operand[use],
|
|
use_cl, dreg, orig_dreg, advance_p);
|
|
|
|
/* Reload may end up swapping commutative operands, so you
|
|
have to take both orderings into account. The
|
|
constraints for the two operands can be completely
|
|
different. (Indeed, if the constraints for the two
|
|
operands are the same for all alternatives, there's no
|
|
point marking them as commutative.) */
|
|
if (use < recog_data.n_operands - 1
|
|
&& recog_data.constraints[use][0] == '%')
|
|
advance_p
|
|
= make_pseudo_conflict (recog_data.operand[use + 1],
|
|
use_cl, dreg, orig_dreg, advance_p);
|
|
if (use >= 1
|
|
&& recog_data.constraints[use - 1][0] == '%')
|
|
advance_p
|
|
= make_pseudo_conflict (recog_data.operand[use - 1],
|
|
use_cl, dreg, orig_dreg, advance_p);
|
|
return advance_p;
|
|
}
|
|
|
|
/* Check and make if necessary conflicts for definition DEF of class
|
|
DEF_CL of the current insn with input operands. Process only
|
|
constraints of alternative ALT. */
|
|
static void
|
|
check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
|
|
{
|
|
int use, use_match;
|
|
ira_allocno_t a;
|
|
enum reg_class use_cl, acl;
|
|
bool advance_p;
|
|
rtx dreg = recog_data.operand[def];
|
|
rtx orig_dreg = dreg;
|
|
|
|
if (def_cl == NO_REGS)
|
|
return;
|
|
|
|
if (GET_CODE (dreg) == SUBREG)
|
|
dreg = SUBREG_REG (dreg);
|
|
|
|
if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
|
|
return;
|
|
|
|
a = ira_curr_regno_allocno_map[REGNO (dreg)];
|
|
acl = ALLOCNO_COVER_CLASS (a);
|
|
if (! reg_classes_intersect_p (acl, def_cl))
|
|
return;
|
|
|
|
advance_p = true;
|
|
|
|
for (use = 0; use < recog_data.n_operands; use++)
|
|
{
|
|
int alt1;
|
|
|
|
if (use == def || recog_data.operand_type[use] == OP_OUT)
|
|
continue;
|
|
|
|
if (recog_op_alt[use][alt].anything_ok)
|
|
use_cl = ALL_REGS;
|
|
else
|
|
use_cl = recog_op_alt[use][alt].cl;
|
|
|
|
/* If there's any alternative that allows USE to match DEF, do not
|
|
record a conflict. If that causes us to create an invalid
|
|
instruction due to the earlyclobber, reload must fix it up. */
|
|
for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
|
|
if (recog_op_alt[use][alt1].matches == def
|
|
|| (use < recog_data.n_operands - 1
|
|
&& recog_data.constraints[use][0] == '%'
|
|
&& recog_op_alt[use + 1][alt1].matches == def)
|
|
|| (use >= 1
|
|
&& recog_data.constraints[use - 1][0] == '%'
|
|
&& recog_op_alt[use - 1][alt1].matches == def))
|
|
break;
|
|
|
|
if (alt1 < recog_data.n_alternatives)
|
|
continue;
|
|
|
|
advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
|
|
use, use_cl, advance_p);
|
|
|
|
if ((use_match = recog_op_alt[use][alt].matches) >= 0)
|
|
{
|
|
if (use_match == def)
|
|
continue;
|
|
|
|
if (recog_op_alt[use_match][alt].anything_ok)
|
|
use_cl = ALL_REGS;
|
|
else
|
|
use_cl = recog_op_alt[use_match][alt].cl;
|
|
advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
|
|
use, use_cl, advance_p);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Make conflicts of early clobber pseudo registers of the current
|
|
insn with its inputs. Avoid introducing unnecessary conflicts by
|
|
checking classes of the constraints and pseudos because otherwise
|
|
significant code degradation is possible for some targets. */
|
|
static void
|
|
make_early_clobber_and_input_conflicts (void)
|
|
{
|
|
int alt;
|
|
int def, def_match;
|
|
enum reg_class def_cl;
|
|
|
|
for (alt = 0; alt < recog_data.n_alternatives; alt++)
|
|
for (def = 0; def < recog_data.n_operands; def++)
|
|
