Johannes Singler 1904bef10a parallel_mode.html: Added reference to MCSTL.
* docs/html/parallel_mode.html: Added reference to MCSTL.
        More documentation on compile-time settings and tuning.
        * include/parallel/multiway_merge.h: Added reference to paper.
        * include/parallel/multiseq_selection.h: Added reference to paper.
        * include/parallel/workstealing.h: Added reference to paper.
        * include/parallel/balanced_quicksort.h: Added reference to paper.
        * include/parallel/tree.h: Added reference to paper.

From-SVN: r129129
2007-10-08 15:17:28 +00:00

3631 lines
129 KiB
C++

// -*- C++ -*-
// Copyright (C) 2007 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the terms
// of the GNU General Public License as published by the Free Software
// Foundation; either version 2, or (at your option) any later
// version.
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this library; see the file COPYING. If not, write to
// the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
// MA 02111-1307, USA.
// As a special exception, you may use this file as part of a free
// software library without restriction. Specifically, if other files
// instantiate templates or use macros or inline functions from this
// file, or you compile this file and link it with other files to
// produce an executable, this file does not by itself cause the
// resulting executable to be covered by the GNU General Public
// License. This exception does not however invalidate any other
// reasons why the executable file might be covered by the GNU General
// Public License.
/** @file parallel/tree.h
* @brief Parallel red-black tree operations.
*
* This implementation is described in
*
* Leonor Frias, Johannes Singler.
* Parallelization of Bulk Operations for STL Dictionaries.
* Workshop on Highly Parallel Processing on a Chip (HPPC) 2007.
*
* This file is a GNU parallel extension to the Standard C++ Library.
*/
// Written by Leonor Frias Moya, Johannes Singler.
#ifndef _GLIBCXX_PARALLEL_TREE_H
#define _GLIBCXX_PARALLEL_TREE_H 1
#include <parallel/parallel.h>
#include <functional>
#include <cmath>
#include <algorithm>
#include <iterator>
#include <functional>
#include <iostream>
//#include <ext/malloc_allocator.h>
#include <bits/stl_tree.h>
#include <parallel/list_partition.h>
//#define _GLIBCXX_TIMING
#ifdef _GLIBCXX_TIMING
#define _timing_tag parallel_tag
#else
#define _timing_tag sequential_tag
#endif
namespace std
{
// XXX Declaration should go to stl_tree.h.
void
_Rb_tree_rotate_left(_Rb_tree_node_base* const __x,
_Rb_tree_node_base*& __root);
void
_Rb_tree_rotate_right(_Rb_tree_node_base* const __x,
_Rb_tree_node_base*& __root);
}
namespace __gnu_parallel
{
// XXX move into parallel/type_traits.h if <type_traits> doesn't work.
/** @brief Helper class: remove the const modifier from the first
component, if present. Set kind component.
* @param T Simple type, nothing to unconst */
template<typename T>
struct unconst_first_component
{
/** @brief New type after removing the const */
typedef T type;
};
/** @brief Helper class: remove the const modifier from the first
component, if present. Map kind component
* @param Key First component, from which to remove the const modifier
* @param Load Second component
* @sa unconst_first_component */
template<typename Key, typename Load>
struct unconst_first_component<std::pair<const Key, Load> >
{
/** @brief New type after removing the const */
typedef std::pair<Key, Load> type;
};
/** @brief Helper class: set the appropriate comparator to deal with
* repetitions. Comparator for unique dictionaries.
*
* StrictlyLess and LessEqual are part of a mechanism to deal with
* repetitions transparently whatever the actual policy is.
* @param _Key Keys to compare
* @param _Compare Comparator equal to conceptual < */
template<typename _Key, typename _Compare>
struct StrictlyLess : public std::binary_function<_Key, _Key, bool>
{
/** @brief Comparator equal to conceptual < */
_Compare c;
/** @brief Constructor given a Comparator */
StrictlyLess(const _Compare& _c) : c(_c) { }
/** @brief Copy constructor */
StrictlyLess(const StrictlyLess<_Key, _Compare>& strictly_less)
: c(strictly_less.c) { }
/** @brief Operator() */
bool operator()(const _Key& k1, const _Key& k2) const
{
return c(k1, k2);
}
};
/** @brief Helper class: set the appropriate comparator to deal with
* repetitions. Comparator for non-unique dictionaries.
*
* StrictlyLess and LessEqual are part of a mechanism to deal with
* repetitions transparently whatever the actual policy is.
* @param _Key Keys to compare
* @param _Compare Comparator equal to conceptual <= */
template<typename _Key, typename _Compare>
struct LessEqual : public std::binary_function<_Key, _Key, bool>
{
/** @brief Comparator equal to conceptual < */
_Compare c;
/** @brief Constructor given a Comparator */
LessEqual(const _Compare& _c) : c(_c) { }
/** @brief Copy constructor */
LessEqual(const LessEqual<_Key, _Compare>& less_equal)
: c(less_equal.c) { }
/** @brief Operator() */
bool operator()(const _Key& k1, const _Key& k2) const
{ return !c(k2, k1); }
};
/** @brief Parallel red-black tree.
*
* Extension of the sequential red-black tree. Specifically,
* parallel bulk insertion operations are provided.
* @param _Key Keys to compare
* @param _Val Elements to store in the tree
* @param _KeyOfValue Obtains the key from an element <
* @param _Compare Comparator equal to conceptual <
* @param _Alloc Allocator for the elements */
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc = std::allocator<_Val> >
class _Rb_tree
: public std::_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>
{
private:
/** @brief Sequential tree */
typedef std::_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc> base_type;
/** @brief Renaming of base node type */
typedef typename std::_Rb_tree_node<_Val> _Rb_tree_node;
/** @brief Renaming of libstdc++ node type */
typedef typename std::_Rb_tree_node_base _Rb_tree_node_base;
/** @brief Renaming of base key_type */
typedef typename base_type::key_type key_type;
/** @brief Renaming of base value_type */
typedef typename base_type::value_type value_type;
/** @brief Helper class to unconst the first component of
* value_type if exists.
*
* This helper class is needed for map, but may discard qualifiers
* for set; however, a set with a const element type is not useful
* and should fail in some other place anyway.
*/
typedef typename unconst_first_component<value_type>::type nc_value_type;
/** @brief Pointer to a node */
typedef _Rb_tree_node* _Rb_tree_node_ptr;
/** @brief Wrapper comparator class to deal with repetitions
transparently according to dictionary type with key _Key and
comparator _Compare. Unique dictionaries object
*/
StrictlyLess<_Key, _Compare> strictly_less;
/** @brief Wrapper comparator class to deal with repetitions
transparently according to dictionary type with key _Key and
comparator _Compare. Non-unique dictionaries object
*/
LessEqual<_Key, _Compare> less_equal;
public:
/** @brief Renaming of base size_type */
typedef typename base_type::size_type size_type;
/** @brief Constructor with a given comparator and allocator.
*
* Delegates the basic initialization to the sequential class and
* initializes the helper comparators of the parallel class
* @param c Comparator object with which to initialize the class
* comparator and the helper comparators
* @param a Allocator object with which to initialize the class comparator
*/
_Rb_tree(const _Compare& c, const _Alloc& a)
: base_type(c, a), strictly_less(base_type::_M_impl._M_key_compare),
less_equal(base_type::_M_impl._M_key_compare)
{ }
/** @brief Copy constructor.
*
* Delegates the basic initialization to the sequential class and
* initializes the helper comparators of the parallel class
* @param __x Parallel red-black instance to copy
*/
_Rb_tree(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x)
: base_type(__x), strictly_less(base_type::_M_impl._M_key_compare),
less_equal(base_type::_M_impl._M_key_compare)
{ }
/** @brief Parallel replacement of the sequential
* std::_Rb_tree::_M_insert_unique()
*
* Parallel bulk insertion and construction. If the container is
* empty, bulk construction is performed. Otherwise, bulk
* insertion is performed
* @param __first First element of the input
* @param __last Last element of the input
*/
template<typename _InputIterator>
void
_M_insert_unique(_InputIterator __first, _InputIterator __last)
{
if (__first==__last) return;
if (_GLIBCXX_PARALLEL_CONDITION(true))
if (base_type::_M_impl._M_node_count == 0)
{
_M_bulk_insertion_construction(__first, __last, true,
strictly_less);
_GLIBCXX_PARALLEL_ASSERT(rb_verify());
}
else
{
_M_bulk_insertion_construction(__first, __last, false,
strictly_less);
_GLIBCXX_PARALLEL_ASSERT(rb_verify());
}
else
{
base_type::_M_insert_unique(__first, __last);
}
}
/** @brief Parallel replacement of the sequential
* std::_Rb_tree::_M_insert_equal()
*
* Parallel bulk insertion and construction. If the container is
* empty, bulk construction is performed. Otherwise, bulk
* insertion is performed
* @param __first First element of the input
* @param __last Last element of the input */
template<typename _InputIterator>
void
_M_insert_equal(_InputIterator __first, _InputIterator __last)
{
if (__first==__last) return;
if (_GLIBCXX_PARALLEL_CONDITION(true))
if (base_type::_M_impl._M_node_count == 0)
_M_bulk_insertion_construction(__first, __last, true, less_equal);
else
_M_bulk_insertion_construction(__first, __last, false, less_equal);
else
base_type::_M_insert_equal(__first, __last);
_GLIBCXX_PARALLEL_ASSERT(rb_verify());
}
private:
/** @brief Helper class of _Rb_tree: node linking.
*
* Nodes linking forming an almost complete tree. The last level
* is coloured red, the rest are black
* @param ranker Calculates the position of a node in an array of nodes
*/
template<typename ranker>
class nodes_initializer
{
/** @brief Renaming of tree size_type */
typedef _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc> tree_type;
typedef typename tree_type::size_type size_type;
public:
/** @brief mask[%i]= 0..01..1, where the number of 1s is %i+1 */
size_type mask[sizeof(size_type)*8];
/** @brief Array of nodes (initial address) */
const _Rb_tree_node_ptr* r_init;
/** @brief Total number of (used) nodes */
size_type n;
/** @brief Rank of the last tree node that can be calculated
taking into account a complete tree
*/
size_type splitting_point;
/** @brief Rank of the tree root */
size_type rank_root;
/** @brief Height of the tree */
int height;
/** @brief Number of threads into which divide the work */
const thread_index_t num_threads;
/** @brief Helper object to mind potential gaps in r_init */
const ranker& rank;
/** @brief Constructor
* @param r Array of nodes
* @param _n Total number of (used) nodes
* @param _num_threads Number of threads into which divide the work
* @param _rank Helper object to mind potential gaps in @c r_init */
nodes_initializer(const _Rb_tree_node_ptr* r, const size_type _n,
const thread_index_t _num_threads, const ranker& _rank):
r_init(r),
n(_n),
num_threads(_num_threads),
rank(_rank)
{
height = log2(n);
splitting_point = 2 * (n - ((1 << height) - 1)) -1;
// Rank root.
size_type max = 1 << (height + 1);
rank_root= (max-2) >> 1;
if (rank_root > splitting_point)
rank_root = complete_to_original(rank_root);
mask[0] = 0x1;
for (unsigned int i = 1; i < sizeof(size_type)*8; ++i)
{
mask[i] = (mask[i-1] << 1) + 1;
}
}
/** @brief Query for tree height
* @return Tree height */
int
get_height() const
{ return height; }
/** @brief Query for the splitting point
* @return Splitting point */
size_type
get_shifted_splitting_point() const
{ return rank.get_shifted_rank(splitting_point, 0); }
/** @brief Query for the tree root node
* @return Tree root node */
_Rb_tree_node_ptr
get_root() const
{ return r_init[rank.get_shifted_rank(rank_root,num_threads/2)]; }
/** @brief Calculation of the parent position in the array of nodes
* @hideinitializer */
#define CALCULATE_PARENT \
if (p_s> splitting_point) \
p_s = complete_to_original(p_s); \
int s_r = rank.get_shifted_rank(p_s,iam); \
r->_M_parent = r_init[s_r]; \
\
/** @brief Link a node with its parent and children taking into
account that its rank (without gaps) is different to that in
a complete tree
* @param r Pointer to the node
* @param iam Partition of the array in which the node is, where
* iam is in [0..num_threads)
* @sa link_complete */
void
link_incomplete(const _Rb_tree_node_ptr& r, const int iam) const
{
size_type real_pos = rank.get_real_rank(&r-r_init, iam);
size_type l_s, r_s, p_s;
int mod_pos= original_to_complete(real_pos);
int zero= first_0_right(mod_pos);
// 1. Convert n to n', where n' will be its rank if the tree
// was complete
// 2. Calculate neighbours for n'
// 3. Convert the neighbors n1', n2' and n3' to their
// appropriate values n1, n2, n3. Note that it must be
// checked that these neighbors actually exist.
