1949 lines
55 KiB
C
1949 lines
55 KiB
C
/* Control flow graph analysis code for GNU compiler.
|
||
Copyright (C) 1987-2021 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This file contains various simple utilities to analyze the CFG. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "cfghooks.h"
|
||
#include "timevar.h"
|
||
#include "cfganal.h"
|
||
#include "cfgloop.h"
|
||
|
||
namespace {
|
||
/* Store the data structures necessary for depth-first search. */
|
||
class depth_first_search
|
||
{
|
||
public:
|
||
depth_first_search ();
|
||
|
||
basic_block execute (basic_block);
|
||
void add_bb (basic_block);
|
||
|
||
private:
|
||
/* stack for backtracking during the algorithm */
|
||
auto_vec<basic_block, 20> m_stack;
|
||
|
||
/* record of basic blocks already seen by depth-first search */
|
||
auto_sbitmap m_visited_blocks;
|
||
};
|
||
}
|
||
|
||
/* Mark the back edges in DFS traversal.
|
||
Return nonzero if a loop (natural or otherwise) is present.
|
||
Inspired by Depth_First_Search_PP described in:
|
||
|
||
Advanced Compiler Design and Implementation
|
||
Steven Muchnick
|
||
Morgan Kaufmann, 1997
|
||
|
||
and heavily borrowed from pre_and_rev_post_order_compute. */
|
||
|
||
bool
|
||
mark_dfs_back_edges (void)
|
||
{
|
||
int *pre;
|
||
int *post;
|
||
int prenum = 1;
|
||
int postnum = 1;
|
||
bool found = false;
|
||
|
||
/* Allocate the preorder and postorder number arrays. */
|
||
pre = XCNEWVEC (int, last_basic_block_for_fn (cfun));
|
||
post = XCNEWVEC (int, last_basic_block_for_fn (cfun));
|
||
|
||
/* Allocate stack for back-tracking up CFG. */
|
||
auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
|
||
|
||
/* Allocate bitmap to track nodes that have been visited. */
|
||
auto_sbitmap visited (last_basic_block_for_fn (cfun));
|
||
|
||
/* None of the nodes in the CFG have been visited yet. */
|
||
bitmap_clear (visited);
|
||
|
||
/* Push the first edge on to the stack. */
|
||
stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs));
|
||
|
||
while (!stack.is_empty ())
|
||
{
|
||
basic_block src;
|
||
basic_block dest;
|
||
|
||
/* Look at the edge on the top of the stack. */
|
||
edge_iterator ei = stack.last ();
|
||
src = ei_edge (ei)->src;
|
||
dest = ei_edge (ei)->dest;
|
||
ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
|
||
|
||
/* Check if the edge destination has been visited yet. */
|
||
if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && ! bitmap_bit_p (visited,
|
||
dest->index))
|
||
{
|
||
/* Mark that we have visited the destination. */
|
||
bitmap_set_bit (visited, dest->index);
|
||
|
||
pre[dest->index] = prenum++;
|
||
if (EDGE_COUNT (dest->succs) > 0)
|
||
{
|
||
/* Since the DEST node has been visited for the first
|
||
time, check its successors. */
|
||
stack.quick_push (ei_start (dest->succs));
|
||
}
|
||
else
|
||
post[dest->index] = postnum++;
|
||
}
|
||
else
|
||
{
|
||
if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
&& pre[src->index] >= pre[dest->index]
|
||
&& post[dest->index] == 0)
|
||
ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
|
||
|
||
if (ei_one_before_end_p (ei)
|
||
&& src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
post[src->index] = postnum++;
|
||
|
||
if (!ei_one_before_end_p (ei))
|
||
ei_next (&stack.last ());
|
||
else
|
||
stack.pop ();
|
||
}
|
||
}
|
||
|
||
free (pre);
|
||
free (post);
|
||
|
||
return found;
|
||
}
|
||
|
||
/* Find unreachable blocks. An unreachable block will have 0 in
|
||
the reachable bit in block->flags. A nonzero value indicates the
|
||
block is reachable. */
|
||
|
||
void
|
||
find_unreachable_blocks (void)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
basic_block *tos, *worklist, bb;
|
||
|
||
tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
|
||
|
||
/* Clear all the reachability flags. */
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
bb->flags &= ~BB_REACHABLE;
|
||
|
||
/* Add our starting points to the worklist. Almost always there will
|
||
be only one. It isn't inconceivable that we might one day directly
|
||
support Fortran alternate entry points. */
|
||
|
||
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
|
||
{
|
||
*tos++ = e->dest;
|
||
|
||
/* Mark the block reachable. */
|
||
e->dest->flags |= BB_REACHABLE;
|
||
}
|
||
|
||
/* Iterate: find everything reachable from what we've already seen. */
|
||
|
||
while (tos != worklist)
|
||
{
|
||
basic_block b = *--tos;
|
||
|
||
FOR_EACH_EDGE (e, ei, b->succs)
|
||
{
|
||
basic_block dest = e->dest;
|
||
|
||
if (!(dest->flags & BB_REACHABLE))
|
||
{
|
||
*tos++ = dest;
|
||
dest->flags |= BB_REACHABLE;
|
||
}
|
||
}
|
||
}
|
||
|
||
free (worklist);
|
||
}
|
||
|
||
/* Verify that there are no unreachable blocks in the current function. */
|
||
|
||
void
|
||
verify_no_unreachable_blocks (void)
|
||
{
|
||
find_unreachable_blocks ();
|
||
|
||
basic_block bb;
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
gcc_assert ((bb->flags & BB_REACHABLE) != 0);
|
||
}
|
||
|
||
|
||
/* Functions to access an edge list with a vector representation.
|
||
Enough data is kept such that given an index number, the
|
||
pred and succ that edge represents can be determined, or
|
||
given a pred and a succ, its index number can be returned.
|
||
This allows algorithms which consume a lot of memory to
|
||
represent the normally full matrix of edge (pred,succ) with a
|
||
single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
|
||
wasted space in the client code due to sparse flow graphs. */
|
||
|
||
/* This functions initializes the edge list. Basically the entire
|
||
flowgraph is processed, and all edges are assigned a number,
|
||
and the data structure is filled in. */
|
||
|
||
struct edge_list *
|
||
create_edge_list (void)
|
||
{
|
||
struct edge_list *elist;
|
||
edge e;
|
||
int num_edges;
|
||
basic_block bb;
|
||
edge_iterator ei;
|
||
|
||
/* Determine the number of edges in the flow graph by counting successor
|
||
edges on each basic block. */
|
||
num_edges = 0;
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
{
|
||
num_edges += EDGE_COUNT (bb->succs);
|
||
}
|
||
|
||
elist = XNEW (struct edge_list);
|
||
elist->num_edges = num_edges;
|
||
elist->index_to_edge = XNEWVEC (edge, num_edges);
|
||
|
||
num_edges = 0;
|
||
|
||
/* Follow successors of blocks, and register these edges. */
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
elist->index_to_edge[num_edges++] = e;
|
||
|
||
return elist;
|
||
}
|
||
|
||
/* This function free's memory associated with an edge list. */
|
||
|
||
void
|
||
free_edge_list (struct edge_list *elist)
|
||
{
|
||
if (elist)
|
||
{
|
||
free (elist->index_to_edge);
|
||
free (elist);
|
||
}
|
||
}
|
||
|
||
/* This function provides debug output showing an edge list. */
|
||
|
||
DEBUG_FUNCTION void
|
||
print_edge_list (FILE *f, struct edge_list *elist)
|
||
{
|
||
int x;
|
||
|
||
fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
|
||
n_basic_blocks_for_fn (cfun), elist->num_edges);
|
||
|
||
for (x = 0; x < elist->num_edges; x++)
|
||
{
|
||
fprintf (f, " %-4d - edge(", x);
|
||
if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
fprintf (f, "entry,");
|
||
else
|
||
fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
|
||
|
||
if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
fprintf (f, "exit)\n");
|
||
else
|
||
fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
|
||
}
|
||
}
|
||
|
||
/* This function provides an internal consistency check of an edge list,
|
||
verifying that all edges are present, and that there are no
|
||
extra edges. */
|
||
|
||
DEBUG_FUNCTION void
|
||
verify_edge_list (FILE *f, struct edge_list *elist)
|
||
{
|
||
int pred, succ, index;
|
||
edge e;
|
||
basic_block bb, p, s;
|
||
edge_iterator ei;
|
||
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
{
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
pred = e->src->index;
|
||
succ = e->dest->index;
|
||
index = EDGE_INDEX (elist, e->src, e->dest);
|
||
if (index == EDGE_INDEX_NO_EDGE)
|
||