{
|
|
def_cl = NO_REGS;
|
|
if (recog_op_alt[def][alt].earlyclobber)
|
|
{
|
|
if (recog_op_alt[def][alt].anything_ok)
|
|
def_cl = ALL_REGS;
|
|
else
|
|
def_cl = recog_op_alt[def][alt].cl;
|
|
check_and_make_def_conflict (alt, def, def_cl);
|
|
}
|
|
if ((def_match = recog_op_alt[def][alt].matches) >= 0
|
|
&& (recog_op_alt[def_match][alt].earlyclobber
|
|
|| recog_op_alt[def][alt].earlyclobber))
|
|
{
|
|
if (recog_op_alt[def_match][alt].anything_ok)
|
|
def_cl = ALL_REGS;
|
|
else
|
|
def_cl = recog_op_alt[def_match][alt].cl;
|
|
check_and_make_def_conflict (alt, def, def_cl);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Mark early clobber hard registers of the current INSN as live (if
|
|
LIVE_P) or dead. Return true if there are such registers. */
|
|
static bool
|
|
mark_hard_reg_early_clobbers (rtx insn, bool live_p)
|
|
{
|
|
df_ref *def_rec;
|
|
bool set_p = false;
|
|
|
|
for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
|
|
if (DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MUST_CLOBBER))
|
|
{
|
|
rtx dreg = DF_REF_REG (*def_rec);
|
|
|
|
if (GET_CODE (dreg) == SUBREG)
|
|
dreg = SUBREG_REG (dreg);
|
|
if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
|
|
continue;
|
|
|
|
/* Hard register clobbers are believed to be early clobber
|
|
because there is no way to say that non-operand hard
|
|
register clobbers are not early ones. */
|
|
if (live_p)
|
|
mark_ref_live (*def_rec);
|
|
else
|
|
mark_ref_dead (*def_rec);
|
|
set_p = true;
|
|
}
|
|
|
|
return set_p;
|
|
}
|
|
|
|
/* Checks that CONSTRAINTS permits to use only one hard register. If
|
|
it is so, the function returns the class of the hard register.
|
|
Otherwise it returns NO_REGS. */
|
|
static enum reg_class
|
|
single_reg_class (const char *constraints, rtx op, rtx equiv_const)
|
|
{
|
|
int ignore_p;
|
|
enum reg_class cl, next_cl;
|
|
int c;
|
|
|
|
cl = NO_REGS;
|
|
for (ignore_p = false;
|
|
(c = *constraints);
|
|
constraints += CONSTRAINT_LEN (c, constraints))
|
|
if (c == '#')
|
|
ignore_p = true;
|
|
else if (c == ',')
|
|
ignore_p = false;
|
|
else if (! ignore_p)
|
|
switch (c)
|
|
{
|
|
case ' ':
|
|
case '\t':
|
|
case '=':
|
|
case '+':
|
|
case '*':
|
|
case '&':
|
|
case '%':
|
|
case '!':
|
|
case '?':
|
|
break;
|
|
case 'i':
|
|
if (CONSTANT_P (op)
|
|
|| (equiv_const != NULL_RTX && CONSTANT_P (equiv_const)))
|
|
return NO_REGS;
|
|
break;
|
|
|
|
case 'n':
|
|
if (CONST_INT_P (op)
|
|
|| (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)
|
|
|| (equiv_const != NULL_RTX
|
|
&& (CONST_INT_P (equiv_const)
|
|
|| (GET_CODE (equiv_const) == CONST_DOUBLE
|
|
&& GET_MODE (equiv_const) == VOIDmode))))
|
|
return NO_REGS;
|
|
break;
|
|
|
|
case 's':
|
|
if ((CONSTANT_P (op) && !CONST_INT_P (op)
|
|
&& (GET_CODE (op) != CONST_DOUBLE || GET_MODE (op) != VOIDmode))
|
|
|| (equiv_const != NULL_RTX
|
|
&& CONSTANT_P (equiv_const)
|
|
&& !CONST_INT_P (equiv_const)
|
|
&& (GET_CODE (equiv_const) != CONST_DOUBLE
|
|
|| GET_MODE (equiv_const) != VOIDmode)))
|
|
return NO_REGS;
|
|
break;
|
|
|
|
case 'I':
|
|
case 'J':
|
|
case 'K':
|
|
case 'L':
|
|
case 'M':
|
|
case 'N':
|
|
case 'O':
|
|
case 'P':
|
|
if ((CONST_INT_P (op)
|
|
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, constraints))
|
|
|| (equiv_const != NULL_RTX
|
|
&& CONST_INT_P (equiv_const)
|
|
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (equiv_const),
|
|
c, constraints)))
|
|
return NO_REGS;
|
|
break;
|
|
|
|
case 'E':
|
|
case 'F':
|
|