calculate_shifts_pos_level(mod_pos, zero, l_s, r_s, p_s);
if (l_s > splitting_point)
{
_GLIBCXX_PARALLEL_ASSERT(r_s > splitting_point);
if (zero == 1)
{
r->_M_left = 0;
r->_M_right = 0;
}
else
{
r->_M_left= r_init[rank.get_shifted_rank(complete_to_original(l_s),iam)];
r->_M_right= r_init[rank.get_shifted_rank(complete_to_original(r_s),iam)];
}
}
else{
r->_M_left= r_init[rank.get_shifted_rank(l_s,iam)];
if (zero != 1)
{
r->_M_right= r_init[rank.get_shifted_rank(complete_to_original(r_s),iam)];
}
else
{
r->_M_right = 0;
}
}
r->_M_color = std::_S_black;
CALCULATE_PARENT;
}
/** @brief Link a node with its parent and children taking into
account that its rank (without gaps) is the same as that in
a complete tree
* @param r Pointer to the node
* @param iam Partition of the array in which the node is, where
* iam is in [0..@c num_threads)
* @sa link_incomplete
*/
void
link_complete(const _Rb_tree_node_ptr& r, const int iam) const
{
size_type real_pos = rank.get_real_rank(&r-r_init, iam);
size_type p_s;
// Test if it is a leaf on the last not necessarily full level
if ((real_pos & mask[0]) == 0)
{
if ((real_pos & 0x2) == 0)
p_s = real_pos + 1;
else
p_s = real_pos - 1;
r->_M_color = std::_S_red;
r->_M_left = 0;
r->_M_right = 0;
}
else
{
size_type l_s, r_s;
int zero = first_0_right(real_pos);
calculate_shifts_pos_level(real_pos, zero, l_s, r_s, p_s);
r->_M_color = std::_S_black;
r->_M_left = r_init[rank.get_shifted_rank(l_s,iam)];
if (r_s > splitting_point)
r_s = complete_to_original(r_s);
r->_M_right = r_init[rank.get_shifted_rank(r_s,iam)];
}
CALCULATE_PARENT;
}
#undef CALCULATE_PARENT
private:
/** @brief Change of "base": Convert the rank in the actual tree
into the corresponding rank if the tree was complete
* @param pos Rank in the actual incomplete tree
* @return Rank in the corresponding complete tree
* @sa complete_to_original */
int
original_to_complete(const int pos) const
{ return (pos << 1) - splitting_point; }
/** @brief Change of "base": Convert the rank if the tree was
complete into the corresponding rank in the actual tree
* @param pos Rank in the complete tree
* @return Rank in the actual incomplete tree
* @sa original_to_complete */
int
complete_to_original(const int pos) const
{ return (pos + splitting_point) >> 1; }
/** @brief Calculate the rank in the complete tree of the parent
and children of a node
* @param pos Rank in the complete tree of the node whose parent
* and children rank must be calculated
* @param level Tree level in which the node at pos is in
* (starting to count at leaves). @pre @c level > 1
* @param left_shift Rank in the complete tree of the left child
* of pos (out parameter)
* @param right_shift Rank in the complete tree of the right
* child of pos (out parameter)
* @param parent_shift Rank in the complete tree of the parent
* of pos (out parameter)
*/
void
calculate_shifts_pos_level(const size_type pos, const int level,
size_type& left_shift, size_type& right_shift,
size_type& parent_shift) const
{
int stride = 1 << (level -1);
left_shift = pos - stride;
right_shift = pos + stride;
if (((pos >> (level + 1)) & 0x1) == 0)
parent_shift = pos + 2*stride;
else
parent_shift = pos - 2*stride;
}
/** @brief Search for the first 0 bit (growing the weight)
* @param x Binary number (corresponding to a rank in the tree)
* whose first 0 bit must be calculated
* @return Position of the first 0 bit in @c x (starting to
* count with 1)
*/
int
first_0_right(const size_type x) const
{
if ((x & 0x2) == 0)
return 1;
else
return first_0_right_bs(x);
}
/** @brief Search for the first 0 bit (growing the weight) using
* binary search
*
* Binary search can be used instead of a naive loop using the
* masks in mask array
* @param x Binary number (corresponding to a rank in the tree)
* whose first 0 bit must be calculated
* @param k_beg Position in which to start searching. By default is 2.
* @return Position of the first 0 bit in x (starting to count with 1) */
int
first_0_right_bs(const size_type x, int k_beg=2) const
{
int k_end = sizeof(size_type)*8;
size_type not_x = x ^ mask[k_end-1];
while ((k_end-k_beg) > 1)
{
int k = k_beg + (k_end-k_beg)/2;
if ((not_x & mask[k-1]) != 0)
k_end = k;
else
k_beg = k;
}
return k_beg;
}
};
/***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
/** @brief Helper class of nodes_initializer: mind the gaps of an
array of nodes.
*
* Get absolute positions in an array of nodes taking into account
* the gaps in it @sa ranker_no_gaps
*/
class ranker_gaps
{
/** @brief Renaming of tree's size_type */
typedef _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc> tree_type;
typedef typename tree_type::size_type size_type;
/** @brief Array containing the beginning ranks of all the
num_threads partitions just considering the valid nodes, not
the gaps */
size_type* beg_partition;
/** @brief Array containing the beginning ranks of all the
num_threads partitions considering the valid nodes and the
gaps */
const size_type* beg_shift_partition;
/** @brief Array containing the number of accumulated gaps at
the beginning of each partition */
const size_type* rank_shift;
/** @brief Number of partitions (and threads that work on it) */
const thread_index_t num_threads;
public:
/** @brief Constructor
* @param size_p Pointer to the array containing the beginning
* ranks of all the @c _num_threads partitions considering the
* valid nodes and the gaps
* @param shift_r Array containing the number of accumulated
* gaps at the beginning of each partition
* @param _num_threads Number of partitions (and threads that
* work on it) */
ranker_gaps(const size_type* size_p, const size_type* shift_r,
const thread_index_t _num_threads) :
beg_shift_partition(size_p),
rank_shift(shift_r),
num_threads(_num_threads)
{
beg_partition = new size_type[num_threads+1];
beg_partition[0] = 0;
for (int i = 1; i <= num_threads; ++i)
{
beg_partition[i] = beg_partition[i-1] + (beg_shift_partition[i] - beg_shift_partition[i-1]) - (rank_shift[i] - rank_shift[i-1]);
}
// Ghost element, strictly larger than any index requested.
++beg_partition[num_threads];
}
/** @brief Destructor
* Needs to be defined to deallocate the dynamic memory that has
* been allocated for beg_partition array
*/
~ranker_gaps()
{ delete[] beg_partition; }
/** @brief Convert a rank in the array of nodes considering
valid nodes and gaps, to the corresponding considering only
the valid nodes
* @param pos Rank in the array of nodes considering valid nodes and gaps
* @param index Partition which the rank belongs to
* @return Rank in the array of nodes considering only the valid nodes
* @sa get_shifted_rank
*/
size_type
get_real_rank(const size_type pos, const int index) const
{ return pos - rank_shift[index]; }
/** @brief Inverse of get_real_rank: Convert a rank in the array
of nodes considering only valid nodes, to the corresponding
considering valid nodes and gaps
* @param pos Rank in the array of nodes considering only valid nodes
* @param index Partition which the rank is most likely to
* belong to (i. e. the corresponding if there were no gaps)
* @pre 0 <= @c pos <= number_of_distinct_elements
* @return Rank in the array of nodes considering valid nodes and gaps
* @post 0 <= @c return <= number_of_elements
* @sa get_real_rank()
*/
size_type
get_shifted_rank(const size_type pos, const int index) const
{
// Heuristic.
if (beg_partition[index] <= pos and pos < beg_partition[index+1])
return pos + rank_shift[index];
else
// Called rarely, do not hinder inlining.
return get_shifted_rank_loop(pos,index);
}
/** @brief Helper method of get_shifted_rank: in case the given
index in get_shifted_rank is not correct, look for it and
then calculate the rank
* @param pos Rank in the array of nodes considering only valid nodes
* @param index Partition which the rank should have belong to
* if there were no gaps
* @return Rank in the array of nodes considering valid nodes and gaps
*/
size_type
get_shifted_rank_loop(const size_type pos, int index) const
{
while (pos >= beg_partition[index+1])
++index;
while (pos < beg_partition[index])
--index;
_GLIBCXX_PARALLEL_ASSERT(0 <= index && index < num_threads);
return pos + rank_shift[index];
}
};
/** @brief Helper class of nodes_initializer: access an array of
* nodes with no gaps
*
* Get absolute positions in an array of nodes taking into account
* that there are no gaps in it. @sa ranker_gaps */
class ranker_no_gaps
{
/** @brief Renaming of tree's size_type */
typedef _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc> tree_type;
typedef typename tree_type::size_type size_type;
public:
/** @brief Convert a rank in the array of nodes considering
* valid nodes and gaps, to the corresponding considering only
* the valid nodes
*
* As there are no gaps in this case, get_shifted_rank() and
* get_real_rank() are synonyms and make no change on pos
* @param pos Rank in the array of nodes considering valid nodes and gaps
* @param index Partition which the rank belongs to, unused here
* @return Rank in the array of nodes considering only the valid nodes */
size_type
get_real_rank(const size_type pos, const int index) const
{ return pos; }
/** @brief Inverse of get_real_rank: Convert a rank in the array
* of nodes considering only valid nodes, to the corresponding
* considering valid nodes and gaps
*
* As there are no gaps in this case, get_shifted_rank() and
* get_real_rank() are synonyms and make no change on pos
* @param pos Rank in the array of nodes considering only valid nodes
* @param index Partition which the rank belongs to, unused here
* @return Rank in the array of nodes considering valid nodes and gaps
*/
size_type
get_shifted_rank(const size_type pos, const int index) const
{ return pos; }
};
/** @brief Helper comparator class: Invert a binary comparator
* @param _Comp Comparator to invert
* @param _Iterator Iterator to the elements to compare */
template<typename _Comp, typename _Iterator>
class gr_or_eq
{
/** @brief Renaming value_type of _Iterator */
typedef typename std::iterator_traits<_Iterator>::value_type value_type;
/** @brief Comparator to be inverted */
const _Comp comp;
public:
/** @brief Constructor
* @param c Comparator */
gr_or_eq(const _Comp& c) : comp(c) { }
/** @brief Operator()
* @param a First value to compare
* @param b Second value to compare */
bool operator()(const value_type& a, const value_type& b) const
{
if (not (comp(_KeyOfValue()(a), _KeyOfValue()(b))))
return true;
return false;
}
};
/** @brief Helper comparator class: Passed as a parameter of
list_partition to check that a sequence is sorted
* @param _InputIterator Iterator to the elements to compare
* @param _CompIsSorted Comparator to check for sortednesss */
template<typename _InputIterator, typename _CompIsSorted>
class is_sorted_functor
{
/** @brief Element to compare with (first parameter of comp) */
_InputIterator prev;
/** @brief Comparator to check for sortednesss */
const _CompIsSorted comp;
/** @brief Sum up the history of the operator() of this
* comparator class Its value is true if all calls to comp from
* this class have returned true. It is false otherwise */
bool sorted;
public:
/** @brief Constructor
*
* Sorted is set to true
* @param first Element to compare with the first time the
* operator() is called
* @param c Comparator to check for sortedness */
is_sorted_functor(const _InputIterator first, const _CompIsSorted c)
: prev(first), comp(c), sorted(true) { }
/** @brief Operator() with only one explicit parameter. Updates
the class member @c prev and sorted.