{
|
||
fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
|
||
continue;
|
||
}
|
||
|
||
if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
|
||
fprintf (f, "*p* Pred for index %d should be %d not %d\n",
|
||
index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
|
||
if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
|
||
fprintf (f, "*p* Succ for index %d should be %d not %d\n",
|
||
index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
|
||
}
|
||
}
|
||
|
||
/* We've verified that all the edges are in the list, now lets make sure
|
||
there are no spurious edges in the list. This is an expensive check! */
|
||
|
||
FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
|
||
{
|
||
int found_edge = 0;
|
||
|
||
FOR_EACH_EDGE (e, ei, p->succs)
|
||
if (e->dest == s)
|
||
{
|
||
found_edge = 1;
|
||
break;
|
||
}
|
||
|
||
FOR_EACH_EDGE (e, ei, s->preds)
|
||
if (e->src == p)
|
||
{
|
||
found_edge = 1;
|
||
break;
|
||
}
|
||
|
||
if (EDGE_INDEX (elist, p, s)
|
||
== EDGE_INDEX_NO_EDGE && found_edge != 0)
|
||
fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
|
||
p->index, s->index);
|
||
if (EDGE_INDEX (elist, p, s)
|
||
!= EDGE_INDEX_NO_EDGE && found_edge == 0)
|
||
fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
|
||
p->index, s->index, EDGE_INDEX (elist, p, s));
|
||
}
|
||
}
|
||
|
||
|
||
/* Functions to compute control dependences. */
|
||
|
||
/* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
|
||
void
|
||
control_dependences::set_control_dependence_map_bit (basic_block bb,
|
||
int edge_index)
|
||
{
|
||
if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
return;
|
||
gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
bitmap_set_bit (control_dependence_map[bb->index], edge_index);
|
||
}
|
||
|
||
/* Clear all control dependences for block BB. */
|
||
void
|
||
control_dependences::clear_control_dependence_bitmap (basic_block bb)
|
||
{
|
||
bitmap_clear (control_dependence_map[bb->index]);
|
||
}
|
||
|
||
/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
|
||
This function is necessary because some blocks have negative numbers. */
|
||
|
||
static inline basic_block
|
||
find_pdom (basic_block block)
|
||
{
|
||
gcc_assert (block != ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return EXIT_BLOCK_PTR_FOR_FN (cfun);
|
||
else
|
||
{
|
||
basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
|
||
if (! bb)
|
||
return EXIT_BLOCK_PTR_FOR_FN (cfun);
|
||
return bb;
|
||
}
|
||
}
|
||
|
||
/* Determine all blocks' control dependences on the given edge with edge_list
|
||
EL index EDGE_INDEX, ala Morgan, Section 3.6. */
|
||
|
||
void
|
||
control_dependences::find_control_dependence (int edge_index)
|
||
{
|
||
basic_block current_block;
|
||
basic_block ending_block;
|
||
|
||
gcc_assert (get_edge_src (edge_index) != EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
/* For abnormal edges, we don't make current_block control
|
||
dependent because instructions that throw are always necessary
|
||
anyway. */
|
||
edge e = find_edge (get_edge_src (edge_index), get_edge_dest (edge_index));
|
||
if (e->flags & EDGE_ABNORMAL)
|
||
return;
|
||
|
||
if (get_edge_src (edge_index) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
ending_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
||
else
|
||
ending_block = find_pdom (get_edge_src (edge_index));
|
||
|
||
for (current_block = get_edge_dest (edge_index);
|
||
current_block != ending_block
|
||
&& current_block != EXIT_BLOCK_PTR_FOR_FN (cfun);
|
||
current_block = find_pdom (current_block))
|
||
set_control_dependence_map_bit (current_block, edge_index);
|
||
}
|
||
|
||
/* Record all blocks' control dependences on all edges in the edge
|
||
list EL, ala Morgan, Section 3.6. */
|
||
|
||
control_dependences::control_dependences ()
|
||
{
|
||
timevar_push (TV_CONTROL_DEPENDENCES);
|
||
|
||
/* Initialize the edge list. */
|
||
int num_edges = 0;
|
||
basic_block bb;
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
num_edges += EDGE_COUNT (bb->succs);
|
||
m_el.create (num_edges);
|
||
edge e;
|
||
edge_iterator ei;
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
m_el.quick_push (std::make_pair (e->src->index, e->dest->index));
|
||
|
||
control_dependence_map.create (last_basic_block_for_fn (cfun));
|
||
for (int i = 0; i < last_basic_block_for_fn (cfun); ++i)
|
||
control_dependence_map.quick_push (BITMAP_ALLOC (NULL));
|
||
for (int i = 0; i < num_edges; ++i)
|
||
find_control_dependence (i);
|
||
|
||
timevar_pop (TV_CONTROL_DEPENDENCES);
|
||
}
|
||
|
||
/* Free control dependences and the associated edge list. */
|
||
|
||
control_dependences::~control_dependences ()
|
||
{
|
||
for (unsigned i = 0; i < control_dependence_map.length (); ++i)
|
||
BITMAP_FREE (control_dependence_map[i]);
|
||
control_dependence_map.release ();
|
||
m_el.release ();
|
||
}
|
||
|
||
/* Returns the bitmap of edges the basic-block I is dependent on. */
|
||
|
||
bitmap
|
||
control_dependences::get_edges_dependent_on (int i)
|
||
{
|
||
return control_dependence_map[i];
|
||
}
|
||
|
||
/* Returns the edge source with index I from the edge list. */
|
||
|
||
basic_block
|
||
control_dependences::get_edge_src (int i)
|
||
{
|
||
return BASIC_BLOCK_FOR_FN (cfun, m_el[i].first);
|
||
}
|
||
|
||
/* Returns the edge destination with index I from the edge list. */
|
||
|
||
basic_block
|
||
control_dependences::get_edge_dest (int i)
|
||
{
|
||
return BASIC_BLOCK_FOR_FN (cfun, m_el[i].second);
|
||
}
|
||
|
||
|
||
/* Given PRED and SUCC blocks, return the edge which connects the blocks.
|
||
If no such edge exists, return NULL. */
|
||
|
||
edge
|
||
find_edge (basic_block pred, basic_block succ)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
|
||
{
|
||
FOR_EACH_EDGE (e, ei, pred->succs)
|
||
if (e->dest == succ)
|
||
return e;
|
||
}
|
||
else
|
||
{
|
||
FOR_EACH_EDGE (e, ei, succ->preds)
|
||
if (e->src == pred)
|
||
return e;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* This routine will determine what, if any, edge there is between
|
||
a specified predecessor and successor. */
|
||
|
||
int
|
||
find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
|
||
{
|
||
int x;
|
||
|
||
for (x = 0; x < NUM_EDGES (edge_list); x++)
|
||
if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
|
||
&& INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
|
||
return x;
|
||
|
||
return (EDGE_INDEX_NO_EDGE);
|
||
}
|
||
|
||
/* This routine will remove any fake predecessor edges for a basic block.
|
||
When the edge is removed, it is also removed from whatever successor
|
||
list it is in. */
|
||
|
||
static void
|
||
remove_fake_predecessors (basic_block bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
|
||
{
|
||
if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
|
||
remove_edge (e);
|
||
else
|
||
ei_next (&ei);
|
||
}
|
||
}
|
||
|
||
/* This routine will remove all fake edges from the flow graph. If
|
||
we remove all fake successors, it will automatically remove all
|
||
fake predecessors. */
|
||
|
||
void
|
||
remove_fake_edges (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
|
||
remove_fake_predecessors (bb);
|
||
}
|
||
|
||
/* This routine will remove all fake edges to the EXIT_BLOCK. */
|
||
|
||
void
|
||
remove_fake_exit_edges (void)
|
||
{
|
||
remove_fake_predecessors (EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
}
|
||
|
||
|
||
/* This function will add a fake edge between any block which has no
|
||
successors, and the exit block. Some data flow equations require these
|
||
edges to exist. */
|
||
|
||
void
|
||
add_noreturn_fake_exit_edges (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
if (EDGE_COUNT (bb->succs) == 0)
|
||
make_single_succ_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
|
||
}
|
||
|
||
/* This function adds a fake edge between any infinite loops to the
|
||
exit block. Some optimizations require a path from each node to
|
||
the exit node.
|
||
|
||
See also Morgan, Figure 3.10, pp. 82-83.