if (GET_CODE (op) == CONST_DOUBLE
|
|
|| (GET_CODE (op) == CONST_VECTOR
|
|
&& GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)
|
|
|| (equiv_const != NULL_RTX
|
|
&& (GET_CODE (equiv_const) == CONST_DOUBLE
|
|
|| (GET_CODE (equiv_const) == CONST_VECTOR
|
|
&& (GET_MODE_CLASS (GET_MODE (equiv_const))
|
|
== MODE_VECTOR_FLOAT)))))
|
|
return NO_REGS;
|
|
break;
|
|
|
|
case 'G':
|
|
case 'H':
|
|
if ((GET_CODE (op) == CONST_DOUBLE
|
|
&& CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, constraints))
|
|
|| (equiv_const != NULL_RTX
|
|
&& GET_CODE (equiv_const) == CONST_DOUBLE
|
|
&& CONST_DOUBLE_OK_FOR_CONSTRAINT_P (equiv_const,
|
|
c, constraints)))
|
|
return NO_REGS;
|
|
/* ??? what about memory */
|
|
case 'r':
|
|
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
|
|
case 'h': case 'j': case 'k': case 'l':
|
|
case 'q': case 't': case 'u':
|
|
case 'v': case 'w': case 'x': case 'y': case 'z':
|
|
case 'A': case 'B': case 'C': case 'D':
|
|
case 'Q': case 'R': case 'S': case 'T': case 'U':
|
|
case 'W': case 'Y': case 'Z':
|
|
next_cl = (c == 'r'
|
|
? GENERAL_REGS
|
|
: REG_CLASS_FROM_CONSTRAINT (c, constraints));
|
|
if ((cl != NO_REGS && next_cl != cl)
|
|
|| (ira_available_class_regs[next_cl]
|
|
> ira_reg_class_nregs[next_cl][GET_MODE (op)]))
|
|
return NO_REGS;
|
|
cl = next_cl;
|
|
break;
|
|
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
next_cl
|
|
= single_reg_class (recog_data.constraints[c - '0'],
|
|
recog_data.operand[c - '0'], NULL_RTX);
|
|
if ((cl != NO_REGS && next_cl != cl)
|
|
|| next_cl == NO_REGS
|
|
|| (ira_available_class_regs[next_cl]
|
|
> ira_reg_class_nregs[next_cl][GET_MODE (op)]))
|
|
return NO_REGS;
|
|
cl = next_cl;
|
|
break;
|
|
|
|
default:
|
|
return NO_REGS;
|
|
}
|
|
return cl;
|
|
}
|
|
|
|
/* The function checks that operand OP_NUM of the current insn can use
|
|
only one hard register. If it is so, the function returns the
|
|
class of the hard register. Otherwise it returns NO_REGS. */
|
|
static enum reg_class
|
|
single_reg_operand_class (int op_num)
|
|
{
|
|
if (op_num < 0 || recog_data.n_alternatives == 0)
|
|
return NO_REGS;
|
|
return single_reg_class (recog_data.constraints[op_num],
|
|
recog_data.operand[op_num], NULL_RTX);
|
|
}
|
|
|
|
/* The function sets up hard register set *SET to hard registers which
|
|
might be used by insn reloads because the constraints are too
|
|
strict. */
|
|
void
|
|
ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set)
|
|
{
|
|
int i, c, regno = 0;
|
|
bool ignore_p;
|
|
enum reg_class cl;
|
|
rtx op;
|
|
enum machine_mode mode;
|
|
|
|
CLEAR_HARD_REG_SET (*set);
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
|
{
|
|
op = recog_data.operand[i];
|
|
|
|
if (GET_CODE (op) == SUBREG)
|
|
op = SUBREG_REG (op);
|
|
|
|
if (GET_CODE (op) == SCRATCH
|
|
|| (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
|
|
{
|
|
const char *p = recog_data.constraints[i];
|
|
|
|
mode = (GET_CODE (op) == SCRATCH
|
|
? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
|
|
cl = NO_REGS;
|
|
for (ignore_p = false; (c = *p); p += CONSTRAINT_LEN (c, p))
|
|
if (c == '#')
|
|
ignore_p = true;
|
|
else if (c == ',')
|
|
ignore_p = false;
|
|
else if (! ignore_p)
|
|
switch (c)
|
|
{
|
|
case 'r':
|
|
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
|
|
case 'h': case 'j': case 'k': case 'l':
|
|
case 'q': case 't': case 'u':
|
|
case 'v': case 'w': case 'x': case 'y': case 'z':
|
|
case 'A': case 'B': case 'C': case 'D':
|
|