* @param it Iterator to the element which must be compared to
* the element pointed by the the class member @c prev */
void operator()(const _InputIterator it)
{
if (sorted and it != prev and comp(_KeyOfValue()(*it),
_KeyOfValue()(*prev)))
sorted = false;
prev = it;
}
/** @brief Query method for sorted
* @return Current value of sorted */
bool is_sorted() const
{
return sorted;
}
};
/** @brief Helper functor: sort the input based upon elements
instead of keys
* @param KeyComparator Comparator for the key of values */
template<typename KeyComparator>
class ValueCompare
: public std::binary_function<value_type, value_type, bool>
{
/** @brief Comparator for the key of values */
const KeyComparator comp;
public:
/** @brief Constructor
* @param c Comparator for the key of values */
ValueCompare(const KeyComparator& c): comp(c) { }
/** @brief Operator(): Analogous to comp but for values and not keys
* @param v1 First value to compare
* @param v2 Second value to compare
* @return Result of the comparison */
bool operator()(const value_type& v1, const value_type& v2) const
{ return comp(_KeyOfValue()(v1),_KeyOfValue()(v2)); }
};
/** @brief Helper comparator: compare a key with the key in a node
* @param _Comparator Comparator for keys */
template<typename _Comparator>
struct compare_node_key
{
/** @brief Comparator for keys */
const _Comparator& c;
/** @brief Constructor
* @param _c Comparator for keys */
compare_node_key(const _Comparator& _c) : c(_c) { }
/** @brief Operator() with the first parameter being a node
* @param r Node whose key is to be compared
* @param k Key to be compared
* @return Result of the comparison */
bool operator()(const _Rb_tree_node_ptr r, const key_type& k) const
{ return c(base_type::_S_key(r),k); }
/** @brief Operator() with the second parameter being a node
* @param k Key to be compared
* @param r Node whose key is to be compared
* @return Result of the comparison */
bool operator()(const key_type& k, const _Rb_tree_node_ptr r) const
{ return c(k, base_type::_S_key(r)); }
};
/** @brief Helper comparator: compare a key with the key of a
value pointed by an iterator
* @param _Comparator Comparator for keys
*/
template<typename _Iterator, typename _Comparator>
struct compare_value_key
{
/** @brief Comparator for keys */
const _Comparator& c;
/** @brief Constructor
* @param _c Comparator for keys */
compare_value_key(const _Comparator& _c) : c(_c){ }
/** @brief Operator() with the first parameter being an iterator
* @param v Iterator to the value whose key is to be compared
* @param k Key to be compared
* @return Result of the comparison */
bool operator()(const _Iterator& v, const key_type& k) const
{ return c(_KeyOfValue()(*v),k); }
/** @brief Operator() with the second parameter being an iterator
* @param k Key to be compared
* @param v Iterator to the value whose key is to be compared
* @return Result of the comparison */
bool operator()(const key_type& k, const _Iterator& v) const
{ return c(k, _KeyOfValue()(*v)); }
};
/** @brief Helper class of _Rb_tree to avoid some symmetric code
in tree operations */
struct LeftRight
{
/** @brief Obtain the conceptual left child of a node
* @param parent Node whose child must be obtained
* @return Reference to the child node */
static _Rb_tree_node_base*& left(_Rb_tree_node_base* parent)
{ return parent->_M_left; }
/** @brief Obtain the conceptual right child of a node
* @param parent Node whose child must be obtained
* @return Reference to the child node */
static _Rb_tree_node_base*& right(_Rb_tree_node_base* parent)
{ return parent->_M_right; }
};
/** @brief Helper class of _Rb_tree to avoid some symmetric code
in tree operations: inverse the symmetry
* @param S Symmetry to inverse
* @sa LeftRight */
template<typename S>
struct Opposite
{
/** @brief Obtain the conceptual left child of a node, inverting
the symmetry
* @param parent Node whose child must be obtained
* @return Reference to the child node */
static _Rb_tree_node_base*& left(_Rb_tree_node_base* parent)
{ return S::right(parent);}
/** @brief Obtain the conceptual right child of a node,
inverting the symmetry
* @param parent Node whose child must be obtained
* @return Reference to the child node */
static _Rb_tree_node_base*& right(_Rb_tree_node_base* parent)
{ return S::left(parent);}
};
/** @brief Inverse symmetry of LeftRight */
typedef Opposite<LeftRight> RightLeft;
/** @brief Helper comparator to compare value pointers, so that
the value is taken
* @param Comparator Comparator for values
* @param _ValuePtr Pointer to values */
template<typename Comparator, typename _ValuePtr>
class PtrComparator
: public std::binary_function<_ValuePtr, _ValuePtr, bool>
{
/** @brief Comparator for values */
Comparator comp;
public:
/** @brief Constructor
* @param comp Comparator for values */
PtrComparator(Comparator comp) : comp(comp) { }
/** @brief Operator(): compare the values instead of the pointers
* @param v1 Pointer to the first element to compare
* @param v2 Pointer to the second element to compare */
bool operator()(const _ValuePtr& v1, const _ValuePtr& v2) const
{ return comp(*v1,*v2); }
};
/** @brief Iterator whose elements are pointers
* @param value_type Type pointed by the pointers */
template<typename _ValueTp>
class PtrIterator
{
public:
/** @brief The iterator category is random access iterator */
typedef typename std::random_access_iterator_tag iterator_category;
typedef _ValueTp value_type;
typedef size_t difference_type;
typedef value_type* ValuePtr;
typedef ValuePtr& reference;
typedef value_type** pointer;
/** @brief Element accessed by the iterator */
value_type** ptr;
/** @brief Trivial constructor */
PtrIterator() { }
/** @brief Constructor from an element */
PtrIterator(const ValuePtr& __i) : ptr(&__i) { }
/** @brief Constructor from a pointer */
PtrIterator(const pointer& __i) : ptr(__i) { }
/** @brief Copy constructor */
PtrIterator(const PtrIterator<value_type>& __i) : ptr(__i.ptr) { }
reference
operator*() const
{ return **ptr; }
ValuePtr
operator->() const
{ return *ptr; }
/** @brief Bidirectional iterator requirement */
PtrIterator&
operator++()
{
++ptr;
return *this;
}
/** @brief Bidirectional iterator requirement */
PtrIterator
operator++(int)
{ return PtrIterator(ptr++); }
/** @brief Bidirectional iterator requirement */
PtrIterator&
operator--()
{
--ptr;
return *this;
}
/** @brief Bidirectional iterator requirement */
PtrIterator
operator--(int)
{ return PtrIterator(ptr--); }
/** @brief Random access iterator requirement */
reference
operator[](const difference_type& __n) const
{ return *ptr[__n]; }
/** @brief Random access iterator requirement */
PtrIterator&
operator+=(const difference_type& __n)
{
ptr += __n;
return *this;
}
/** @brief Random access iterator requirement */
PtrIterator
operator+(const difference_type& __n) const
{ return PtrIterator(ptr + __n); }
/** @brief Random access iterator requirement */
PtrIterator&
operator-=(const difference_type& __n)
{
ptr -= __n;
return *this;
}
/** @brief Random access iterator requirement */
PtrIterator
operator-(const difference_type& __n) const
{ return PtrIterator(ptr - __n); }
/** @brief Random access iterator requirement */
difference_type
operator-(const PtrIterator<value_type>& iter) const
{ return ptr - iter.ptr; }
/** @brief Random access iterator requirement */
difference_type
operator+(const PtrIterator<value_type>& iter) const
{ return ptr + iter.ptr; }
/** @brief Allow assignment of an element ValuePtr to the iterator */
PtrIterator<value_type>& operator=(const ValuePtr sptr)
{
ptr = &sptr;
return *this;
}
PtrIterator<value_type>& operator=(const PtrIterator<value_type>& piter)
{
ptr = piter.ptr;
return *this;
}
bool operator==(const PtrIterator<value_type>& piter)
{ return ptr == piter.ptr; }
bool operator!=(const PtrIterator<value_type>& piter)
{ return ptr != piter.ptr; }
};
/** @brief Bulk insertion helper: synchronization and construction
of the tree bottom up */
struct concat_problem
{
/** @brief Root of a tree.
*
* Input: Middle node to concatenate two subtrees. Out: Root of
* the resulting concatenated tree. */
_Rb_tree_node_ptr t;
/** @brief Black height of @c t */
int black_h;
/** @brief Synchronization variable.
*
* \li READY_YES: the root of the tree can be concatenated with
* the result of the children concatenation problems (both of
* them have finished).
* \li READY_NOT: at least one of the children
* concatenation_problem have not finished */
int is_ready;
/** @brief Parent concatenation problem to solve when @c
is_ready = READY_YES */
concat_problem* par_problem;
/** @brief Left concatenation problem */
concat_problem* left_problem;
/** @brief Right concatenation problem */
concat_problem* right_problem;
/** @brief Value NO for the synchronization variable. */
static const int READY_NO = 0;
/** @brief Value YES for the synchronization variable. */
static const int READY_YES = 1;
/** @brief Trivial constructor.
*
* Initialize the synchronization variable to not ready. */
concat_problem(): is_ready(READY_NO) { }
/** @brief Constructor.
*
* Initialize the synchronization variable to not ready.
* @param _t Root of a tree.
* @param _black_h Black height of @c _t
* @param _par_problem Parent concatenation problem to solve
* when @c is_ready = READY_YES
*/
concat_problem(const _Rb_tree_node_ptr _t, const int _black_h,
concat_problem* _par_problem)
: t(_t), black_h(_black_h), is_ready(READY_NO), par_problem(_par_problem)
{
// The root of an insertion problem must be black.
if (t != NULL and t->_M_color == std::_S_red)
{
t->_M_color = std::_S_black;
++black_h;
}
}
};
/** @brief Bulk insertion helper: insertion of a sequence of
elements in a subtree
@invariant t, pos_beg and pos_end will not change after initialization
*/
struct insertion_problem
{
/** @brief Renaming of _Rb_tree @c size_type */
typedef _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc> tree_type;
typedef typename tree_type::size_type size_type;
/** @brief Root of the tree where the elements are to be inserted */
_Rb_tree_node_ptr t;
/** @brief Position of the first node in the array of nodes to
be inserted into @c t */
size_type pos_beg;
/** @brief Position of the first node in the array of nodes
that won't be inserted into @c t */
size_type pos_end;
/** @brief Partition in the array of nodes of @c pos_beg and @c
pos_end (must be the same for both, and so gaps are
avoided) */
int array_partition;
/** @brief Concatenation problem to solve once the insertion
problem is finished */
concat_problem* conc;
/** @brief Trivial constructor. */
insertion_problem()
{ }
/** @brief Constructor.
* @param b Position of the first node in the array of nodes to
* be inserted into @c _conc->t
* @param e Position of the first node in the array of nodes
* that won't be inserted into @c _conc->t
* @param array_p Partition in the array of nodes of @c b and @c e
* @param _conc Concatenation problem to solve once the
* insertion problem is finished
*/
insertion_problem(const size_type b, const size_type e,
const int array_p, concat_problem* _conc)
: t(_conc->t), pos_beg(b), pos_end(e), array_partition(array_p),
conc(_conc)
{
_GLIBCXX_PARALLEL_ASSERT(pos_beg <= pos_end);
//The root of an insertion problem must be black!!
_GLIBCXX_PARALLEL_ASSERT(t == NULL or t->_M_color != std::_S_red);
}
};
/** @brief Main bulk construction and insertion helper method
* @param __first First element in a sequence to be added into the tree
* @param __last End of the sequence of elements to be added into the tree
* @param is_construction If true, the tree was empty and so, this
* is constructed. Otherwise, the elements are added to an
* existing tree.