|
||
|
||
The current implementation is ugly, not attempting to minimize the
|
||
number of inserted fake edges. To reduce the number of fake edges
|
||
to insert, add fake edges from _innermost_ loops containing only
|
||
nodes not reachable from the exit block. */
|
||
|
||
void
|
||
connect_infinite_loops_to_exit (void)
|
||
{
|
||
/* Perform depth-first search in the reverse graph to find nodes
|
||
reachable from the exit block. */
|
||
depth_first_search dfs;
|
||
dfs.add_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
/* Repeatedly add fake edges, updating the unreachable nodes. */
|
||
basic_block unvisited_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
|
||
while (1)
|
||
{
|
||
unvisited_block = dfs.execute (unvisited_block);
|
||
if (!unvisited_block)
|
||
break;
|
||
|
||
basic_block deadend_block = dfs_find_deadend (unvisited_block);
|
||
edge e = make_edge (deadend_block, EXIT_BLOCK_PTR_FOR_FN (cfun),
|
||
EDGE_FAKE);
|
||
e->probability = profile_probability::never ();
|
||
dfs.add_bb (deadend_block);
|
||
}
|
||
}
|
||
|
||
/* Compute reverse top sort order. This is computing a post order
|
||
numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then
|
||
ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
|
||
true, unreachable blocks are deleted. */
|
||
|
||
int
|
||
post_order_compute (int *post_order, bool include_entry_exit,
|
||
bool delete_unreachable)
|
||
{
|
||
int post_order_num = 0;
|
||
int count;
|
||
|
||
if (include_entry_exit)
|
||
post_order[post_order_num++] = EXIT_BLOCK;
|
||
|
||
/* Allocate stack for back-tracking up CFG. */
|
||
auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
|
||
|
||
/* Allocate bitmap to track nodes that have been visited. */
|
||
auto_sbitmap visited (last_basic_block_for_fn (cfun));
|
||
|
||
/* None of the nodes in the CFG have been visited yet. */
|
||
bitmap_clear (visited);
|
||
|
||
/* Push the first edge on to the stack. */
|
||
stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs));
|
||
|
||
while (!stack.is_empty ())
|
||
{
|
||
basic_block src;
|
||
basic_block dest;
|
||
|
||
/* Look at the edge on the top of the stack. */
|
||
edge_iterator ei = stack.last ();
|
||
src = ei_edge (ei)->src;
|
||
dest = ei_edge (ei)->dest;
|
||
|
||
/* Check if the edge destination has been visited yet. */
|
||
if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& ! bitmap_bit_p (visited, dest->index))
|
||
{
|
||
/* Mark that we have visited the destination. */
|
||
bitmap_set_bit (visited, dest->index);
|
||
|
||
if (EDGE_COUNT (dest->succs) > 0)
|
||
/* Since the DEST node has been visited for the first
|
||
time, check its successors. */
|
||
stack.quick_push (ei_start (dest->succs));
|
||
else
|
||
post_order[post_order_num++] = dest->index;
|
||
}
|
||
else
|
||
{
|
||
if (ei_one_before_end_p (ei)
|
||
&& src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
post_order[post_order_num++] = src->index;
|
||
|
||
if (!ei_one_before_end_p (ei))
|
||
ei_next (&stack.last ());
|
||
else
|
||
stack.pop ();
|
||
}
|
||
}
|
||
|
||
if (include_entry_exit)
|
||
{
|
||
post_order[post_order_num++] = ENTRY_BLOCK;
|
||
count = post_order_num;
|
||
}
|
||
else
|
||
count = post_order_num + 2;
|
||
|
||
/* Delete the unreachable blocks if some were found and we are
|
||
supposed to do it. */
|
||
if (delete_unreachable && (count != n_basic_blocks_for_fn (cfun)))
|
||
{
|
||
basic_block b;
|
||
basic_block next_bb;
|
||
for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
|
||
!= EXIT_BLOCK_PTR_FOR_FN (cfun); b = next_bb)
|
||
{
|
||
next_bb = b->next_bb;
|
||
|
||
if (!(bitmap_bit_p (visited, b->index)))
|
||
delete_basic_block (b);
|
||
}
|
||
|
||
tidy_fallthru_edges ();
|
||
}
|
||
|
||
return post_order_num;
|
||
}
|
||
|
||
|
||
/* Helper routine for inverted_post_order_compute
|
||
flow_dfs_compute_reverse_execute, and the reverse-CFG
|
||
deapth first search in dominance.c.
|
||
BB has to belong to a region of CFG
|
||
unreachable by inverted traversal from the exit.
|
||
i.e. there's no control flow path from ENTRY to EXIT
|
||
that contains this BB.
|
||
This can happen in two cases - if there's an infinite loop
|
||
or if there's a block that has no successor
|
||
(call to a function with no return).
|
||
Some RTL passes deal with this condition by
|
||
calling connect_infinite_loops_to_exit () and/or
|
||
add_noreturn_fake_exit_edges ().
|
||
However, those methods involve modifying the CFG itself
|
||
which may not be desirable.
|
||
Hence, we deal with the infinite loop/no return cases
|
||
by identifying a unique basic block that can reach all blocks
|
||
in such a region by inverted traversal.
|
||
This function returns a basic block that guarantees
|
||
that all blocks in the region are reachable
|
||
by starting an inverted traversal from the returned block. */
|
||
|
||
basic_block
|
||
dfs_find_deadend (basic_block bb)
|
||
{
|
||
auto_bitmap visited;
|
||
basic_block next = bb;
|
||
|
||
for (;;)
|
||
{
|
||
if (EDGE_COUNT (next->succs) == 0)
|
||
return next;
|
||
|
||
if (! bitmap_set_bit (visited, next->index))
|
||
return bb;
|
||
|
||
bb = next;
|
||
/* If we are in an analyzed cycle make sure to try exiting it.
|
||
Note this is a heuristic only and expected to work when loop
|
||
fixup is needed as well. */
|
||
if (! bb->loop_father
|
||
|| ! loop_outer (bb->loop_father))
|
||
next = EDGE_SUCC (bb, 0)->dest;
|
||
else
|
||
{
|
||
edge_iterator ei;
|
||
edge e;
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (loop_exit_edge_p (bb->loop_father, e))
|
||
break;
|
||
next = e ? e->dest : EDGE_SUCC (bb, 0)->dest;
|
||
}
|
||
}
|
||
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
|
||
/* Compute the reverse top sort order of the inverted CFG
|
||
i.e. starting from the exit block and following the edges backward
|
||
(from successors to predecessors).
|
||
This ordering can be used for forward dataflow problems among others.
|
||
|
||
Optionally if START_POINTS is specified, start from exit block and all
|
||
basic blocks in START_POINTS. This is used by CD-DCE.
|
||
|
||
This function assumes that all blocks in the CFG are reachable
|
||
from the ENTRY (but not necessarily from EXIT).
|
||
|
||
If there's an infinite loop,
|
||
a simple inverted traversal starting from the blocks
|
||
with no successors can't visit all blocks.
|
||
To solve this problem, we first do inverted traversal
|
||
starting from the blocks with no successor.
|
||
And if there's any block left that's not visited by the regular
|
||
inverted traversal from EXIT,
|
||
those blocks are in such problematic region.