case 'Q': case 'R': case 'S': case 'T': case 'U':
|
|
case 'W': case 'Y': case 'Z':
|
|
cl = (c == 'r'
|
|
? GENERAL_REGS
|
|
: REG_CLASS_FROM_CONSTRAINT (c, p));
|
|
if (cl != NO_REGS
|
|
/* There is no register pressure problem if all of the
|
|
regs in this class are fixed. */
|
|
&& ira_available_class_regs[cl] != 0
|
|
&& (ira_available_class_regs[cl]
|
|
<= ira_reg_class_nregs[cl][mode]))
|
|
IOR_HARD_REG_SET (*set, reg_class_contents[cl]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Processes input operands, if IN_P, or output operands otherwise of
|
|
the current insn with FREQ to find allocno which can use only one
|
|
hard register and makes other currently living allocnos conflicting
|
|
with the hard register. */
|
|
static void
|
|
process_single_reg_class_operands (bool in_p, int freq)
|
|
{
|
|
int i, regno;
|
|
unsigned int px;
|
|
enum reg_class cl;
|
|
rtx operand;
|
|
ira_allocno_t operand_a, a;
|
|
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
|
{
|
|
operand = recog_data.operand[i];
|
|
if (in_p && recog_data.operand_type[i] != OP_IN
|
|
&& recog_data.operand_type[i] != OP_INOUT)
|
|
continue;
|
|
if (! in_p && recog_data.operand_type[i] != OP_OUT
|
|
&& recog_data.operand_type[i] != OP_INOUT)
|
|
continue;
|
|
cl = single_reg_operand_class (i);
|
|
if (cl == NO_REGS)
|
|
continue;
|
|
|
|
operand_a = NULL;
|
|
|
|
if (GET_CODE (operand) == SUBREG)
|
|
operand = SUBREG_REG (operand);
|
|
|
|
if (REG_P (operand)
|
|
&& (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
|
|
{
|
|
enum reg_class cover_class;
|
|
|
|
operand_a = ira_curr_regno_allocno_map[regno];
|
|
cover_class = ALLOCNO_COVER_CLASS (operand_a);
|
|
if (ira_class_subset_p[cl][cover_class]
|
|
&& ira_class_hard_regs_num[cl] != 0)
|
|
{
|
|
/* View the desired allocation of OPERAND as:
|
|
|
|
(REG:YMODE YREGNO),
|
|
|
|
a simplification of:
|
|
|
|
(subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
|
|
enum machine_mode ymode, xmode;
|
|
int xregno, yregno;
|
|
HOST_WIDE_INT offset;
|
|
|
|
xmode = recog_data.operand_mode[i];
|
|
xregno = ira_class_hard_regs[cl][0];
|
|
ymode = ALLOCNO_MODE (operand_a);
|
|
offset = subreg_lowpart_offset (ymode, xmode);
|
|
yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
|
|
if (yregno >= 0
|
|
&& ira_class_hard_reg_index[cover_class][yregno] >= 0)
|
|
{
|
|
int cost;
|
|
|
|
ira_allocate_and_set_costs
|
|
(&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
|
|
cover_class, 0);
|
|
cost
|
|
= (freq
|
|
* (in_p
|
|
? ira_get_register_move_cost (xmode, cover_class, cl)
|
|
: ira_get_register_move_cost (xmode, cl,
|
|
cover_class)));
|
|
ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
|
|
[ira_class_hard_reg_index[cover_class][yregno]] -= cost;
|
|
}
|
|
}
|
|
}
|
|
|
|
EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
|
|
{
|
|
ira_object_t obj = ira_object_id_map[px];
|
|
a = OBJECT_ALLOCNO (obj);
|
|
if (a != operand_a)
|
|
{
|
|
/* We could increase costs of A instead of making it
|
|
conflicting with the hard register. But it works worse
|
|
because it will be spilled in reload in anyway. */
|
|
IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
|
|
reg_class_contents[cl]);
|
|
IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
|
|
reg_class_contents[cl]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return true when one of the predecessor edges of BB is marked with
|
|
EDGE_ABNORMAL_CALL or EDGE_EH. */
|
|
static bool
|
|