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
* The input sequence is preprocessed so that the bulk
* construction or insertion can be performed
* efficiently. Essentially, the sequence is checked for
* sortednesss and iterators to the middle of the structure are
* saved so that afterwards the sequence can be processed
* effectively in parallel. */
template<typename _InputIterator, typename StrictlyLessOrLessEqual>
void
_M_bulk_insertion_construction(const _InputIterator __first, const _InputIterator __last, const bool is_construction, StrictlyLessOrLessEqual strictly_less_or_less_equal)
{
Timing<_timing_tag> t;
t.tic();
thread_index_t num_threads = get_max_threads();
size_type n;
size_type beg_partition[num_threads+1];
_InputIterator access[num_threads+1];
beg_partition[0] = 0;
bool is_sorted= is_sorted_distance_accessors(__first, __last, access, beg_partition,n, num_threads, std::__iterator_category(__first));
t.tic("is_sorted");
if (not is_sorted)
{
_M_not_sorted_bulk_insertion_construction(access, beg_partition, n, num_threads, is_construction, strictly_less_or_less_equal);
}
else
{
// The vector must be moved... all ranges must have at least
// one element, or make just sequential???
if (static_cast<size_type>(num_threads) > n)
{
int j = 1;
for (int i = 1; i <= num_threads; ++i)
{
if (beg_partition[j-1] != beg_partition[i])
{
beg_partition[j] = beg_partition[i];
access[j] = access[i];
++j;
}
}
num_threads = static_cast<thread_index_t>(n);
}
if (is_construction)
_M_sorted_bulk_construction(access, beg_partition, n, num_threads,
strictly_less_or_less_equal);
else
_M_sorted_bulk_insertion(access, beg_partition, n, num_threads,
strictly_less_or_less_equal);
}
t.tic("main work");
t.print();
}
/** @brief Bulk construction and insertion helper method on an
* input sequence which is not sorted
*
* The elements are copied, according to the copy policy, in order
* to be sorted. Then the
* _M_not_sorted_bulk_insertion_construction() method is called
* appropriately
* @param access Array of iterators of size @c num_threads +
* 1. Each position contains the first element in each subsequence
* to be added into the tree.
* @param beg_partition Array of positions of size @c num_threads
* + 1. Each position contains the rank of the first element in
* each subsequence to be added into the tree.
* @param n Size of the sequence to be inserted
* @param num_threads Number of threads and corresponding
* subsequences in which the insertion work is going to be shared
* @param is_construction If true, the tree was empty and so, this
* is constructed. Otherwise, the elements are added to an
* existing tree.
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
*/
template<typename _InputIterator, typename StrictlyLessOrLessEqual>
void
_M_not_sorted_bulk_insertion_construction(_InputIterator* access,
size_type* beg_partition,
const size_type n,
const thread_index_t num_threads,
const bool is_construction,
StrictlyLessOrLessEqual strictly_less_or_less_equal)
{
// Copy entire elements. In the case of a map, we would be
// copying the pair. Therefore, the copy should be reconsidered
// when objects are big. Essentially two cases:
// - The key is small: make that the pair, is a pointer to data
// instead of a copy to it
// - The key is big: we simply have a pointer to the iterator
#if _GLIBCXX_TREE_FULL_COPY
nc_value_type* v = static_cast<nc_value_type*> (::operator new(sizeof(nc_value_type)*(n+1)));
uninitialized_copy_from_accessors(access, beg_partition, v, num_threads);
_M_not_sorted_bulk_insertion_construction<nc_value_type, nc_value_type*, ValueCompare<_Compare> >
(beg_partition, v, ValueCompare<_Compare>(base_type::_M_impl._M_key_compare), n, num_threads, is_construction, strictly_less_or_less_equal);
#else
// For sorting, we cannot use the new PtrIterator because we
// want the pointers to be exchanged and not the elements.
typedef PtrComparator<ValueCompare<_Compare>, nc_value_type*> this_ptr_comparator;
nc_value_type** v = static_cast<nc_value_type**> (::operator new(sizeof(nc_value_type*)*(n+1)));
uninitialized_ptr_copy_from_accessors(access, beg_partition, v, num_threads);
_M_not_sorted_bulk_insertion_construction<nc_value_type*, PtrIterator<nc_value_type>, this_ptr_comparator>
(beg_partition, v, this_ptr_comparator(ValueCompare<_Compare>(base_type::_M_impl._M_key_compare)), n, num_threads, is_construction, strictly_less_or_less_equal);
#endif
}
/** @brief Bulk construction and insertion helper method on an
* input sequence which is not sorted
*
* The elements are sorted and its accessors calculated. Then,
* _M_sorted_bulk_construction() or _M_sorted_bulk_insertion() is
* called.
* @param beg_partition Array of positions of size @c num_threads
* + 1. Each position contains the rank of the first element in
* each subsequence to be added into the tree.
* @param v Array of elements to be sorted (copy of the original sequence).
* @param comp Comparator to be used for sorting the elements
* @param n Size of the sequence to be inserted
* @param num_threads Number of threads and corresponding
* subsequences in which the insertion work is going to be shared
* @param is_construction If true, _M_sorted_bulk_construction()
* is called. Otherwise, _M_sorted_bulk_insertion() is called.
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
*/
template<typename ElementsToSort, typename IteratorSortedElements, typename Comparator, typename StrictlyLessOrLessEqual>
void
_M_not_sorted_bulk_insertion_construction(size_type* beg_partition, ElementsToSort* v, Comparator comp, const size_type n, thread_index_t num_threads, const bool is_construction, StrictlyLessOrLessEqual strictly_less_or_less_equal)
{
// The accessors have been calculated for the non sorted.
Timing<_timing_tag> t;
t.tic();
num_threads = static_cast<thread_index_t>(std::min<size_type>(num_threads, n));
std::stable_sort(v, v+n, comp);
t.tic("sort");
IteratorSortedElements sorted_access[num_threads+1];
range_accessors(IteratorSortedElements(v), IteratorSortedElements(v+n), sorted_access, beg_partition, n, num_threads, std::__iterator_category(v));
t.tic("range_accessors");
// Partial template specialization not available.
if (is_construction)
_M_sorted_bulk_construction(sorted_access, beg_partition, n, num_threads, strictly_less_or_less_equal);
else
_M_sorted_bulk_insertion(sorted_access, beg_partition, n, num_threads, strictly_less_or_less_equal);
delete v;
t.tic("actual construction or insertion");
t.print();
}
/** @brief Construct a tree sequentially using the parallel routine
* @param r_array Array of nodes from which to take the nodes to
* build the tree
* @param pos_beg Position of the first node in the array of nodes
* to be part of the tree
* @param pos_end Position of the first node in the array of nodes
* that will not be part of the tree
* @param black_h Black height of the resulting tree (out)
*/
static _Rb_tree_node_ptr
simple_tree_construct(_Rb_tree_node_ptr* r_array, const size_type pos_beg,
const size_type pos_end, int& black_h)
{
if (pos_beg == pos_end)
{
black_h = 0;
return NULL;
}
if (pos_beg+1 == pos_end)
{
// It is needed, not only for efficiency but because the
// last level in our tree construction is red.
make_leaf(r_array[pos_beg], black_h);
return r_array[pos_beg];
}
// Dummy b_p
size_type b_p[2];
b_p[0] = 0;
b_p[1] = pos_end - pos_beg;
_Rb_tree_node_ptr* r= r_array + pos_beg;
size_type length = pos_end - pos_beg;
ranker_no_gaps rank;
nodes_initializer<ranker_no_gaps> nodes_init(r, length, 1, rank);
black_h = nodes_init.get_height();
size_type split = nodes_init.get_shifted_splitting_point();
for (size_type i = 0; i < split; ++i)
nodes_init.link_complete(r[i],0);
for (size_type i = split; i < length; ++i)
nodes_init.link_incomplete(r[i],0);
_Rb_tree_node_ptr t = nodes_init.get_root();
_GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(t));
_GLIBCXX_PARALLEL_ASSERT(t->_M_color == std::_S_black);
return t;
}
/** @brief Allocation of an array of nodes and initialization of
their value fields from an input sequence. Done in parallel.
* @param access Array of iterators of size @c num_threads +
* 1. Each position contains the first value in the subsequence to
* be copied into the corresponding tree node.
* @param beg_partition Array of positions of size @c num_threads
* + 1. Each position contains the rank of the first element in
* the subsequence from which to copy the data to initialize the
* nodes.
* @param n Size of the sequence and the array of nodes to be allocated.
* @param num_threads Number of threads and corresponding
* subsequences in which the allocation and initialization work is
* going to be shared
*/
template<typename _Iterator>
_Rb_tree_node_ptr*
_M_unsorted_bulk_allocation_and_initialization(const _Iterator* access, const size_type* beg_partition, const size_type n, const thread_index_t num_threads)
{
_Rb_tree_node_ptr* r = static_cast<_Rb_tree_node_ptr*> (::operator new (sizeof(_Rb_tree_node_ptr)*(n+1)));
// Allocate and initialize the nodes (don't check for uniqueness
// because the sequence is not necessarily sorted.
#pragma omp parallel num_threads(num_threads)
{
#if USE_PAPI
PAPI_register_thread();
#endif
int iam = omp_get_thread_num();
_Iterator it = access[iam];
size_type i = beg_partition[iam];
while (it!= access[iam+1])
{
r[i] = base_type::_M_create_node(*it);
++i;
++it;
}
}
return r;
}
/** @brief Allocation of an array of nodes and initialization of
* their value fields from an input sequence. Done in
* parallel. Besides, the sequence is checked for uniqueness while
* copying the elements, and if there are repetitions, gaps within
* the partitions are created.
*
* An extra ghost node pointer is reserved in the array to ease
* comparisons later while linking the nodes
* @pre The sequence is sorted.
* @param access Array of iterators of size @c num_threads +
* 1. Each position contains the first value in the subsequence to
* be copied into the corresponding tree node.
* @param beg_partition Array of positions of size @c num_threads
* + 1. Each position contains the rank of the first element in
* the subsequence from which to copy the data to initialize the
* nodes.
* @param rank_shift Array of size @c num_threads + 1 containing
* the number of accumulated gaps at the beginning of each
* partition
* @param n Size of the sequence and the array of nodes (-1) to be
* allocated.
* @param num_threads Number of threads and corresponding
* subsequences in which the allocation and initialization work is
* going to be shared
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
*/
template<typename _Iterator, typename StrictlyLessOrLessEqual>
_Rb_tree_node_ptr*
_M_sorted_bulk_allocation_and_initialization(_Iterator* access, size_type* beg_partition, size_type* rank_shift, const size_type n, thread_index_t& num_threads, StrictlyLessOrLessEqual strictly_less_or_less_equal)
{
// Ghost node at the end to avoid extra comparisons in nodes_initializer.
_Rb_tree_node_ptr* r = static_cast<_Rb_tree_node_ptr*> (::operator new (sizeof(_Rb_tree_node_ptr)*(n+1)));
r[n] = NULL;
// Dealing with repetitions (EFFICIENCY ISSUE).