|
||
Among those, we find one block that has
|
||
any visited predecessor (which is an entry into such a region),
|
||
and start looking for a "dead end" from that block
|
||
and do another inverted traversal from that block. */
|
||
|
||
void
|
||
inverted_post_order_compute (vec<int> *post_order,
|
||
sbitmap *start_points)
|
||
{
|
||
basic_block bb;
|
||
post_order->reserve_exact (n_basic_blocks_for_fn (cfun));
|
||
|
||
if (flag_checking)
|
||
verify_no_unreachable_blocks ();
|
||
|
||
/* Allocate stack for back-tracking up CFG. */
|
||
auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
|
||
|
||
/* Allocate bitmap to track nodes that have been visited. */
|
||
auto_sbitmap visited (last_basic_block_for_fn (cfun));
|
||
|
||
/* None of the nodes in the CFG have been visited yet. */
|
||
bitmap_clear (visited);
|
||
|
||
if (start_points)
|
||
{
|
||
FOR_ALL_BB_FN (bb, cfun)
|
||
if (bitmap_bit_p (*start_points, bb->index)
|
||
&& EDGE_COUNT (bb->preds) > 0)
|
||
{
|
||
stack.quick_push (ei_start (bb->preds));
|
||
bitmap_set_bit (visited, bb->index);
|
||
}
|
||
if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds))
|
||
{
|
||
stack.quick_push (ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds));
|
||
bitmap_set_bit (visited, EXIT_BLOCK_PTR_FOR_FN (cfun)->index);
|
||
}
|
||
}
|
||
else
|
||
/* Put all blocks that have no successor into the initial work list. */
|
||
FOR_ALL_BB_FN (bb, cfun)
|
||
if (EDGE_COUNT (bb->succs) == 0)
|
||
{
|
||
/* Push the initial edge on to the stack. */
|
||
if (EDGE_COUNT (bb->preds) > 0)
|
||
{
|
||
stack.quick_push (ei_start (bb->preds));
|
||
bitmap_set_bit (visited, bb->index);
|
||
}
|
||
}
|
||
|
||
do
|
||
{
|
||
bool has_unvisited_bb = false;
|
||
|
||
/* The inverted traversal loop. */
|
||
while (!stack.is_empty ())
|
||
{
|
||
edge_iterator ei;
|
||
basic_block pred;
|
||
|
||
/* Look at the edge on the top of the stack. */
|
||
ei = stack.last ();
|
||
bb = ei_edge (ei)->dest;
|
||
pred = ei_edge (ei)->src;
|
||
|
||
/* Check if the predecessor has been visited yet. */
|
||
if (! bitmap_bit_p (visited, pred->index))
|
||
{
|
||
/* Mark that we have visited the destination. */
|
||
bitmap_set_bit (visited, pred->index);
|
||
|
||
if (EDGE_COUNT (pred->preds) > 0)
|
||
/* Since the predecessor node has been visited for the first
|
||
time, check its predecessors. */
|
||
stack.quick_push (ei_start (pred->preds));
|
||
else
|
||
post_order->quick_push (pred->index);
|
||
}
|
||
else
|
||
{
|
||
if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& ei_one_before_end_p (ei))
|
||
post_order->quick_push (bb->index);
|
||
|
||
if (!ei_one_before_end_p (ei))
|
||
ei_next (&stack.last ());
|
||
else
|
||
stack.pop ();
|
||
}
|
||
}
|
||
|
||
/* Detect any infinite loop and activate the kludge.
|
||
Note that this doesn't check EXIT_BLOCK itself
|
||
since EXIT_BLOCK is always added after the outer do-while loop. */
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
if (!bitmap_bit_p (visited, bb->index))
|
||
{
|
||
has_unvisited_bb = true;
|
||
|
||
if (EDGE_COUNT (bb->preds) > 0)
|
||
{
|
||
edge_iterator ei;
|
||
edge e;
|
||
basic_block visited_pred = NULL;
|
||
|
||
/* Find an already visited predecessor. */
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
if (bitmap_bit_p (visited, e->src->index))
|
||
visited_pred = e->src;
|
||
}
|
||
|
||
if (visited_pred)
|
||
{
|
||
basic_block be = dfs_find_deadend (bb);
|
||
gcc_assert (be != NULL);
|
||
bitmap_set_bit (visited, be->index);
|
||
stack.quick_push (ei_start (be->preds));
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (has_unvisited_bb && stack.is_empty ())
|
||
{
|
||
/* No blocks are reachable from EXIT at all.
|
||
Find a dead-end from the ENTRY, and restart the iteration. */
|
||
basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
||
gcc_assert (be != NULL);
|
||
bitmap_set_bit (visited, be->index);
|
||
stack.quick_push (ei_start (be->preds));
|
||
}
|
||
|
||
/* The only case the below while fires is
|
||
when there's an infinite loop. */
|
||
}
|
||
while (!stack.is_empty ());
|
||
|
||
/* EXIT_BLOCK is always included. */
|
||
post_order->quick_push (EXIT_BLOCK);
|
||
}
|
||
|
||
/* Compute the depth first search order of FN and store in the array
|
||
PRE_ORDER if nonzero. If REV_POST_ORDER is nonzero, return the
|
||
reverse completion number for each node. Returns the number of nodes
|
||
visited. A depth first search tries to get as far away from the starting
|
||
point as quickly as possible.
|
||
|
||
In case the function has unreachable blocks the number of nodes
|
||
visited does not include them.
|
||
|
||
pre_order is a really a preorder numbering of the graph.
|
||
rev_post_order is really a reverse postorder numbering of the graph. */
|
||
|
||
int
|
||
pre_and_rev_post_order_compute_fn (struct function *fn,
|
||
int *pre_order, int *rev_post_order,
|
||
bool include_entry_exit)
|
||
{
|
||
int pre_order_num = 0;
|
||
int rev_post_order_num = n_basic_blocks_for_fn (fn) - 1;
|
||
|
||
/* Allocate stack for back-tracking up CFG. */
|
||
auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (fn) + 1);
|
||
|
||
if (include_entry_exit)
|
||
{
|
||
if (pre_order)
|
||
pre_order[pre_order_num] = ENTRY_BLOCK;
|
||
pre_order_num++;
|
||
if (rev_post_order)
|
||
rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
|
||
}
|
||
else
|
||
rev_post_order_num -= NUM_FIXED_BLOCKS;
|
||
|
||
/* BB flag to track nodes that have been visited. */
|
||
auto_bb_flag visited (fn);
|
||
|
||
/* Push the first edge on to the stack. */
|
||
stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (fn)->succs));
|
||
|
||
while (!stack.is_empty ())
|
||
{
|
||
basic_block src;
|
||
basic_block dest;
|
||
|
||
/* Look at the edge on the top of the stack. */
|
||
edge_iterator ei = stack.last ();
|
||
src = ei_edge (ei)->src;
|
||
dest = ei_edge (ei)->dest;
|
||
|
||
/* Check if the edge destination has been visited yet. */
|
||
if (dest != EXIT_BLOCK_PTR_FOR_FN (fn)
|
||
&& ! (dest->flags & visited))
|
||
{
|
||
/* Mark that we have visited the destination. */
|
||
dest->flags |= visited;
|
||
|
||
if (pre_order)
|
||
pre_order[pre_order_num] = dest->index;
|
||
|
||
pre_order_num++;
|
||
|
||
if (EDGE_COUNT (dest->succs) > 0)
|
||
/* Since the DEST node has been visited for the first
|
||
time, check its successors. */
|
||
stack.quick_push (ei_start (dest->succs));
|
||
else if (rev_post_order)
|
||
/* There are no successors for the DEST node so assign
|
||
its reverse completion number. */
|
||
rev_post_order[rev_post_order_num--] = dest->index;
|
||
}
|
||
else
|
||
{
|
||
if (ei_one_before_end_p (ei)
|
||
&& src != ENTRY_BLOCK_PTR_FOR_FN (fn)
|
||
&& rev_post_order)
|
||
/* There are no more successors for the SRC node
|
||
so assign its reverse completion number. */
|
||
rev_post_order[rev_post_order_num--] = src->index;
|
||
|
||
if (!ei_one_before_end_p (ei))
|
||
ei_next (&stack.last ());
|
||
else
|
||
stack.pop ();
|
||
}
|
||
}
|
||
|
||
if (include_entry_exit)
|
||
{
|
||
if (pre_order)
|
||
pre_order[pre_order_num] = EXIT_BLOCK;
|
||
pre_order_num++;
|
||
if (rev_post_order)
|
||
rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
|
||
}
|
||
|
||
/* Clear the temporarily allocated flag. */
|
||
if (!rev_post_order)
|
||
rev_post_order = pre_order;
|
||
for (int i = 0; i < pre_order_num; ++i)
|
||
BASIC_BLOCK_FOR_FN (fn, rev_post_order[i])->flags &= ~visited;
|
||
|
||
return pre_order_num;
|
||
}
|
||
|
||
/* Like pre_and_rev_post_order_compute_fn but operating on the
|
||
current function and asserting that all nodes were visited. */
|
||
|
||
int
|
||
pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
|
||
bool include_entry_exit)
|
||
{
|
||
int pre_order_num
|
||
= pre_and_rev_post_order_compute_fn (cfun, pre_order, rev_post_order,
|
||
include_entry_exit);
|
||
if (include_entry_exit)
|
||
/* The number of nodes visited should be the number of blocks. */
|
||
gcc_assert (pre_order_num == n_basic_blocks_for_fn (cfun));
|
||
else
|
||
/* The number of nodes visited should be the number of blocks minus
|
||
the entry and exit blocks which are not visited here. */
|
||
gcc_assert (pre_order_num
|
||
== (n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS));
|
||
|
||
return pre_order_num;
|
||
}
|
||
|
||
|
||
/* Per basic-block data for rev_post_order_and_mark_dfs_back_seme,
|
||
element of a sparsely populated array indexed by basic-block number. */
|
||
typedef auto_vec<int, 2> scc_exit_vec_t;
|
||
struct rpoamdbs_bb_data {
|
||
int depth;
|
||
int bb_to_pre;
|
||
/* The basic-block index of the SCC entry of the block visited first
|
||
(the SCC leader). */
|
||
int scc;
|
||
/* The index into the RPO array where the blocks SCC entries end
|
||
(only valid for the SCC leader). */
|
||
int scc_end;
|
||
/* The indexes of the exits destinations of this SCC (only valid
|
||
for the SCC leader). Initialized upon discovery of SCC leaders. */
|
||
scc_exit_vec_t scc_exits;
|
||
};
|
||
|
||
/* Tag H as a header of B, weaving H and its loop header list into the
|
||
current loop header list of B. */
|
||
|
||
static void
|
||
tag_header (int b, int h, rpoamdbs_bb_data *bb_data)
|
||
{
|
||
if (h == -1 || b == h)
|
||
return;
|
||
int cur1 = b;
|
||
int cur2 = h;
|
||
while (bb_data[cur1].scc != -1)
|
||
{
|
||
int ih = bb_data[cur1].scc;
|
||
if (ih == cur2)
|
||
return;
|
||
if (bb_data[ih].depth < bb_data[cur2].depth)
|
||
{
|
||
bb_data[cur1].scc = cur2;
|
||
cur1 = cur2;
|
||
cur2 = ih;
|
||
}
|
||
else
|
||
cur1 = ih;
|
||
}
|
||
bb_data[cur1].scc = cur2;
|
||
}
|
||
|
||
/* Comparator for a sort of two edges destinations E1 and E2 after their index
|
||
in the PRE array as specified by BB_TO_PRE. */
|
||
|
||
static int
|
||
cmp_edge_dest_pre (const void *e1_, const void *e2_, void *data_)
|
||
{
|
||
const int *e1 = (const int *)e1_;
|
||
const int *e2 = (const int *)e2_;
|
||
rpoamdbs_bb_data *bb_data = (rpoamdbs_bb_data *)data_;
|
||
return (bb_data[*e1].bb_to_pre - bb_data[*e2].bb_to_pre);
|
||
}
|
||
|
||
/* Compute the reverse completion number of a depth first search
|
||
on the SEME region denoted by the ENTRY edge and the EXIT_BBS set of
|
||
exit block indexes and store it in the array REV_POST_ORDER.