bb_has_abnormal_call_pred (basic_block bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
{
|
|
if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Process insns of the basic block given by its LOOP_TREE_NODE to
|
|
update allocno live ranges, allocno hard register conflicts,
|
|
intersected calls, and register pressure info for allocnos for the
|
|
basic block for and regions containing the basic block. */
|
|
static void
|
|
process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
|
|
{
|
|
int i, freq;
|
|
unsigned int j;
|
|
basic_block bb;
|
|
rtx insn;
|
|
bitmap_iterator bi;
|
|
bitmap reg_live_out;
|
|
unsigned int px;
|
|
bool set_p;
|
|
|
|
bb = loop_tree_node->bb;
|
|
if (bb != NULL)
|
|
{
|
|
for (i = 0; i < ira_reg_class_cover_size; i++)
|
|
{
|
|
curr_reg_pressure[ira_reg_class_cover[i]] = 0;
|
|
high_pressure_start_point[ira_reg_class_cover[i]] = -1;
|
|
}
|
|
curr_bb_node = loop_tree_node;
|
|
reg_live_out = DF_LR_OUT (bb);
|
|
sparseset_clear (objects_live);
|
|
REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
|
|
AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
|
|
AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|
if (TEST_HARD_REG_BIT (hard_regs_live, i))
|
|
{
|
|
enum reg_class cover_class, cl;
|
|
|
|
cover_class = ira_class_translate[REGNO_REG_CLASS (i)];
|
|
for (j = 0;
|
|
(cl = ira_reg_class_super_classes[cover_class][j])
|
|
!= LIM_REG_CLASSES;
|
|
j++)
|
|
{
|
|
curr_reg_pressure[cl]++;
|
|
if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
|
|
curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
|
|
ira_assert (curr_reg_pressure[cl]
|
|
<= ira_available_class_regs[cl]);
|
|
}
|
|
}
|
|
EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
|
|
mark_pseudo_regno_live (j);
|
|
|
|
freq = REG_FREQ_FROM_BB (bb);
|
|
if (freq == 0)
|
|
freq = 1;
|
|
|
|
/* Invalidate all allocno_saved_at_call entries. */
|
|
last_call_num++;
|
|
|
|
/* Scan the code of this basic block, noting which allocnos and
|
|
hard regs are born or die.
|
|
|
|
Note that this loop treats uninitialized values as live until
|
|
the beginning of the block. For example, if an instruction
|
|
uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
|
|
set, FOO will remain live until the beginning of the block.
|
|
Likewise if FOO is not set at all. This is unnecessarily
|
|
pessimistic, but it probably doesn't matter much in practice. */
|
|
FOR_BB_INSNS_REVERSE (bb, insn)
|
|
{
|
|
df_ref *def_rec, *use_rec;
|
|
bool call_p;
|
|
|
|
if (!NONDEBUG_INSN_P (insn))
|
|
continue;
|
|
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
|
fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
|
|
INSN_UID (insn), loop_tree_node->parent->loop->num,
|
|
curr_point);
|
|
|
|
/* Mark each defined value as live. We need to do this for
|
|
unused values because they still conflict with quantities
|
|
that are live at the time of the definition.
|
|
|
|
Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
|
|
references represent the effect of the called function
|
|
on a call-clobbered register. Marking the register as
|
|
live would stop us from allocating it to a call-crossing
|
|
allocno. */
|
|
call_p = CALL_P (insn);
|
|
for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
|
|
if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
|
|
mark_ref_live (*def_rec);
|
|
|
|
/* If INSN has multiple outputs, then any value used in one
|
|
of the outputs conflicts with the other outputs. Model this
|
|
by making the used value live during the output phase.