_Iterator access_copy[num_threads+1];
for (int i = 0; i <= num_threads; ++i)
access_copy[i] = access[i];
// Allocate and initialize the nodes
#pragma omp parallel num_threads(num_threads)
{
#if USE_PAPI
PAPI_register_thread();
#endif
thread_index_t iam = omp_get_thread_num();
_Iterator prev = access[iam];
size_type i = beg_partition[iam];
_Iterator it = prev;
if (iam != 0)
{
--prev;
// Dealing with repetitions (CORRECTNESS ISSUE).
while (it!= access_copy[iam+1] and not strictly_less_or_less_equal(_KeyOfValue()(*prev), _KeyOfValue()(*it)))
{
_GLIBCXX_PARALLEL_ASSERT(not base_type::_M_impl._M_key_compare(_KeyOfValue()(*it),_KeyOfValue()(*prev)));
++it;
}
access[iam] = it;
if (it != access_copy[iam+1]){
r[i] = base_type::_M_create_node(*it);
++i;
prev=it;
++it;
}
//}
}
else
{
r[i] = base_type::_M_create_node(*prev);
++i;
++it;
}
while (it!= access_copy[iam+1])
{
/***** Dealing with repetitions (CORRECTNESS ISSUE) *****/
if (strictly_less_or_less_equal(_KeyOfValue()(*prev),_KeyOfValue()(*it)))
{
r[i] = base_type::_M_create_node(*it);
++i;
prev=it;
}
else{
_GLIBCXX_PARALLEL_ASSERT(not base_type::_M_impl._M_key_compare(_KeyOfValue()(*it),_KeyOfValue()(*prev)));
}
++it;
}
/***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
rank_shift[iam+1] = beg_partition[iam+1] - i;
}
/***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
rank_shift[0] = 0;
/* Guarantee that there are no empty intervals.
- If an empty interval is found, is joined with the previous one
(the rank_shift of the previous is augmented with all the new
repetitions)
*/
thread_index_t i = 1;
while (i <= num_threads and rank_shift[i] != (beg_partition[i] - beg_partition[i-1]))
{
rank_shift[i] += rank_shift[i-1];
++i;
}
if (i <= num_threads)
{
thread_index_t j = i - 1;
while (true)
{
do
{
rank_shift[j] += rank_shift[i];
++i;
} while (i <= num_threads and rank_shift[i] == (beg_partition[i] - beg_partition[i-1]));
beg_partition[j] = beg_partition[i-1];
access[j] = access[i-1];
if (i > num_threads) break;
++j;
// Initialize with the previous.
rank_shift[j] = rank_shift[j-1];
}
num_threads = j;
}
return r;
}
/** @brief Allocation of an array of nodes and initialization of
* their value fields from an input sequence.
*
* The allocation and initialization is done in parallel. Besides,
* the sequence is checked for uniqueness while copying the
* elements. However, in contrast to
* _M_sorted_bulk_allocation_and_initialization(), if there are
* repetitions, no gaps within the partitions are created. To do
* so efficiently, some extra memory is needed to compute a prefix
* sum.
* @pre The sequence is sorted.
* @param access Array of iterators of size @c num_threads +
* 1. Each position contains the first value in the subsequence to
* be copied into the corresponding tree node.
* @param beg_partition Array of positions of size @c num_threads
* + 1. Each position contains the rank of the first element in
* the subsequence from which to copy the data to initialize the
* nodes.
* @param n Size of the sequence and the array of nodes (-1) to be
* allocated.
* @param num_threads Number of threads and corresponding
* subsequences in which the allocation and initialization work is
* going to be shared
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
*/
template<typename _Iterator, typename StrictlyLessOrLessEqual>
_Rb_tree_node_ptr*
_M_sorted_no_gapped_bulk_allocation_and_initialization(_Iterator* access, size_type* beg_partition, size_type& n, const thread_index_t num_threads, StrictlyLessOrLessEqual strictly_less_or_less_equal)
{
size_type* sums = static_cast<size_type*> (::operator new (sizeof(size_type)*n));
// Allocate and initialize the nodes
/* try
{*/
#pragma omp parallel num_threads(num_threads)
{
#if USE_PAPI
PAPI_register_thread();
#endif
int iam = omp_get_thread_num();
_Iterator prev = access[iam];
size_type i = beg_partition[iam];
_Iterator it = prev;
if (iam !=0)
{
--prev;
// First iteration here, to update accessor in case was
// equal to the last element of the previous range
// Dealing with repetitions (CORRECTNESS ISSUE).
if (strictly_less_or_less_equal(_KeyOfValue()(*prev),_KeyOfValue()(*it)))
{
sums[i] = 0;
prev=it;
}
else
{
sums[i] = 1;
}
++i;
++it;
}
else
{
sums[i] = 0;
++i;
++it;
}
while (it!= access[iam+1])
{
// Dealing with repetitions (CORRECTNESS ISSUE).
if (strictly_less_or_less_equal(_KeyOfValue()(*prev),_KeyOfValue()(*it)))
{
sums[i] = 0;
prev=it;
}
else
sums[i] = 1;
++i;
++it;
}
}
// Should be done in parallel.
partial_sum(sums,sums + n, sums);
n -= sums[n-1];
_Rb_tree_node_ptr* r = static_cast<_Rb_tree_node_ptr*> (::operator new (sizeof(_Rb_tree_node_ptr)*(n+1)));
r[n]=0;
#pragma omp parallel num_threads(num_threads)
{
#if USE_PAPI
PAPI_register_thread();
#endif
int iam = omp_get_thread_num();
_Iterator it = access[iam];
size_type i = beg_partition[iam];
size_type j = i;
size_type before = 0;
if (iam > 0)
{
before = sums[i-1];
j -= sums[i-1];
}
beg_partition[iam] = j;
while (it!= access[iam+1])
{
while (it!= access[iam+1] and sums[i]!=before)
{
before = sums[i];
++i;
++it;
}
if (it!= access[iam+1])
{
r[j] = base_type::_M_create_node(*it);
++j;
++i;
++it;
}
}
}
beg_partition[num_threads] = n;
// Update beginning of partitions.
::operator delete(sums);
return r;
}
/** @brief Main bulk construction method: perform the actual
initialization, allocation and finally node linking once the
input sequence has already been preprocessed.
* @param access Array of iterators of size @c num_threads +
* 1. Each position contains the first value in the subsequence to
* be copied into the corresponding tree node.
* @param beg_partition Array of positions of size @c num_threads
* + 1. Each position contains the rank of the first element in
* the subsequence from which to copy the data to initialize the
* nodes.
* @param n Size of the sequence and the array of nodes (-1) to be
* allocated.
* @param num_threads Number of threads and corresponding
* subsequences in which the work is going to be shared
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
*/
template<typename _Iterator, typename StrictlyLessOrLessEqual>
void
_M_sorted_bulk_construction(_Iterator* access, size_type* beg_partition, const size_type n, thread_index_t num_threads, StrictlyLessOrLessEqual strictly_less_or_less_equal)
{
Timing<_timing_tag> t;
// Dealing with repetitions (EFFICIENCY ISSUE).
size_type rank_shift[num_threads+1];
t.tic();
_Rb_tree_node_ptr* r = _M_sorted_bulk_allocation_and_initialization(access, beg_partition, rank_shift, n, num_threads, strictly_less_or_less_equal);
t.tic("bulk allocation and initialization");
// Link the tree appropriately.
// Dealing with repetitions (EFFICIENCY ISSUE).
ranker_gaps rank(beg_partition, rank_shift, num_threads);
nodes_initializer<ranker_gaps> nodes_init(r, n - rank_shift[num_threads], num_threads, rank);
size_type split = nodes_init.get_shifted_splitting_point();
#pragma omp parallel num_threads(num_threads)
{
#if USE_PAPI
PAPI_register_thread();
#endif
int iam = omp_get_thread_num();
size_type beg = beg_partition[iam];
// Dealing with repetitions (EFFICIENCY ISSUE).
size_type end = beg_partition[iam+1] - (rank_shift[iam+1] - rank_shift[iam]);
if (split >= end)
{
for (size_type i = beg; i < end; ++i)
{
nodes_init.link_complete(r[i],iam);
}
}
else
{
if (split <= beg)
{
for (size_type i = beg; i < end; ++i)
nodes_init.link_incomplete(r[i],iam);
}
else
{
for (size_type i = beg; i < split; ++i)
nodes_init.link_complete(r[i],iam);
for (size_type i = split; i < end; ++i)
nodes_init.link_incomplete(r[i],iam);
}
}
}
// If the execution reaches this point, there has been no
// exception, and so the structure can be initialized.
// Join the tree laid on the array of ptrs with the header node.
// Dealing with repetitions (EFFICIENCY ISSUE).
base_type::_M_impl._M_node_count = n - rank_shift[num_threads];
base_type::_M_impl._M_header._M_left = r[0];
thread_index_t with_element = num_threads;
while ((beg_partition[with_element] - beg_partition[with_element-1]) == (rank_shift[with_element] - rank_shift[with_element-1]))
{
--with_element;
}
base_type::_M_impl._M_header._M_right = r[beg_partition[with_element] - (rank_shift[with_element] - rank_shift[with_element-1]) - 1];
base_type::_M_impl._M_header._M_parent = nodes_init.get_root();
nodes_init.get_root()->_M_parent= &base_type::_M_impl._M_header;
t.tic("linking nodes");
::operator delete(r);
t.tic("delete array of pointers");
t.print();
}
/** @brief Main bulk insertion method: perform the actual
initialization, allocation and finally insertion once the
input sequence has already been preprocessed.
* @param access Array of iterators of size @c num_threads +
* 1. Each position contains the first value in the subsequence to
* be copied into the corresponding tree node.
* @param beg_partition Array of positions of size @c num_threads
* + 1. Each position contains the rank of the first element in
* the subsequence from which to copy the data to initialize the
* nodes.
* @param k Size of the sequence to be inserted (including the
* possible repeated elements among the sequence itself and
* against those elements already in the tree)
* @param num_threads Number of threads and corresponding
* subsequences in which the work is going to be shared
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
*/
template<typename _Iterator, typename StrictlyLessOrLessEqual>
void
_M_sorted_bulk_insertion(_Iterator* access, size_type* beg_partition, size_type k, thread_index_t num_threads, StrictlyLessOrLessEqual strictly_less_or_less_equal)
{
_GLIBCXX_PARALLEL_ASSERT((size_type)num_threads <= k);
Timing<_timing_tag> t;
t.tic();
// num_thr-1 problems in the upper part of the tree
// num_thr problems to further parallelize
std::vector<size_type> existing(num_threads,0);
#if _GLIBCXX_TREE_INITIAL_SPLITTING
/***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
size_type rank_shift[num_threads+1];
// Need to create them dynamically because they are so erased
concat_problem* conc[2*num_threads-1];
#endif
_Rb_tree_node_ptr* r;
/***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
if (not strictly_less_or_less_equal(base_type::_S_key(base_type::_M_root()),base_type::_S_key(base_type::_M_root()) ))
{
// Unique container
// Set 1 and 2 could be done in parallel ...
// 1. Construct the nodes with their corresponding data
#if _GLIBCXX_TREE_INITIAL_SPLITTING
r = _M_sorted_bulk_allocation_and_initialization(access, beg_partition, rank_shift, k, num_threads, strictly_less_or_less_equal);
t.tic("bulk allocation and initialization");
#else
r = _M_sorted_no_gapped_bulk_allocation_and_initialization(access, beg_partition, k, num_threads, strictly_less_or_less_equal);
#endif
}
else
{
// Not unique container.
r = _M_unsorted_bulk_allocation_and_initialization(access, beg_partition, k, num_threads);
#if _GLIBCXX_TREE_INITIAL_SPLITTING
// Trivial initialization of rank_shift.
for (int i=0; i <= num_threads; ++i)
rank_shift[i] = 0;
#endif
}
#if _GLIBCXX_TREE_INITIAL_SPLITTING
// Calculate position of last element to be inserted: must be
// done now, or otherwise becomes messy.