|
||
Also sets the EDGE_DFS_BACK edge flags according to this visitation
|
||
order.
|
||
Returns the number of nodes visited.
|
||
|
||
In case the function has unreachable blocks the number of nodes
|
||
visited does not include them.
|
||
|
||
If FOR_ITERATION is true then compute an RPO where SCCs form a
|
||
contiguous region in the RPO array.
|
||
*TOPLEVEL_SCC_EXTENTS if not NULL is filled with pairs of
|
||
*REV_POST_ORDER indexes denoting extents of the toplevel SCCs in
|
||
this region. */
|
||
|
||
int
|
||
rev_post_order_and_mark_dfs_back_seme (struct function *fn, edge entry,
|
||
bitmap exit_bbs, bool for_iteration,
|
||
int *rev_post_order,
|
||
vec<std::pair<int, int> >
|
||
*toplevel_scc_extents)
|
||
{
|
||
int rev_post_order_num = 0;
|
||
|
||
/* BB flag to track nodes that have been visited. */
|
||
auto_bb_flag visited (fn);
|
||
|
||
/* Lazily initialized per-BB data for the two DFS walks below. */
|
||
rpoamdbs_bb_data *bb_data
|
||
= XNEWVEC (rpoamdbs_bb_data, last_basic_block_for_fn (fn));
|
||
|
||
/* First DFS walk, loop discovery according to
|
||
A New Algorithm for Identifying Loops in Decompilation
|
||
by Tao Wei, Jian Mao, Wei Zou and You Chen of the Institute of
|
||
Computer Science and Technology of the Peking University. */
|
||
auto_vec<edge_iterator, 20> ei_stack (n_basic_blocks_for_fn (fn) + 1);
|
||
auto_bb_flag is_header (fn);
|
||
int depth = 1;
|
||
unsigned n_sccs = 0;
|
||
|
||
basic_block dest = entry->dest;
|
||
edge_iterator ei;
|
||
int pre_num = 0;
|
||
|
||
/* DFS process DEST. */
|
||
find_loops:
|
||
bb_data[dest->index].bb_to_pre = pre_num++;
|
||
bb_data[dest->index].depth = depth;
|
||
bb_data[dest->index].scc = -1;
|
||
depth++;
|
||
gcc_assert ((dest->flags & (is_header|visited)) == 0);
|
||
dest->flags |= visited;
|
||
ei = ei_start (dest->succs);
|
||
while (!ei_end_p (ei))
|
||
{
|
||
ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
|
||
if (bitmap_bit_p (exit_bbs, ei_edge (ei)->dest->index))
|
||
;
|
||
else if (!(ei_edge (ei)->dest->flags & visited))
|
||
{
|
||
ei_stack.quick_push (ei);
|
||
dest = ei_edge (ei)->dest;
|
||
/* DFS recurse on DEST. */
|
||
goto find_loops;
|
||
|
||
ret_from_find_loops:
|
||
/* Return point of DFS recursion. */
|
||
ei = ei_stack.pop ();
|
||
dest = ei_edge (ei)->src;
|
||
int header = bb_data[ei_edge (ei)->dest->index].scc;
|
||
tag_header (dest->index, header, bb_data);
|
||
depth = bb_data[dest->index].depth + 1;
|
||
}
|
||
else
|
||
{
|
||
if (bb_data[ei_edge (ei)->dest->index].depth > 0) /* on the stack */
|
||
{
|
||
ei_edge (ei)->flags |= EDGE_DFS_BACK;
|
||
n_sccs++;
|
||
ei_edge (ei)->dest->flags |= is_header;
|
||
::new (&bb_data[ei_edge (ei)->dest->index].scc_exits)
|
||
auto_vec<int, 2> ();
|
||
tag_header (dest->index, ei_edge (ei)->dest->index, bb_data);
|
||
}
|
||
else if (bb_data[ei_edge (ei)->dest->index].scc == -1)
|
||
;
|
||
else
|
||
{
|
||
int header = bb_data[ei_edge (ei)->dest->index].scc;
|
||
if (bb_data[header].depth > 0)
|
||
tag_header (dest->index, header, bb_data);
|
||
else
|
||
{
|
||
/* A re-entry into an existing loop. */
|
||
/* ??? Need to mark is_header? */
|
||
while (bb_data[header].scc != -1)
|
||
{
|
||
header = bb_data[header].scc;
|
||
if (bb_data[header].depth > 0)
|
||
{
|
||
tag_header (dest->index, header, bb_data);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
ei_next (&ei);
|
||
}
|
||
rev_post_order[rev_post_order_num++] = dest->index;
|
||
/* not on the stack anymore */
|
||
bb_data[dest->index].depth = -bb_data[dest->index].depth;
|
||
if (!ei_stack.is_empty ())
|
||
/* Return from DFS recursion. */
|
||
goto ret_from_find_loops;
|
||
|
||
/* Optimize for no SCCs found or !for_iteration. */
|
||
if (n_sccs == 0 || !for_iteration)
|
||
{
|
||
/* Clear the temporarily allocated flags. */
|
||
for (int i = 0; i < rev_post_order_num; ++i)
|
||
BASIC_BLOCK_FOR_FN (fn, rev_post_order[i])->flags
|
||
&= ~(is_header|visited);
|
||
/* And swap elements. */
|
||
for (int i = 0; i < rev_post_order_num/2; ++i)
|
||
std::swap (rev_post_order[i], rev_post_order[rev_post_order_num-i-1]);
|
||
XDELETEVEC (bb_data);
|
||
|
||
return rev_post_order_num;
|
||
}
|
||
|
||
/* Next find SCC exits, clear the visited flag and compute an upper bound
|
||
for the edge stack below. */
|
||
unsigned edge_count = 0;
|
||
for (int i = 0; i < rev_post_order_num; ++i)
|
||
{
|
||
int bb = rev_post_order[i];
|
||
BASIC_BLOCK_FOR_FN (fn, bb)->flags &= ~visited;
|
||
edge e;
|
||
FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (fn, bb)->succs)
|
||
{
|
||
if (bitmap_bit_p (exit_bbs, e->dest->index))
|
||
continue;
|
||
edge_count++;
|
||
/* if e is an exit from e->src, record it for
|
||
bb_data[e->src].scc. */
|
||
int src_scc = e->src->index;
|
||
if (!(e->src->flags & is_header))
|
||
src_scc = bb_data[src_scc].scc;
|
||
if (src_scc == -1)
|
||
continue;
|
||
int dest_scc = e->dest->index;
|
||
if (!(e->dest->flags & is_header))
|
||
dest_scc = bb_data[dest_scc].scc;
|
||
if (src_scc == dest_scc)
|
||
continue;
|
||
/* When dest_scc is nested insde src_scc it's not an
|
||
exit. */
|
||
int tem_dest_scc = dest_scc;
|
||
unsigned dest_scc_depth = 0;
|
||
while (tem_dest_scc != -1)
|
||
{
|
||
dest_scc_depth++;
|
||
if ((tem_dest_scc = bb_data[tem_dest_scc].scc) == src_scc)
|
||
break;
|
||
}
|
||
if (tem_dest_scc != -1)
|
||
continue;
|
||
/* When src_scc is nested inside dest_scc record an
|
||
exit from the outermost SCC this edge exits. */
|
||
int tem_src_scc = src_scc;
|
||
unsigned src_scc_depth = 0;
|
||
while (tem_src_scc != -1)
|
||
{
|
||
if (bb_data[tem_src_scc].scc == dest_scc)