|
|
|
|
It is unsafe to use !single_set here since it will ignore
|
|
an unused output. Just because an output is unused does
|
|
not mean the compiler can assume the side effect will not
|
|
occur. Consider if ALLOCNO appears in the address of an
|
|
output and we reload the output. If we allocate ALLOCNO
|
|
to the same hard register as an unused output we could
|
|
set the hard register before the output reload insn. */
|
|
if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
|
|
for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
|
|
{
|
|
int i;
|
|
rtx reg;
|
|
|
|
reg = DF_REF_REG (*use_rec);
|
|
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
|
|
{
|
|
rtx set;
|
|
|
|
set = XVECEXP (PATTERN (insn), 0, i);
|
|
if (GET_CODE (set) == SET
|
|
&& reg_overlap_mentioned_p (reg, SET_DEST (set)))
|
|
{
|
|
/* After the previous loop, this is a no-op if
|
|
REG is contained within SET_DEST (SET). */
|
|
mark_ref_live (*use_rec);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
extract_insn (insn);
|
|
preprocess_constraints ();
|
|
process_single_reg_class_operands (false, freq);
|
|
|
|
/* See which defined values die here. */
|
|
for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
|
|
if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
|
|
mark_ref_dead (*def_rec);
|
|
|
|
if (call_p)
|
|
{
|
|
last_call_num++;
|
|
sparseset_clear (allocnos_processed);
|
|
/* The current set of live allocnos are live across the call. */
|
|
EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
|
|
{
|
|
ira_object_t obj = ira_object_id_map[i];
|
|
ira_allocno_t a = OBJECT_ALLOCNO (obj);
|
|
int num = ALLOCNO_NUM (a);
|
|
|
|
/* Don't allocate allocnos that cross setjmps or any
|
|
call, if this function receives a nonlocal
|
|
goto. */
|
|
if (cfun->has_nonlocal_label
|
|
|| find_reg_note (insn, REG_SETJMP,
|
|
NULL_RTX) != NULL_RTX)
|
|
{
|
|
SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
|
|
SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
|
|
}
|
|
if (can_throw_internal (insn))
|
|
{
|
|
IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
|
|
call_used_reg_set);
|
|
IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
|
|
call_used_reg_set);
|
|
}
|
|
|
|
if (sparseset_bit_p (allocnos_processed, num))
|
|
continue;
|
|
sparseset_set_bit (allocnos_processed, num);
|
|
|
|
if (allocno_saved_at_call[num] != last_call_num)
|
|
/* Here we are mimicking caller-save.c behaviour
|
|
which does not save hard register at a call if
|
|
it was saved on previous call in the same basic
|
|
block and the hard register was not mentioned
|
|
between the two calls. */
|
|
ALLOCNO_CALL_FREQ (a) += freq;
|
|
/* Mark it as saved at the next call. */
|
|
allocno_saved_at_call[num] = last_call_num + 1;
|
|
ALLOCNO_CALLS_CROSSED_NUM (a)++;
|
|
}
|
|
}
|
|
|
|
make_early_clobber_and_input_conflicts ();
|
|
|
|
curr_point++;
|
|
|
|
/* Mark each used value as live. */
|
|
for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
|
|
mark_ref_live (*use_rec);
|
|
|
|
process_single_reg_class_operands (true, freq);
|
|
|
|
set_p = mark_hard_reg_early_clobbers (insn, true);
|
|
|
|
if (set_p)
|
|
{
|
|
mark_hard_reg_early_clobbers (insn, false);
|
|
|
|
/* Mark each hard reg as live again. For example, a
|
|
hard register can be in clobber and in an insn
|
|
input. */
|
|
for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
|
|
{
|
|
rtx ureg = DF_REF_REG (*use_rec);
|
|
|
|
if (GET_CODE (ureg) == SUBREG)
|
|
ureg = SUBREG_REG (ureg);
|
|
if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
|
|
continue;
|
|
|
|
mark_ref_live (*use_rec);
|
|
}
|
|
}
|
|
|
|
curr_point++;
|
|
}
|
|
|
|
#ifdef EH_RETURN_DATA_REGNO
|
|
if (bb_has_eh_pred (bb))
|
|
for (j = 0; ; ++j)
|
|
{
|
|
unsigned int regno = EH_RETURN_DATA_REGNO (j);
|
|
if (regno == INVALID_REGNUM)
|
|