/***** Dealing with
repetitions (EFFICIENCY ISSUE) *****/
size_type last = beg_partition[num_threads] - (rank_shift[num_threads] - rank_shift[num_threads - 1]);
t.tic("last element to be inserted");
//2. Split the tree according to access in num_threads parts
//Initialize upper concat_problems
//Allocate them dynamically because they are afterwards so erased
for (int i=0; i < (2*num_threads-1); ++i)
{
conc[i] = new concat_problem ();
}
concat_problem* root_problem = _M_bulk_insertion_initialize_upper_problems(conc, 0, num_threads, NULL);
// The first position of access and the last are ignored, so we
// have exactly num_threads subtrees.
bool before = omp_get_nested();
omp_set_nested(true);
_M_bulk_insertion_split_tree_by_pivot(static_cast<_Rb_tree_node_ptr>(base_type::_M_root()), r, access, beg_partition, rank_shift, 0, num_threads-1, conc, num_threads, strictly_less_or_less_equal);
omp_set_nested(before);
// Construct upper tree with the first elements of ranges if
// they are NULL We cannot do this by default because they could
// be repeated and would not be checked.
size_type r_s = 0;
for (int pos = 1; pos < num_threads; ++pos)
{
_GLIBCXX_PARALLEL_ASSERT(conc[(pos-1)*2]->t == NULL or conc[pos*2-1]->t == NULL or strictly_less_or_less_equal(base_type::_S_key(base_type::_S_maximum(conc[(pos-1)*2]->t)), base_type::_S_key(conc[pos*2-1]->t)));
_GLIBCXX_PARALLEL_ASSERT(conc[pos*2]->t == NULL or conc[pos*2-1]->t == NULL or strictly_less_or_less_equal( base_type::_S_key(conc[pos*2-1]->t), base_type::_S_key(base_type::_S_minimum(conc[pos*2]->t))));
/***** Dealing with repetitions (CORRECTNESS ISSUE) *****/
// The first element of the range is the root.
if (conc[pos*2-1]->t == NULL or (not(strictly_less_or_less_equal(base_type::_S_key(static_cast<_Rb_tree_node_ptr>(conc[pos*2-1]->t)), _KeyOfValue()(*access[pos])))))
{
// There was not a candidate element
// or
// Exists an initialized position in the array which
// corresponds to conc[pos*2-1]->t */
if (conc[pos*2-1]->t == NULL)
{
size_t np = beg_partition[pos];
_GLIBCXX_PARALLEL_ASSERT(conc[(pos-1)*2]->t == NULL or strictly_less_or_less_equal(base_type::_S_key(base_type::_S_maximum(conc[(pos-1)*2]->t)), base_type::_S_key(r[np])));
_GLIBCXX_PARALLEL_ASSERT(conc[pos*2]->t == NULL or strictly_less_or_less_equal( base_type::_S_key(r[np]), base_type::_S_key(base_type::_S_minimum(conc[pos*2]->t))));
conc[pos*2-1]->t = r[np];
r[np]->_M_color = std::_S_black;
++base_type::_M_impl._M_node_count;
}
else
{
base_type::_M_destroy_node(r[beg_partition[pos]]);
}
++(access[pos]);
++(beg_partition[pos]);
++r_s;
}
_GLIBCXX_PARALLEL_ASSERT(conc[(pos-1)*2]->t == NULL or conc[(pos-1)*2]->t->_M_color == std::_S_black);
/***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
rank_shift[pos] += r_s;
}
/***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
rank_shift[num_threads] += r_s;
#else
concat_problem root_problem_on_stack(static_cast<_Rb_tree_node_ptr>(base_type::_M_root()), black_height(static_cast<_Rb_tree_node_ptr>(base_type::_M_root())), NULL);
concat_problem * root_problem = &root_problem_on_stack;
size_type last = k;
#endif
t.tic("sorted_no_gapped...");
// 3. Split the range according to tree and create
// 3. insertion/concatenation problems to be solved in parallel
#if _GLIBCXX_TREE_DYNAMIC_BALANCING
size_type min_problem = (k/num_threads) / (log2(k/num_threads + 1)+1);
#else
size_type min_problem = base_type::size() + k;
#endif
RestrictedBoundedConcurrentQueue<insertion_problem>* ins_problems[num_threads];
#pragma omp parallel num_threads(num_threads)
{
int num_thread = omp_get_thread_num();
ins_problems[num_thread] = new RestrictedBoundedConcurrentQueue<insertion_problem>(2*(log2(base_type::size())+1));
#if _GLIBCXX_TREE_INITIAL_SPLITTING
/***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
size_type end_k_thread = beg_partition[num_thread+1] - (rank_shift[num_thread+1] - rank_shift[num_thread]);
ins_problems[num_thread]->push_front(insertion_problem(beg_partition[num_thread], end_k_thread, num_thread, conc[num_thread*2]));
#else
// size_type end_k_thread = beg_partition[num_thread+1];
#endif
insertion_problem ip_to_solve;
bool change;
#if _GLIBCXX_TREE_INITIAL_SPLITTING
#pragma omp barrier
#else
#pragma omp single
ins_problems[num_thread]->push_front(insertion_problem(0, k, num_thread, root_problem));
#endif
do
{
// First do own work.
while (ins_problems[num_thread]->pop_front(ip_to_solve))
{
_GLIBCXX_PARALLEL_ASSERT(ip_to_solve.pos_beg <= ip_to_solve.pos_end);
_M_bulk_insertion_split_sequence(r, ins_problems[num_thread], ip_to_solve, existing[num_thread], min_problem, strictly_less_or_less_equal);
}
yield();
change = false;
//Then, try to steal from others (and become own).
for (int i=1; i<num_threads; ++i)
{
if (ins_problems[(num_thread+i)%num_threads]->pop_back(ip_to_solve))
{
change = true;
_M_bulk_insertion_split_sequence(r, ins_problems[num_thread], ip_to_solve, existing[num_thread], min_problem, strictly_less_or_less_equal);
break;
}
}
} while (change);
}
t.tic("merging");
// Update root and sizes.
base_type::_M_root() = root_problem->t;
root_problem->t->_M_parent = &(base_type::_M_impl._M_header);
/***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
// Add the k elements that wanted to be inserted, minus the ones
// that were repeated.
#if _GLIBCXX_TREE_INITIAL_SPLITTING
base_type::_M_impl._M_node_count += (k - (rank_shift[num_threads]));
#else
base_type::_M_impl._M_node_count += k;
#endif
// Also then, take out the ones that were already existing in the tree.
for (int i = 0; i< num_threads; ++i)
{
base_type::_M_impl._M_node_count -= existing[i];
}
// Update leftmost and rightmost.
/***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
if (not strictly_less_or_less_equal(base_type::_S_key(base_type::_M_root()), base_type::_S_key(base_type::_M_root()))){
// Unique container.
if (base_type::_M_impl._M_key_compare(_KeyOfValue()(*(access[0])), base_type::_S_key(base_type::_M_leftmost())))
base_type::_M_leftmost() = r[0];
if (base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_M_rightmost()), _KeyOfValue()(*(--access[num_threads]))))
base_type::_M_rightmost() = r[last - 1];
}
else{
if (strictly_less_or_less_equal(_KeyOfValue()(*(access[0])), base_type::_S_key(base_type::_M_leftmost())))
base_type::_M_leftmost() = base_type::_S_minimum(base_type::_M_root());
if (strictly_less_or_less_equal(base_type::_S_key(base_type::_M_rightmost()), _KeyOfValue()(*(--access[num_threads]))))
base_type::_M_rightmost() = base_type::_S_maximum(base_type::_M_root());
}
#if _GLIBCXX_TREE_INITIAL_SPLITTING
// Delete root problem
delete root_problem;
#endif
// Delete queues
for (int pos = 0; pos < num_threads; ++pos)
{
delete ins_problems[pos];
}
// Delete array of pointers
::operator delete(r);
t.tic();
t.print();
}
/** @brief Divide a tree according to the splitter elements of a
* given sequence.
*
* The tree of the initial recursive call is divided in exactly
* num_threads partitions, some of which may be empty. Besides,
* some nodes may be extracted from it to afterwards concatenate
* the subtrees resulting from inserting the elements into it.
* This is done sequentially. It could be done in parallel but the
* performance is much worse.
* @param t Root of the tree to be split
* @param r Array of nodes to be inserted into the tree (here only
* used to look up its elements)
* @param access Array of iterators of size @c num_threads +
* 1. Each position contains the first value in the subsequence
* that has been copied into the corresponding tree node.
* @param beg_partition Array of positions of size @c num_threads
* + 1. Each position contains the rank of the first element in
* the array of nodes to be inserted.
* @param rank_shift Array of size @c num_threads + 1 containing
* the number of accumulated gaps at the beginning of each
* partition
* @param pos_beg First position in the access array to be
* considered to split @c t
* @param pos_end Last position (included) in the access array to
* be considered to split @c t
* @param conc Array of concatenation problems to be initialized
* @param num_threads Number of threads and corresponding
* subsequences in which the original sequence has been
* partitioned
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
*/
template<typename _Iterator, typename StrictlyLessOrLessEqual>
void
_M_bulk_insertion_split_tree_by_pivot(_Rb_tree_node_ptr t, _Rb_tree_node_ptr* r, _Iterator* access, size_type* beg_partition, size_type* rank_shift, const size_type pos_beg, const size_type pos_end, concat_problem** conc, const thread_index_t num_threads, StrictlyLessOrLessEqual strictly_less_or_less_equal)
{
if (pos_beg == pos_end)
{
//Elements are in [pos_beg, pos_end]
conc[pos_beg*2]->t = t;
conc[pos_beg*2]->black_h = black_height(t);
force_black_root (conc[pos_beg*2]->t, conc[pos_beg*2]->black_h);
return;
}
if (t == 0)
{
for (size_type i = pos_beg; i < pos_end; ++i)
{
conc[i*2]->t = NULL;
conc[i*2]->black_h = 0;
conc[i*2+1]->t = NULL;
}
conc[pos_end*2]->t = NULL;
conc[pos_end*2]->black_h = 0;
return;
}
// Return the last pos, in which key >= (pos-1).
// Search in the range [pos_beg, pos_end]
size_type pos = std::upper_bound(access + pos_beg, access + pos_end + 1, base_type::_S_key(t), compare_value_key<_Iterator, _Compare>(base_type::_M_impl._M_key_compare)) - access;
if (pos != pos_beg)
{
--pos;
}
_GLIBCXX_PARALLEL_ASSERT(pos == 0 or not base_type::_M_impl._M_key_compare(base_type::_S_key(t), _KeyOfValue()(*access[pos])));
_Rb_tree_node_ptr ll, lr;
int black_h_ll, black_h_lr;
_Rb_tree_node_ptr rl, rr;
int black_h_rl, black_h_rr;
if (pos != pos_beg)
{
_Rb_tree_node_ptr prev = r[beg_partition[pos] - 1 - (rank_shift[pos] - rank_shift[pos - 1])];
_GLIBCXX_PARALLEL_ASSERT(strictly_less_or_less_equal(base_type::_S_key(prev), _KeyOfValue()(*access[pos])));
split(static_cast<_Rb_tree_node_ptr>(t->_M_left),
static_cast<const key_type&>(_KeyOfValue()(*access[pos])),
static_cast<const key_type&>(base_type::_S_key(prev)),
conc[pos*2-1]->t, ll, lr, black_h_ll, black_h_lr,
strictly_less_or_less_equal);
_M_bulk_insertion_split_tree_by_pivot(ll, r, access, beg_partition, rank_shift, pos_beg, pos-1, conc,num_threads, strictly_less_or_less_equal);
}
else
{
lr = static_cast<_Rb_tree_node_ptr>(t->_M_left);
black_h_lr = black_height (lr);
force_black_root (lr, black_h_lr);
}
if (pos != pos_end)
{
_Rb_tree_node_ptr prev = r[beg_partition[pos+1] - 1 - (rank_shift[pos+1] - rank_shift[pos])];
_GLIBCXX_PARALLEL_ASSERT(not base_type::_M_impl._M_key_compare(_KeyOfValue()(*access[pos+1]), base_type::_S_key(prev)));
_GLIBCXX_PARALLEL_ASSERT(strictly_less_or_less_equal(base_type::_S_key(prev), _KeyOfValue()(*access[pos+1])));
split(static_cast<_Rb_tree_node_ptr>(t->_M_right),
static_cast<const key_type&>(_KeyOfValue()(*access[pos+1])),
static_cast<const key_type&>(base_type::_S_key(prev)),
conc[pos*2+1]->t, rl, rr, black_h_rl, black_h_rr,
strictly_less_or_less_equal);
_M_bulk_insertion_split_tree_by_pivot(rr, r, access, beg_partition, rank_shift, pos+1, pos_end, conc,num_threads, strictly_less_or_less_equal);
}
else
{
rl = static_cast<_Rb_tree_node_ptr>(t->_M_right);
black_h_rl = black_height (rl);
force_black_root (rl, black_h_rl);
}
// When key(t) is equal to key(access[pos]) and no other key in
// the left tree satisfies the criteria to be conc[pos*2-1]->t,
// key(t) must be assigned to it to avoid repetitions.