|
||
{
|
||
edge_count++;
|
||
bb_data[tem_src_scc].scc_exits.safe_push (e->dest->index);
|
||
break;
|
||
}
|
||
tem_src_scc = bb_data[tem_src_scc].scc;
|
||
src_scc_depth++;
|
||
}
|
||
/* Else find the outermost SCC this edge exits (exits
|
||
from the inner SCCs are not important for the DFS
|
||
walk adjustment). Do so by computing the common
|
||
ancestor SCC where the immediate child it to the source
|
||
SCC is the exited SCC. */
|
||
if (tem_src_scc == -1)
|
||
{
|
||
edge_count++;
|
||
while (src_scc_depth > dest_scc_depth)
|
||
{
|
||
src_scc = bb_data[src_scc].scc;
|
||
src_scc_depth--;
|
||
}
|
||
while (dest_scc_depth > src_scc_depth)
|
||
{
|
||
dest_scc = bb_data[dest_scc].scc;
|
||
dest_scc_depth--;
|
||
}
|
||
while (bb_data[src_scc].scc != bb_data[dest_scc].scc)
|
||
{
|
||
src_scc = bb_data[src_scc].scc;
|
||
dest_scc = bb_data[dest_scc].scc;
|
||
}
|
||
bb_data[src_scc].scc_exits.safe_push (e->dest->index);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now the second DFS walk to compute a RPO where the extent of SCCs
|
||
is minimized thus SCC members are adjacent in the RPO array.
|
||
This is done by performing a DFS walk computing RPO with first visiting
|
||
extra direct edges from SCC entry to its exits.
|
||
That simulates a DFS walk over the graph with SCCs collapsed and
|
||
walking the SCCs themselves only when all outgoing edges from the
|
||
SCCs have been visited.
|
||
SCC_END[scc-header-index] is the position in the RPO array of the
|
||
last member of the SCC. */
|
||
auto_vec<std::pair<basic_block, basic_block>, 20> estack (edge_count + 1);
|
||
int idx = rev_post_order_num;
|
||
basic_block edest;
|
||
dest = entry->dest;
|
||
|
||
/* DFS process DEST. */
|
||
dfs_rpo:
|
||
gcc_checking_assert ((dest->flags & visited) == 0);
|
||
/* Verify we enter SCCs through the same header and SCC nesting appears
|
||
the same. */
|
||
gcc_assert (bb_data[dest->index].scc == -1
|
||
|| (BASIC_BLOCK_FOR_FN (fn, bb_data[dest->index].scc)->flags
|
||
& visited));
|
||
dest->flags |= visited;
|
||
bb_data[dest->index].scc_end = -1;
|
||
if ((dest->flags & is_header)
|
||
&& !bb_data[dest->index].scc_exits.is_empty ())
|
||
{
|
||
/* Push the all SCC exits as outgoing edges from its header to
|
||
be visited first.
|
||
To process exits in the same relative order as in the first
|
||
DFS walk sort them after their destination PRE order index. */
|
||
gcc_sort_r (&bb_data[dest->index].scc_exits[0],
|
||
bb_data[dest->index].scc_exits.length (),
|
||
sizeof (int), cmp_edge_dest_pre, bb_data);
|
||
/* Process edges in reverse to match previous DFS walk order. */
|
||
for (int i = bb_data[dest->index].scc_exits.length () - 1; i >= 0; --i)
|
||
estack.quick_push (std::make_pair
|
||
(dest, BASIC_BLOCK_FOR_FN (fn, bb_data[dest->index].scc_exits[i])));
|
||
}
|
||
else
|
||
{
|
||
if (dest->flags & is_header)
|
||
bb_data[dest->index].scc_end = idx - 1;
|
||
/* Push the edge vector in reverse to match the iteration order
|
||
from the DFS walk above. */
|
||
for (int i = EDGE_COUNT (dest->succs) - 1; i >= 0; --i)
|
||
if (!bitmap_bit_p (exit_bbs, EDGE_SUCC (dest, i)->dest->index))
|
||
estack.quick_push (std::make_pair (dest,
|
||
EDGE_SUCC (dest, i)->dest));
|
||
}
|
||
while (!estack.is_empty ()
|
||
&& estack.last ().first == dest)
|
||
{
|
||
edest = estack.last ().second;
|
||
if (!(edest->flags & visited))
|
||
{
|
||
dest = edest;
|
||
/* DFS recurse on DEST. */
|
||
goto dfs_rpo;
|
||
|
||
ret_from_dfs_rpo:
|
||
/* Return point of DFS recursion. */
|
||
dest = estack.last ().first;
|
||
}
|
||
estack.pop ();
|
||
/* If we processed all SCC exits from DEST mark the SCC end
|
||
since all RPO entries up to DEST itself will now belong
|
||
to its SCC. The special-case of no SCC exits is already
|
||
dealt with above. */
|
||
if (dest->flags & is_header
|
||
/* When the last exit edge was processed mark the SCC end
|
||
and push the regular edges. */
|
||
&& bb_data[dest->index].scc_end == -1
|
||
&& (estack.is_empty ()
|
||
|| estack.last ().first != dest))
|
||
{
|
||
bb_data[dest->index].scc_end = idx - 1;
|
||
/* Push the edge vector in reverse to match the iteration order
|
||
from the DFS walk above. */
|
||
for (int i = EDGE_COUNT (dest->succs) - 1; i >= 0; --i)
|
||
if (!bitmap_bit_p (exit_bbs, EDGE_SUCC (dest, i)->dest->index))
|
||
estack.quick_push (std::make_pair (dest,
|
||
EDGE_SUCC (dest, i)->dest));
|
||
}
|
||
}
|
||
rev_post_order[--idx] = dest->index;
|
||
if (!estack.is_empty ())
|
||
/* Return from DFS recursion. */
|
||
goto ret_from_dfs_rpo;
|
||
|
||
/* Each SCC extends are from the position of the header inside
|
||
the RPO array up to RPO array index scc_end[header-index]. */
|
||
if (toplevel_scc_extents)
|
||
for (int i = 0; i < rev_post_order_num; i++)
|
||
{
|
||
basic_block bb = BASIC_BLOCK_FOR_FN (fn, rev_post_order[i]);
|
||
if (bb->flags & is_header)
|
||
{
|
||
toplevel_scc_extents->safe_push
|
||
(std::make_pair (i, bb_data[bb->index].scc_end));
|
||
i = bb_data[bb->index].scc_end;
|
||
}
|
||
}
|
||
|
||
/* Clear the temporarily allocated flags and free memory. */
|
||
for (int i = 0; i < rev_post_order_num; ++i)
|
||
{
|
||
basic_block bb = BASIC_BLOCK_FOR_FN (fn, rev_post_order[i]);
|
||
if (bb->flags & is_header)
|
||
bb_data[bb->index].scc_exits.~scc_exit_vec_t ();
|
||
bb->flags &= ~(visited|is_header);
|
||
}
|
||
|
||
XDELETEVEC (bb_data);
|
||
|
||
return rev_post_order_num;
|
||
}
|
||
|
||
|
||
|
||
/* Compute the depth first search order on the _reverse_ graph and
|
||
store it in the array DFS_ORDER, marking the nodes visited in VISITED.