break;
|
|
make_hard_regno_born (regno);
|
|
}
|
|
#endif
|
|
|
|
/* Allocnos can't go in stack regs at the start of a basic block
|
|
that is reached by an abnormal edge. Likewise for call
|
|
clobbered regs, because caller-save, fixup_abnormal_edges and
|
|
possibly the table driven EH machinery are not quite ready to
|
|
handle such allocnos live across such edges. */
|
|
if (bb_has_abnormal_pred (bb))
|
|
{
|
|
#ifdef STACK_REGS
|
|
EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
|
|
{
|
|
ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
|
|
ALLOCNO_NO_STACK_REG_P (a) = true;
|
|
ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
|
|
}
|
|
for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
|
|
make_hard_regno_born (px);
|
|
#endif
|
|
/* No need to record conflicts for call clobbered regs if we
|
|
have nonlocal labels around, as we don't ever try to
|
|
allocate such regs in this case. */
|
|
if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
|
|
for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
|
|
if (call_used_regs[px])
|
|
make_hard_regno_born (px);
|
|
}
|
|
|
|
EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
|
|
make_object_dead (ira_object_id_map[i]);
|
|
|
|
curr_point++;
|
|
|
|
}
|
|
/* Propagate register pressure to upper loop tree nodes: */
|
|
if (loop_tree_node != ira_loop_tree_root)
|
|
for (i = 0; i < ira_reg_class_cover_size; i++)
|
|
{
|
|
enum reg_class cover_class;
|
|
|
|
cover_class = ira_reg_class_cover[i];
|
|
if (loop_tree_node->reg_pressure[cover_class]
|
|
> loop_tree_node->parent->reg_pressure[cover_class])
|
|
loop_tree_node->parent->reg_pressure[cover_class]
|
|
= loop_tree_node->reg_pressure[cover_class];
|
|
}
|
|
}
|
|
|
|
/* Create and set up IRA_START_POINT_RANGES and
|
|
IRA_FINISH_POINT_RANGES. */
|
|
static void
|
|
create_start_finish_chains (void)
|
|
{
|
|
ira_object_t obj;
|
|
ira_object_iterator oi;
|
|
live_range_t r;
|
|
|
|
ira_start_point_ranges
|
|
= (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
|
|
memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
|
|
ira_finish_point_ranges
|
|
= (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
|
|
memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
|
|
FOR_EACH_OBJECT (obj, oi)
|
|
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
|
{
|
|
r->start_next = ira_start_point_ranges[r->start];
|
|
ira_start_point_ranges[r->start] = r;
|
|
r->finish_next = ira_finish_point_ranges[r->finish];
|
|
ira_finish_point_ranges[r->finish] = r;
|
|
}
|
|
}
|
|
|
|
/* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
|
|
new live ranges and program points were added as a result if new
|
|
insn generation. */
|
|
void
|
|
ira_rebuild_start_finish_chains (void)
|
|
{
|
|
ira_free (ira_finish_point_ranges);
|
|
ira_free (ira_start_point_ranges);
|
|
create_start_finish_chains ();
|
|
}
|
|
|
|
/* Compress allocno live ranges by removing program points where
|
|
nothing happens. */
|
|
static void
|
|
remove_some_program_points_and_update_live_ranges (void)
|
|
{
|
|
unsigned i;
|
|
int n;
|
|
int *map;
|
|
ira_object_t obj;
|
|
ira_object_iterator oi;
|
|
live_range_t r;
|
|
sbitmap born_or_dead, born, dead;
|
|
sbitmap_iterator sbi;
|
|
bool born_p, dead_p, prev_born_p, prev_dead_p;
|
|
|
|
born = sbitmap_alloc (ira_max_point);
|
|
dead = sbitmap_alloc (ira_max_point);
|
|
sbitmap_zero (born);
|
|
sbitmap_zero (dead);
|
|
FOR_EACH_OBJECT (obj, oi)
|
|
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
|
{
|
|
ira_assert (r->start <= r->finish);
|
|
SET_BIT (born, r->start);
|
|
SET_BIT (dead, r->finish);
|
|
}
|
|
|
|
born_or_dead = sbitmap_alloc (ira_max_point);
|
|
sbitmap_a_or_b (born_or_dead, born, dead);
|
|
map = (int *) ira_allocate (sizeof (int) * ira_max_point);
|
|
n = -1;
|
|
prev_born_p = prev_dead_p = false;
|