// Therefore, we do not have a root parameter for the
// concatenate function and a new concatenate function must be
// provided.
if (pos != pos_beg and conc[pos*2-1]->t == NULL and not strictly_less_or_less_equal(_KeyOfValue()(*access[pos]), base_type::_S_key(t)))
{
conc[pos*2-1]->t = t;
t = NULL;
}
concatenate(t, lr, rl, black_h_lr, black_h_rl, conc[pos*2]->t, conc[pos*2]->black_h);
}
/** @brief Divide the insertion problem until a leaf is reached or
* the problem is small.
*
* During the recursion, the right subproblem is queued, so that
* it can be handled by any thread. The left subproblem is
* divided recursively, and finally, solved right away
* sequentially.
* @param r Array of nodes containing the nodes to added into the tree
* @param ins_problems Pointer to a queue of insertion
* problems. The calling thread owns this queue, i. e. it is the
* only one to push elements, but other threads could pop elements
* from it in other methods.
* @param ip Current insertion problem to be solved
* @param existing Number of existing elements found when solving
* the insertion problem (out)
* @param min_problem Threshold size on the size of the insertion
* problem in which to stop recursion
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
*/
template<typename StrictlyLessOrLessEqual>
void
_M_bulk_insertion_split_sequence(_Rb_tree_node_ptr* r, RestrictedBoundedConcurrentQueue<insertion_problem>* ins_problems, insertion_problem& ip, size_type& existing, const size_type min_problem, StrictlyLessOrLessEqual strictly_less_or_less_equal)
{
_GLIBCXX_PARALLEL_ASSERT(ip.t == ip.conc->t);
if (ip.t == NULL or (ip.pos_end- ip.pos_beg) <= min_problem)
{
// SOLVE PROBLEM SEQUENTIALLY
// Start solving the problem.
_GLIBCXX_PARALLEL_ASSERT(ip.pos_beg <= ip.pos_end);
_M_bulk_insertion_merge_concatenate(r, ip, existing, strictly_less_or_less_equal);
return;
}
size_type pos_beg_right;
size_type pos_end_left = divide(r, ip.pos_beg, ip.pos_end, base_type::_S_key(ip.t), pos_beg_right, existing, strictly_less_or_less_equal);
int black_h_l, black_h_r;
if (ip.t->_M_color == std::_S_black)
{
black_h_l = black_h_r = ip.conc->black_h - 1;
}
else
{
black_h_l = black_h_r = ip.conc->black_h;
}
// Right problem into the queue.
ip.conc->right_problem = new concat_problem(static_cast<_Rb_tree_node_ptr>(ip.t->_M_right), black_h_r, ip.conc);
ip.conc->left_problem = new concat_problem(static_cast<_Rb_tree_node_ptr>(ip.t->_M_left), black_h_l, ip.conc);
ins_problems->push_front(insertion_problem(pos_beg_right, ip.pos_end, ip.array_partition, ip.conc->right_problem));
// Solve left problem.
insertion_problem ip_left(ip.pos_beg, pos_end_left, ip.array_partition, ip.conc->left_problem);
_M_bulk_insertion_split_sequence(r, ins_problems, ip_left, existing, min_problem, strictly_less_or_less_equal);
}
/** @brief Insert a sequence of elements into a tree using a
* divide-and-conquer scheme.
*
* The problem is solved recursively and sequentially dividing the
* sequence to be inserted according to the root of the tree. This
* is done until a leaf is reached or the proportion of elements
* to be inserted is small. Finally, the two resulting trees are
* concatenated.
* @param r_array Array of nodes containing the nodes to be added
* into the tree (among others)
* @param t Root of the tree
* @param pos_beg Position of the first node in the array of
* nodes to be inserted into the tree
* @param pos_end Position of the first node in the array of
* nodes that will not be inserted into the tree
* @param existing Number of existing elements found while
* inserting the range [@c pos_beg, @c pos_end) (out)
* @param black_h Height of the tree @c t and of the resulting
* tree after the recursive calls (in and out)
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
* @return Resulting tree after the elements have been inserted
*/
template<typename StrictlyLessOrLessEqual>
_Rb_tree_node_ptr
_M_bulk_insertion_merge(_Rb_tree_node_ptr* r_array, _Rb_tree_node_ptr t, const size_type pos_beg, const size_type pos_end, size_type& existing, int& black_h, StrictlyLessOrLessEqual strictly_less_or_less_equal)
{
#ifndef NDEBUG
int count;
#endif
_GLIBCXX_PARALLEL_ASSERT(pos_beg<=pos_end);
// Leaf: a tree with the range must be constructed. Returns its
// height in black nodes and its root (in ip.t) If there is
// nothing to insert, we still need the height for balancing.
if (t == NULL)
{
if (pos_end == pos_beg) return NULL;
t = simple_tree_construct(r_array,pos_beg, pos_end, black_h);
_GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(t,count));
return t;
}
if (pos_end == pos_beg)
return t;
if ((pos_end - pos_beg) <= (size_type)(black_h))
{
// Exponential size tree with respect the number of elements
// to be inserted.
for (size_type p = pos_beg; p < pos_end; ++p)
{
t = _M_insert_local(t, r_array[p], existing, black_h, strictly_less_or_less_equal);
}
_GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(t,count));
return t;
}
size_type pos_beg_right;
size_type pos_end_left = divide(r_array, pos_beg, pos_end, base_type::_S_key(t), pos_beg_right, existing, strictly_less_or_less_equal);
int black_h_l, black_h_r;
if (t->_M_color == std::_S_black)
{
black_h_l = black_h_r = black_h - 1;
}
else
{
black_h_l = black_h_r = black_h;
}
force_black_root(t->_M_left, black_h_l);
_Rb_tree_node_ptr l = _M_bulk_insertion_merge(r_array, static_cast<_Rb_tree_node_ptr>(t->_M_left), pos_beg, pos_end_left, existing, black_h_l, strictly_less_or_less_equal);
force_black_root(t->_M_right, black_h_r);
_Rb_tree_node_ptr r = _M_bulk_insertion_merge(r_array, static_cast<_Rb_tree_node_ptr>(t->_M_right), pos_beg_right, pos_end, existing, black_h_r, strictly_less_or_less_equal);
concatenate(t, l, r, black_h_l, black_h_r, t, black_h);
return t;
}
/** @brief Solve a given insertion problem and all the parent
* concatenation problem that are ready to be solved.
*
* First, solve an insertion problem.
* Then, check if it is possible to solve the parent
* concatenation problem. If this is the case, solve it and go
* up recursively, as far as possible. Quit otherwise.
*
* @param r Array of nodes containing the nodes to be added into
* the tree (among others)
* @param ip Insertion problem to solve initially.
* @param existing Number of existing elements found while
* inserting the range defined by the insertion problem (out)
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
*/
template<typename StrictlyLessOrLessEqual>
void
_M_bulk_insertion_merge_concatenate(_Rb_tree_node_ptr* r, insertion_problem& ip, size_type& existing, StrictlyLessOrLessEqual strictly_less_or_less_equal)
{
concat_problem* conc = ip.conc;
_GLIBCXX_PARALLEL_ASSERT(ip.pos_beg <= ip.pos_end);
conc->t = _M_bulk_insertion_merge(r, ip.t, ip.pos_beg, ip.pos_end, existing, conc->black_h, strictly_less_or_less_equal);
_GLIBCXX_PARALLEL_ASSERT(conc->t == NULL or conc->t->_M_color == std::_S_black);
bool is_ready = true;
while (conc->par_problem != NULL and is_ready)
{
// Pre: exists left and right problem, so there is not a deadlock
if (compare_and_swap(&conc->par_problem->is_ready, concat_problem::READY_NO, concat_problem::READY_YES))
is_ready = false;
if (is_ready)
{
conc = conc->par_problem;
_GLIBCXX_PARALLEL_ASSERT(conc->left_problem!=NULL and conc->right_problem!=NULL);
_GLIBCXX_PARALLEL_ASSERT (conc->left_problem->black_h >=0 and conc->right_problem->black_h>=0);
// Finished working with the problems.
concatenate(conc->t, conc->left_problem->t, conc->right_problem->t, conc->left_problem->black_h, conc->right_problem->black_h, conc->t, conc->black_h);
delete conc->left_problem;
delete conc->right_problem;
}
}
}
// Begin of sorting, searching and related comparison-based helper methods.
/** @brief Check whether a random-access sequence is sorted, and
* calculate its size.
*
* @param __first Begin iterator of sequence.
* @param __last End iterator of sequence.
* @param dist Size of the sequence (out)
* @return sequence is sorted. */
template<typename _RandomAccessIterator>
bool
is_sorted_distance(const _RandomAccessIterator __first, const _RandomAccessIterator __last, size_type& dist, std::random_access_iterator_tag) const
{
gr_or_eq<_Compare, _RandomAccessIterator> geq(base_type::_M_impl._M_key_compare);
dist = __last - __first;
// In parallel.
return equal(__first + 1, __last, __first, geq);
}
/** @brief Check whether an input sequence is sorted, and
* calculate its size.
*
* The list partitioning tool is used so that all the work is
* done in only one traversal.
* @param __first Begin iterator of sequence.
* @param __last End iterator of sequence.
* @param dist Size of the sequence (out)
* @return sequence is sorted. */
template<typename _InputIterator>
bool
is_sorted_distance(const _InputIterator __first, const _InputIterator __last, size_type& dist, std::input_iterator_tag) const
{
dist = 1;
bool is_sorted = true;
_InputIterator it = __first;
_InputIterator prev = it++;
while (it != __last)
{
++dist;
if (base_type::_M_impl._M_key_compare(_KeyOfValue()(*it),_KeyOfValue()(*prev)))
{
is_sorted = false;
++it;
break;
}
prev = it;
++it;
}
while (it != __last)
{
++dist;
++it;
}
return is_sorted;
}
/** @brief Check whether a random-access sequence is sorted,
* calculate its size, and obtain intermediate accessors to the
* sequence to ease parallelization.
*
* @param __first Begin iterator of sequence.
* @param __last End iterator of sequence.
* @param access Array of size @c num_pieces + 1 that defines @c
* num_pieces subsequences of the original sequence (out). Each
* position @c i will contain an iterator to the first element in
* the subsequence @c i.
* @param beg_partition Array of size @c num_pieces + 1 that
* defines @c num_pieces subsequences of the original sequence
* (out). Each position @c i will contain the rank of the first
* element in the subsequence @c i.
* @param dist Size of the sequence (out)
* @param num_pieces Number of pieces to generate.
* @return Sequence is sorted. */
template<typename _RandomAccessIterator>
bool
is_sorted_distance_accessors(const _RandomAccessIterator __first, const _RandomAccessIterator __last, _RandomAccessIterator* access, size_type* beg_partition, size_type& dist, thread_index_t& num_pieces, std::random_access_iterator_tag) const
{
bool is_sorted = is_sorted_distance(__first, __last, dist,std::__iterator_category(__first));
if (dist < (unsigned int) num_pieces)
num_pieces = dist;
// Do it opposite way to use accessors in equal function???
range_accessors(__first,__last, access, beg_partition, dist, num_pieces, std::__iterator_category(__first));
return is_sorted;
}
/** @brief Check whether an input sequence is sorted, calculate
* its size, and obtain intermediate accessors to the sequence to
* ease parallelization.
*
* The list partitioning tool is used so that all the work is
* done in only one traversal.