|
||
Returns the number of nodes visited.
|
||
|
||
The computation is split into three pieces:
|
||
|
||
flow_dfs_compute_reverse_init () creates the necessary data
|
||
structures.
|
||
|
||
flow_dfs_compute_reverse_add_bb () adds a basic block to the data
|
||
structures. The block will start the search.
|
||
|
||
flow_dfs_compute_reverse_execute () continues (or starts) the
|
||
search using the block on the top of the stack, stopping when the
|
||
stack is empty.
|
||
|
||
flow_dfs_compute_reverse_finish () destroys the necessary data
|
||
structures.
|
||
|
||
Thus, the user will probably call ..._init(), call ..._add_bb() to
|
||
add a beginning basic block to the stack, call ..._execute(),
|
||
possibly add another bb to the stack and again call ..._execute(),
|
||
..., and finally call _finish(). */
|
||
|
||
/* Initialize the data structures used for depth-first search on the
|
||
reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
|
||
added to the basic block stack. DATA is the current depth-first
|
||
search context. If INITIALIZE_STACK is nonzero, there is an
|
||
element on the stack. */
|
||
|
||
depth_first_search::depth_first_search () :
|
||
m_stack (n_basic_blocks_for_fn (cfun)),
|
||
m_visited_blocks (last_basic_block_for_fn (cfun))
|
||
{
|
||
bitmap_clear (m_visited_blocks);
|
||
}
|
||
|
||
/* Add the specified basic block to the top of the dfs data
|
||
structures. When the search continues, it will start at the
|
||
block. */
|
||
|
||
void
|
||
depth_first_search::add_bb (basic_block bb)
|
||
{
|
||
m_stack.quick_push (bb);
|
||
bitmap_set_bit (m_visited_blocks, bb->index);
|
||
}
|
||
|
||
/* Continue the depth-first search through the reverse graph starting with the
|
||
block at the stack's top and ending when the stack is empty. Visited nodes
|
||
are marked. Returns an unvisited basic block, or NULL if there is none
|
||
available. */
|
||
|
||
basic_block
|
||
depth_first_search::execute (basic_block last_unvisited)
|
||
{
|
||
basic_block bb;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
while (!m_stack.is_empty ())
|
||
{
|
||
bb = m_stack.pop ();
|
||
|
||
/* Perform depth-first search on adjacent vertices. */
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if (!bitmap_bit_p (m_visited_blocks, e->src->index))
|
||
add_bb (e->src);
|
||
}
|
||
|
||
/* Determine if there are unvisited basic blocks. */
|
||
FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
|
||
if (!bitmap_bit_p (m_visited_blocks, bb->index))
|
||
return bb;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Performs dfs search from BB over vertices satisfying PREDICATE;
|
||
if REVERSE, go against direction of edges. Returns number of blocks
|
||
found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
|
||
int
|
||
dfs_enumerate_from (basic_block bb, int reverse,
|
||
bool (*predicate) (const_basic_block, const void *),
|
||
basic_block *rslt, int rslt_max, const void *data)
|
||
{
|
||
basic_block *st, lbb;
|
||
int sp = 0, tv = 0;
|
||
|
||
auto_bb_flag visited (cfun);
|
||
|
||
#define MARK_VISITED(BB) ((BB)->flags |= visited)
|
||
#define UNMARK_VISITED(BB) ((BB)->flags &= ~visited)
|
||
#define VISITED_P(BB) (((BB)->flags & visited) != 0)
|
||
|
||
st = XNEWVEC (basic_block, rslt_max);
|
||
rslt[tv++] = st[sp++] = bb;
|
||
MARK_VISITED (bb);
|
||
while (sp)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
lbb = st[--sp];
|
||
if (reverse)
|
||
{
|
||
FOR_EACH_EDGE (e, ei, lbb->preds)
|
||
if (!VISITED_P (e->src) && predicate (e->src, data))
|
||
{
|
||
gcc_assert (tv != rslt_max);
|
||
rslt[tv++] = st[sp++] = e->src;
|
||
MARK_VISITED (e->src);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
FOR_EACH_EDGE (e, ei, lbb->succs)
|
||
if (!VISITED_P (e->dest) && predicate (e->dest, data))
|
||
{
|
||
gcc_assert (tv != rslt_max);
|
||
rslt[tv++] = st[sp++] = e->dest;
|
||
MARK_VISITED (e->dest);
|
||
}
|
||
}
|
||
}
|
||
free (st);
|
||
for (sp = 0; sp < tv; sp++)
|
||
UNMARK_VISITED (rslt[sp]);
|
||
return tv;
|
||
#undef MARK_VISITED
|
||
#undef UNMARK_VISITED
|
||
#undef VISITED_P
|
||
}
|
||
|
||
|
||
/* Compute dominance frontiers, ala Harvey, Ferrante, et al.
|
||
|
||
This algorithm can be found in Timothy Harvey's PhD thesis, at
|
||
http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
|
||
dominance algorithms.
|
||
|
||
First, we identify each join point, j (any node with more than one
|
||
incoming edge is a join point).
|
||
|
||
We then examine each predecessor, p, of j and walk up the dominator tree
|
||
starting at p.
|
||
|
||
We stop the walk when we reach j's immediate dominator - j is in the
|
||
dominance frontier of each of the nodes in the walk, except for j's
|
||
immediate dominator. Intuitively, all of the rest of j's dominators are
|
||
shared by j's predecessors as well.
|
||
Since they dominate j, they will not have j in their dominance frontiers.
|
||
|
||
The number of nodes touched by this algorithm is equal to the size
|
||
of the dominance frontiers, no more, no less.
|
||
*/
|
||
|
||
void
|
||
compute_dominance_frontiers (bitmap_head *frontiers)
|
||
{
|
||
timevar_push (TV_DOM_FRONTIERS);
|
||
|
||
edge p;
|
||
edge_iterator ei;
|
||
basic_block b;
|
||
FOR_EACH_BB_FN (b, cfun)
|
||
{
|
||
if (EDGE_COUNT (b->preds) >= 2)
|
||
{
|
||
basic_block domsb = get_immediate_dominator (CDI_DOMINATORS, b);
|
||
FOR_EACH_EDGE (p, ei, b->preds)
|
||
{
|
||
basic_block runner = p->src;
|
||
if (runner == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
while (runner != domsb)
|
||
{
|
||
if (!bitmap_set_bit (&frontiers[runner->index], b->index))
|
||
break;
|
||
runner = get_immediate_dominator (CDI_DOMINATORS, runner);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
timevar_pop (TV_DOM_FRONTIERS);
|
||
}
|
||
|
||
/* Given a set of blocks with variable definitions (DEF_BLOCKS),
|
||
return a bitmap with all the blocks in the iterated dominance
|
||
frontier of the blocks in DEF_BLOCKS. DFS contains dominance
|
||
frontier information as returned by compute_dominance_frontiers.
|
||
|
||
The resulting set of blocks are the potential sites where PHI nodes
|
||
are needed. The caller is responsible for freeing the memory
|
||
allocated for the return value. */
|
||
|
||
bitmap
|
||
compute_idf (bitmap def_blocks, bitmap_head *dfs)
|
||
{
|
||
bitmap_iterator bi;
|
||
unsigned bb_index, i;
|
||
bitmap phi_insertion_points;
|
||
|
||
phi_insertion_points = BITMAP_ALLOC (NULL);
|
||
|
||
/* Seed the work set with all the blocks in DEF_BLOCKS. */
|
||
auto_bitmap work_set;
|
||
bitmap_copy (work_set, def_blocks);
|
||
bitmap_tree_view (work_set);
|
||
|
||
/* Pop a block off the workset, add every block that appears in
|
||
the original block's DF that we have not already processed to
|
||
the workset. Iterate until the workset is empty. Blocks
|
||
which are added to the workset are potential sites for
|
||
PHI nodes. */
|
||
while (!bitmap_empty_p (work_set))
|
||
{
|
||
/* The dominance frontier of a block is blocks after it so iterating
|
||
on earlier blocks first is better.