|
EXECUTE_IF_SET_IN_SBITMAP (born_or_dead, 0, i, sbi)
|
|
{
|
|
born_p = TEST_BIT (born, i);
|
|
dead_p = TEST_BIT (dead, i);
|
|
if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
|
|
|| (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
|
|
map[i] = n;
|
|
else
|
|
map[i] = ++n;
|
|
prev_born_p = born_p;
|
|
prev_dead_p = dead_p;
|
|
}
|
|
sbitmap_free (born_or_dead);
|
|
sbitmap_free (born);
|
|
sbitmap_free (dead);
|
|
n++;
|
|
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
|
|
fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
|
|
ira_max_point, n, 100 * n / ira_max_point);
|
|
ira_max_point = n;
|
|
|
|
FOR_EACH_OBJECT (obj, oi)
|
|
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
|
{
|
|
r->start = map[r->start];
|
|
r->finish = map[r->finish];
|
|
}
|
|
|
|
ira_free (map);
|
|
}
|
|
|
|
/* Print live ranges R to file F. */
|
|
void
|
|
ira_print_live_range_list (FILE *f, live_range_t r)
|
|
{
|
|
for (; r != NULL; r = r->next)
|
|
fprintf (f, " [%d..%d]", r->start, r->finish);
|
|
fprintf (f, "\n");
|
|
}
|
|
|
|
/* Print live ranges R to stderr. */
|
|
void
|
|
ira_debug_live_range_list (live_range_t r)
|
|
{
|
|
ira_print_live_range_list (stderr, r);
|
|
}
|
|
|
|
/* Print live ranges of object OBJ to file F. */
|
|
static void
|
|
print_object_live_ranges (FILE *f, ira_object_t obj)
|
|
{
|
|
ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
|
|
}
|
|
|
|
/* Print live ranges of allocno A to file F. */
|
|
static void
|
|
print_allocno_live_ranges (FILE *f, ira_allocno_t a)
|
|
{
|
|
int n = ALLOCNO_NUM_OBJECTS (a);
|
|
int i;
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
|
|
if (n > 1)
|
|
fprintf (f, " [%d]", i);
|
|
fprintf (f, "):");
|
|
print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
|
|
}
|
|
}
|
|
|
|
/* Print live ranges of allocno A to stderr. */
|
|
void
|
|
ira_debug_allocno_live_ranges (ira_allocno_t a)
|
|
{
|
|
print_allocno_live_ranges (stderr, a);
|
|
}
|
|
|
|
/* Print live ranges of all allocnos to file F. */
|
|
static void
|
|
print_live_ranges (FILE *f)
|
|
{
|
|
ira_allocno_t a;
|
|
ira_allocno_iterator ai;
|
|
|
|
FOR_EACH_ALLOCNO (a, ai)
|
|
print_allocno_live_ranges (f, a);
|
|
}
|
|
|
|
/* Print live ranges of all allocnos to stderr. */
|
|
void
|
|
ira_debug_live_ranges (void)
|
|
{
|
|
print_live_ranges (stderr);
|
|
}
|
|
|
|
/* The main entry function creates live ranges, set up
|
|
CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
|
|
calculate register pressure info. */
|
|
void
|
|
ira_create_allocno_live_ranges (void)
|
|
{
|
|
objects_live = sparseset_alloc (ira_objects_num);
|
|
allocnos_processed = sparseset_alloc (ira_allocnos_num);
|
|
curr_point = 0;
|
|
last_call_num = 0;
|
|
allocno_saved_at_call
|
|
= (int *) ira_allocate (ira_allocnos_num * sizeof (int));
|
|
memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
|
|
ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
|
|
process_bb_node_lives);
|
|
ira_max_point = curr_point;
|
|
create_start_finish_chains ();
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
|
print_live_ranges (ira_dump_file);
|
|
/* Clean up. */
|
|
ira_free (allocno_saved_at_call);
|
|
sparseset_free (objects_live);
|
|
sparseset_free (allocnos_processed);
|
|
}
|
|
|
|
/* Compress allocno live ranges. */
|
|
void
|
|
ira_compress_allocno_live_ranges (void)
|
|
{
|
|
remove_some_program_points_and_update_live_ranges ();
|
|
ira_rebuild_start_finish_chains ();
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
|
{
|
|
fprintf (ira_dump_file, "Ranges after the compression:\n");
|
|
print_live_ranges (ira_dump_file);
|
|
}
|
|
}
|
|
|
|
/* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
|
|
void
|
|
ira_finish_allocno_live_ranges (void)
|
|
{
|
|
ira_free (ira_finish_point_ranges);
|
|
ira_free (ira_start_point_ranges);
|
|
}
|