gcc/libgfortran/generated/minval0_s1.c
2022-01-03 10:42:10 +01:00

265 lines
6.3 KiB
C

/* Implementation of the MAXLOC intrinsic
Copyright (C) 2017-2022 Free Software Foundation, Inc.
Contributed by Thomas Koenig
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <limits.h>
#if defined (HAVE_GFC_UINTEGER_1) && defined (HAVE_GFC_UINTEGER_1)
static inline int
compare_fcn (const GFC_UINTEGER_1 *a, const GFC_UINTEGER_1 *b, gfc_charlen_type n)
{
if (sizeof (GFC_UINTEGER_1) == 1)
return memcmp (a, b, n);
else
return memcmp_char4 (a, b, n);
}
#define INITVAL 255
extern void minval0_s1 (GFC_UINTEGER_1 * restrict,
gfc_charlen_type,
gfc_array_s1 * const restrict array, gfc_charlen_type);
export_proto(minval0_s1);
void
minval0_s1 (GFC_UINTEGER_1 * restrict ret,
gfc_charlen_type xlen,
gfc_array_s1 * const restrict array, gfc_charlen_type len)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
const GFC_UINTEGER_1 *base;
index_type rank;
index_type n;
rank = GFC_DESCRIPTOR_RANK (array);
if (rank <= 0)
runtime_error ("Rank of array needs to be > 0");
assert (xlen == len);
/* Initialize return value. */
memset (ret, INITVAL, sizeof(*ret) * len);
for (n = 0; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len;
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
count[n] = 0;
if (extent[n] <= 0)
return;
}
base = array->base_addr;
{
const GFC_UINTEGER_1 *retval;
retval = ret;
while (base)
{
do
{
/* Implementation start. */
if (compare_fcn (base, retval, len) < 0)
{
retval = base;
}
/* Implementation end. */
/* Advance to the next element. */
base += sstride[0];
}
while (++count[0] != extent[0]);
n = 0;
do
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
n++;
if (n >= rank)
{
/* Break out of the loop. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
}
}
while (count[n] == extent[n]);
}
memcpy (ret, retval, len * sizeof (*ret));
}
}
extern void mminval0_s1 (GFC_UINTEGER_1 * restrict,
gfc_charlen_type, gfc_array_s1 * const restrict array,
gfc_array_l1 * const restrict mask, gfc_charlen_type len);
export_proto(mminval0_s1);
void
mminval0_s1 (GFC_UINTEGER_1 * const restrict ret,
gfc_charlen_type xlen, gfc_array_s1 * const restrict array,
gfc_array_l1 * const restrict mask, gfc_charlen_type len)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type mstride[GFC_MAX_DIMENSIONS];
const GFC_UINTEGER_1 *base;
GFC_LOGICAL_1 *mbase;
int rank;
index_type n;
int mask_kind;
if (mask == NULL)
{
minval0_s1 (ret, xlen, array, len);
return;
}
rank = GFC_DESCRIPTOR_RANK (array);
if (rank <= 0)
runtime_error ("Rank of array needs to be > 0");
assert (xlen == len);
/* Initialize return value. */
memset (ret, INITVAL, sizeof(*ret) * len);
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
mbase = mask->base_addr;
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
else
runtime_error ("Funny sized logical array");
for (n = 0; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len;
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
count[n] = 0;
if (extent[n] <= 0)
return;
}
base = array->base_addr;
{
const GFC_UINTEGER_1 *retval;
retval = ret;
while (base)
{
do
{
/* Implementation start. */
if (*mbase && compare_fcn (base, retval, len) < 0)
{
retval = base;
}
/* Implementation end. */
/* Advance to the next element. */
base += sstride[0];
mbase += mstride[0];
}
while (++count[0] != extent[0]);
n = 0;
do
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
mbase -= mstride[n] * extent[n];
n++;
if (n >= rank)
{
/* Break out of the loop. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
mbase += mstride[n];
}
}
while (count[n] == extent[n]);
}
memcpy (ret, retval, len * sizeof (*ret));
}
}
extern void sminval0_s1 (GFC_UINTEGER_1 * restrict,
gfc_charlen_type,
gfc_array_s1 * const restrict array, GFC_LOGICAL_4 *, gfc_charlen_type);
export_proto(sminval0_s1);
void
sminval0_s1 (GFC_UINTEGER_1 * restrict ret,
gfc_charlen_type xlen, gfc_array_s1 * const restrict array,
GFC_LOGICAL_4 *mask, gfc_charlen_type len)
{
if (mask == NULL || *mask)
{
minval0_s1 (ret, xlen, array, len);
return;
}
memset (ret, INITVAL, sizeof (*ret) * len);
}
#endif