|
||
??? Basic blocks are by no means guaranteed to be ordered in
|
||
optimal order for this iteration. */
|
||
bb_index = bitmap_first_set_bit (work_set);
|
||
bitmap_clear_bit (work_set, bb_index);
|
||
|
||
/* Since the registration of NEW -> OLD name mappings is done
|
||
separately from the call to update_ssa, when updating the SSA
|
||
form, the basic blocks where new and/or old names are defined
|
||
may have disappeared by CFG cleanup calls. In this case,
|
||
we may pull a non-existing block from the work stack. */
|
||
gcc_checking_assert (bb_index
|
||
< (unsigned) last_basic_block_for_fn (cfun));
|
||
|
||
EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs[bb_index], phi_insertion_points,
|
||
0, i, bi)
|
||
{
|
||
bitmap_set_bit (work_set, i);
|
||
bitmap_set_bit (phi_insertion_points, i);
|
||
}
|
||
}
|
||
|
||
return phi_insertion_points;
|
||
}
|
||
|
||
/* Intersection and union of preds/succs for sbitmap based data flow
|
||
solvers. All four functions defined below take the same arguments:
|
||
B is the basic block to perform the operation for. DST is the
|
||
target sbitmap, i.e. the result. SRC is an sbitmap vector of size
|
||
last_basic_block so that it can be indexed with basic block indices.
|
||
DST may be (but does not have to be) SRC[B->index]. */
|
||
|
||
/* Set the bitmap DST to the intersection of SRC of successors of
|
||
basic block B. */
|
||
|
||
void
|
||
bitmap_intersection_of_succs (sbitmap dst, sbitmap *src, basic_block b)
|
||
{
|
||
unsigned int set_size = dst->size;
|
||
edge e;
|
||
unsigned ix;
|
||
|
||
for (e = NULL, ix = 0; ix < EDGE_COUNT (b->succs); ix++)
|
||
{
|
||
e = EDGE_SUCC (b, ix);
|
||
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
bitmap_copy (dst, src[e->dest->index]);
|
||
break;
|
||
}
|
||
|
||
if (e == 0)
|
||
bitmap_ones (dst);
|
||
else
|
||
for (++ix; ix < EDGE_COUNT (b->succs); ix++)
|
||
{
|
||
unsigned int i;
|
||
SBITMAP_ELT_TYPE *p, *r;
|
||
|
||
e = EDGE_SUCC (b, ix);
|
||
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
p = src[e->dest->index]->elms;
|
||
r = dst->elms;
|
||
for (i = 0; i < set_size; i++)
|
||
*r++ &= *p++;
|
||
}
|
||
}
|
||
|
||
/* Set the bitmap DST to the intersection of SRC of predecessors of
|
||
basic block B. */
|
||
|
||
void
|
||
bitmap_intersection_of_preds (sbitmap dst, sbitmap *src, basic_block b)
|
||
{
|
||
unsigned int set_size = dst->size;
|
||
edge e;
|
||
unsigned ix;
|
||
|
||
for (e = NULL, ix = 0; ix < EDGE_COUNT (b->preds); ix++)
|
||
{
|
||
e = EDGE_PRED (b, ix);
|
||
if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
bitmap_copy (dst, src[e->src->index]);
|
||
break;
|
||
}
|
||
|
||
if (e == 0)
|
||
bitmap_ones (dst);
|
||
else
|
||
for (++ix; ix < EDGE_COUNT (b->preds); ix++)
|
||
{
|
||
unsigned int i;
|
||
SBITMAP_ELT_TYPE *p, *r;
|
||
|
||
e = EDGE_PRED (b, ix);
|
||
if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
p = src[e->src->index]->elms;
|
||
r = dst->elms;
|
||
for (i = 0; i < set_size; i++)
|
||
*r++ &= *p++;
|
||
}
|
||
}
|
||
|
||
/* Set the bitmap DST to the union of SRC of successors of
|
||
basic block B. */
|
||
|
||
void
|
||
bitmap_union_of_succs (sbitmap dst, sbitmap *src, basic_block b)
|
||
{
|
||
unsigned int set_size = dst->size;
|
||
edge e;
|
||
unsigned ix;
|
||
|
||
for (ix = 0; ix < EDGE_COUNT (b->succs); ix++)
|
||
{
|
||
e = EDGE_SUCC (b, ix);
|
||
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
bitmap_copy (dst, src[e->dest->index]);
|
||
break;
|
||
}
|
||
|
||
if (ix == EDGE_COUNT (b->succs))
|
||
bitmap_clear (dst);
|
||
else
|
||
for (ix++; ix < EDGE_COUNT (b->succs); ix++)
|
||
{
|
||
unsigned int i;
|
||
SBITMAP_ELT_TYPE *p, *r;
|
||
|
||
e = EDGE_SUCC (b, ix);
|
||
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
p = src[e->dest->index]->elms;
|
||
r = dst->elms;
|
||
for (i = 0; i < set_size; i++)
|
||
*r++ |= *p++;
|
||
}
|
||
}
|
||
|
||
/* Set the bitmap DST to the union of SRC of predecessors of
|
||
basic block B. */
|
||
|
||
void
|
||
bitmap_union_of_preds (sbitmap dst, sbitmap *src, basic_block b)
|
||
{
|
||
unsigned int set_size = dst->size;
|
||
edge e;
|
||
unsigned ix;
|
||
|
||
for (ix = 0; ix < EDGE_COUNT (b->preds); ix++)
|
||
{
|
||
e = EDGE_PRED (b, ix);
|
||
if (e->src== ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
bitmap_copy (dst, src[e->src->index]);
|
||
break;
|
||
}
|
||
|
||
if (ix == EDGE_COUNT (b->preds))
|
||
bitmap_clear (dst);
|
||
else
|
||
for (ix++; ix < EDGE_COUNT (b->preds); ix++)
|
||
{
|
||
unsigned int i;
|
||
SBITMAP_ELT_TYPE *p, *r;
|
||
|
||
e = EDGE_PRED (b, ix);
|
||
if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
p = src[e->src->index]->elms;
|
||
r = dst->elms;
|
||
for (i = 0; i < set_size; i++)
|
||
*r++ |= *p++;
|
||
}
|
||
}
|
||
|
||
/* Returns the list of basic blocks in the function in an order that guarantees
|
||
that if a block X has just a single predecessor Y, then Y is after X in the
|
||
ordering. */
|
||
|
||
basic_block *
|
||
single_pred_before_succ_order (void)
|
||
{
|
||
basic_block x, y;
|
||
basic_block *order = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
|
||
unsigned n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
|
||
unsigned np, i;
|
||
auto_sbitmap visited (last_basic_block_for_fn (cfun));
|
||
|
||
#define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
|
||
#define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
|
||
|
||
bitmap_clear (visited);
|
||
|
||
MARK_VISITED (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
||
FOR_EACH_BB_FN (x, cfun)
|
||
{
|
||
if (VISITED_P (x))
|
||
continue;
|
||
|
||
/* Walk the predecessors of x as long as they have precisely one
|
||
predecessor and add them to the list, so that they get stored
|
||
after x. */
|
||
for (y = x, np = 1;
|
||
single_pred_p (y) && !VISITED_P (single_pred (y));
|
||
y = single_pred (y))
|
||
np++;
|
||
for (y = x, i = n - np;
|
||
single_pred_p (y) && !VISITED_P (single_pred (y));
|
||
y = single_pred (y), i++)
|
||
{
|
||
order[i] = y;
|
||
MARK_VISITED (y);
|
||
}
|
||
order[i] = y;
|
||
MARK_VISITED (y);
|
||
|
||
gcc_assert (i == n - 1);
|
||
n -= np;
|
||
}
|
||
|
||
gcc_assert (n == 0);
|
||
return order;
|
||
|
||
#undef MARK_VISITED
|
||
#undef VISITED_P
|
||
}
|
||
|
||
/* Ignoring loop backedges, if BB has precisely one incoming edge then
|
||
return that edge. Otherwise return NULL.
|
||
|
||
When IGNORE_NOT_EXECUTABLE is true, also ignore edges that are not marked
|
||
as executable. */
|
||
|
||
edge
|
||
single_pred_edge_ignoring_loop_edges (basic_block bb,
|
||
bool ignore_not_executable)
|
||
{
|
||
edge retval = NULL;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
/* A loop back edge can be identified by the destination of
|
||
the edge dominating the source of the edge. */
|
||
if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
|
||
continue;
|
||
|
||
/* We can safely ignore edges that are not executable. */
|
||
if (ignore_not_executable
|
||
&& (e->flags & EDGE_EXECUTABLE) == 0)
|
||
continue;
|
||
|
||
/* If we have already seen a non-loop edge, then we must have
|
||
multiple incoming non-loop edges and thus we return NULL. */
|
||
if (retval)
|
||
return NULL;
|
||
|
||
/* This is the first non-loop incoming edge we have found. Record
|
||
it. */
|
||
retval = e;
|
||
}
|
||
|
||
return retval;
|
||
}
|