* @param __first Begin iterator of sequence.
* @param __last End iterator of sequence.
* @param access Array of size @c num_pieces + 1 that defines @c
* num_pieces subsequences of the original sequence (out). Each
* position @c i will contain an iterator to the first element in
* the subsequence @c i.
* @param beg_partition Array of size @c num_pieces + 1 that
* defines @c num_pieces subsequences of the original sequence
* (out). Each position @c i will contain the rank of the first
* element in the subsequence @c i.
* @param dist Size of the sequence (out)
* @param num_pieces Number of pieces to generate.
* @return Sequence is sorted. */
template<typename _InputIterator>
bool
is_sorted_distance_accessors(const _InputIterator __first, const _InputIterator __last, _InputIterator* access, size_type* beg_partition, size_type& dist, thread_index_t& num_pieces, std::input_iterator_tag) const
{
is_sorted_functor<_InputIterator, _Compare> sorted(__first, base_type::_M_impl._M_key_compare);
dist = list_partition(__first, __last, access, (beg_partition+1), num_pieces, sorted, 0);
// Calculate the rank of the beginning each partition from the
// sequence sizes (what is stored at this point in beg_partition
// array).
beg_partition[0] = 0;
for (int i = 0; i < num_pieces; ++i)
{
beg_partition[i+1] += beg_partition[i];
}
return sorted.is_sorted();
}
/** @brief Make a full copy of the elements of a sequence
*
* The uninitialized_copy method from the STL is called in parallel
* using the access array to point to the beginning of each
* partition
* @param access Array of size @c num_threads + 1 that defines @c
* num_threads subsequences. Each position @c i contains an
* iterator to the first element in the subsequence @c i.
* @param beg_partition Array of size @c num_threads + 1 that
* defines @c num_threads subsequences. Each position @c i
* contains the rank of the first element in the subsequence @c
* i.
* @param out Begin iterator of output sequence.
* @param num_threads Number of threads to use. */
template<typename _InputIterator, typename _OutputIterator>
static void
uninitialized_copy_from_accessors(_InputIterator* access, size_type* beg_partition, _OutputIterator out, const thread_index_t num_threads)
{
#pragma omp parallel num_threads(num_threads)
{
int iam = omp_get_thread_num();
uninitialized_copy(access[iam], access[iam+1], out+beg_partition[iam]);
}
}
/** @brief Make a copy of the pointers of the elements of a sequence
* @param access Array of size @c num_threads + 1 that defines @c
* num_threads subsequences. Each position @c i contains an
* iterator to the first element in the subsequence @c i.
* @param beg_partition Array of size @c num_threads + 1 that
* defines @c num_threads subsequences. Each position @c i
* contains the rank of the first element in the subsequence @c
* i.
* @param out Begin iterator of output sequence.
* @param num_threads Number of threads to use. */
template<typename _InputIterator, typename _OutputIterator>
static void
uninitialized_ptr_copy_from_accessors(_InputIterator* access, size_type* beg_partition, _OutputIterator out, const thread_index_t num_threads)
{
#pragma omp parallel num_threads(num_threads)
{
int iam = omp_get_thread_num();
_OutputIterator itout = out + beg_partition[iam];
for (_InputIterator it = access[iam]; it != access[iam+1]; ++it)
{
*itout = &(*it);
++itout;
}
}
}
/** @brief Split a sorted node array in two parts according to a key.
*
* For unique containers, if the splitting key is in the array of
* nodes, the corresponding node is erased.
* @param r Array of nodes containing the nodes to split (among others)
* @param pos_beg Position of the first node in the array of
* nodes to be considered
* @param pos_end Position of the first node in the array of
* nodes to be not considered
* @param key Splitting key
* @param pos_beg_right Position of the first node in the
* resulting right partition (out)
* @param existing Number of existing elements before dividing
* (in) and after (out). Specifically, the counter is
* incremented by one for unique containers if the splitting key
* was already in the array of nodes.
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
* @return Position of the last node (not included) in the
* resulting left partition (out)
*/
template<typename StrictlyLessOrLessEqual>
size_type
divide(_Rb_tree_node_ptr* r, const size_type pos_beg, const size_type pos_end, const key_type& key, size_type& pos_beg_right, size_type& existing, StrictlyLessOrLessEqual strictly_less_or_less_equal)
{
pos_beg_right = std::lower_bound(r + pos_beg, r + pos_end, key, compare_node_key<_Compare>(base_type::_M_impl._M_key_compare)) - r;
//Check if the element exists.
size_type pos_end_left = pos_beg_right;
// If r[pos_beg_right] is equal to key, must be erased
/***** Dealing with repetitions (CORRECTNESS ISSUE) *****/
_GLIBCXX_PARALLEL_ASSERT((pos_beg_right == pos_end) or not base_type::_M_impl._M_key_compare(base_type::_S_key(r[pos_beg_right]),key));
_GLIBCXX_PARALLEL_ASSERT((pos_beg_right + 1 >= pos_end) or strictly_less_or_less_equal(key, base_type::_S_key(r[pos_beg_right + 1])));
if (pos_beg_right != pos_end and not strictly_less_or_less_equal(key, base_type::_S_key(r[pos_beg_right])))
{
_M_destroy_node(r[pos_beg_right]);
r[pos_beg_right] = NULL;
++pos_beg_right;
++existing;
}
_GLIBCXX_PARALLEL_ASSERT(pos_end_left <= pos_beg_right and pos_beg_right <= pos_end and pos_end_left >= pos_beg);
return pos_end_left;
}
/** @brief Parallelization helper method: Given a random-access
sequence of known size, divide it into pieces of almost the
same size.
* @param __first Begin iterator of sequence.
* @param __last End iterator of sequence.
* @param access Array of size @c num_pieces + 1 that defines @c
* num_pieces subsequences. Each position @c i contains an
* iterator to the first element in the subsequence @c i.
* @param beg_partition Array of size @c num_pieces + 1 that
* defines @c num_pieces subsequences. Each position @c i
* contains the rank of the first element in the subsequence @c
* i.
* @param n Sequence size
* @param num_pieces Number of pieces. */
template<typename _RandomAccessIterator>
static void
range_accessors(const _RandomAccessIterator __first, const _RandomAccessIterator __last, _RandomAccessIterator* access, size_type* beg_partition, const size_type n, const thread_index_t num_pieces, std::random_access_iterator_tag)
{
access[0] = __first;
for (int i=1; i< num_pieces; ++i)
{
access[i] = access[i-1] + (__last-__first)/num_pieces;
beg_partition[i]= beg_partition[i-1]+ (__last-__first)/num_pieces;
}
beg_partition[num_pieces] = __last - access[num_pieces-1] + beg_partition[num_pieces-1];
access[num_pieces]= __last;
}
/** @brief Parallelization helper method: Given an input-access
sequence of known size, divide it into pieces of almost the
same size.
* @param __first Begin iterator of sequence.
* @param __last End iterator of sequence.
* @param access Array of size @c num_pieces + 1 that defines @c
* num_pieces subsequences. Each position @c i contains an
* iterator to the first element in the subsequence @c i.
* @param beg_partition Array of size @c num_pieces + 1 that
* defines @c num_pieces subsequences. Each position @c i
* contains the rank of the first element in the subsequence @c
* i.
* @param n Sequence size
* @param num_pieces Number of pieces. */
template<typename _InputIterator>
static void
range_accessors(const _InputIterator __first, const _InputIterator __last, _InputIterator* access, size_type* beg_partition, const size_type n, const thread_index_t num_pieces, std::input_iterator_tag)
{
access[0] = __first;
_InputIterator it= __first;
for (int i=1; i< num_pieces; ++i)
{
for (int j=0; j< n/num_pieces; ++j)
++it;
access[i] = it;
beg_partition[i]= n/num_pieces + beg_partition[i-1];
}
access[num_pieces] = __last;
beg_partition[num_pieces] = n - (num_pieces-1)*(n/num_pieces) + beg_partition[num_pieces-1];
}
/** @brief Initialize an array of concatenation problems for bulk
insertion. They are linked as a tree with (end - beg) leaves.
* @param conc Array of concatenation problems pointers to initialize.
* @param beg Rank of the first leave to initialize
* @param end Rank of the last (not included) leave to initialize
* @param parent Pointer to the parent concatenation problem.
*/
static concat_problem*
_M_bulk_insertion_initialize_upper_problems(concat_problem** conc, const int beg, const int end, concat_problem* parent)
{
if (beg + 1 == end)
{
conc[2*beg]->par_problem = parent;
return conc[2*beg];
}
int size = end - beg;
int mid = beg + size/2;
conc[2*mid-1]->par_problem = parent;
conc[2*mid-1]->left_problem = _M_bulk_insertion_initialize_upper_problems(conc, beg, mid, conc[2*mid-1]);
conc[2*mid-1]->right_problem = _M_bulk_insertion_initialize_upper_problems(conc, mid, end, conc[2*mid-1]);
return conc[2*mid-1];
}
/** @brief Determine black height of a node recursively.
* @param t Node.
* @return Black height of the node. */
static int
black_height(const _Rb_tree_node_ptr t)
{
if (t == NULL)
return 0;
int bh = black_height (static_cast<const _Rb_tree_node_ptr> (t->_M_left));
if (t->_M_color == std::_S_black)
++bh;
return bh;
}
/** @brief Color a leaf black
* @param t Leaf pointer.
* @param black_h Black height of @c t (out) */
static void
make_black_leaf(const _Rb_tree_node_ptr t, int& black_h)
{
black_h = 0;
if (t != NULL)
{
_GLIBCXX_PARALLEL_ASSERT(t->_M_left == NULL and t->_M_right == NULL);
black_h = 1;
t->_M_color = std::_S_black;
}
}
/** @brief Color a node black.
* @param t Node to color black.
* @param black_h Black height of @c t (out) */
static void
make_leaf(const _Rb_tree_node_ptr t, int& black_h)
{
_GLIBCXX_PARALLEL_ASSERT(t != NULL);
black_h = 1;
t->_M_color = std::_S_black;
t->_M_left = NULL;
t->_M_right = NULL;
}
/** @brief Construct a tree from a root, a left subtree and a
right subtree.
* @param root Root of constructed tree.
* @param l Root of left subtree.
* @param r Root of right subtree.
* @pre @c l, @c r are black.
*/
template<typename S>
static _Rb_tree_node_ptr
plant(const _Rb_tree_node_ptr root, const _Rb_tree_node_ptr l,
const _Rb_tree_node_ptr r)
{
S::left(root) = l;
S::right(root) = r;
if (l != NULL)
l->_M_parent = root;
if (r != NULL)
r->_M_parent = root;
root->_M_color = std::_S_red;
return root;
}
/** @brief Concatenate two red-black subtrees using and an
intermediate node, which might be NULL
* @param root Intermediate node.
* @param l Left subtree.
* @param r Right subtree.
* @param black_h_l Black height of left subtree.
* @param black_h_r Black height of right subtree.
* @param t Tree resulting of the concatenation
* @param black_h Black height of the resulting tree
* @pre Left tree is higher than left tree
* @post @c t is correct red-black tree with height @c black_h.
*/
void
concatenate(_Rb_tree_node_ptr root, _Rb_tree_node_ptr l,
_Rb_tree_node_ptr r, int black_h_l, int black_h_r,
_Rb_tree_node_ptr& t, int& black_h) const
{
#ifndef NDEBUG
int count = 0, count1 = 0, count2 = 0;
#endif
_GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(l, count1));
_GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(r, count2));
_GLIBCXX_PARALLEL_ASSERT(l != NULL ? l->_M_color != std::_S_red and black_h_l > 0 : black_h_l == 0);
_GLIBCXX_PARALLEL_ASSERT(r != NULL ? r->_M_color != std::_S_red and black_h_r > 0 : black_h_r == 0);
if (black_h_l > black_h_r)
if (root != NULL)
concatenate<LeftRight>(root, l, r, black_h_l, black_h_r, t, black_h);
else
{
if (r == NULL)
{
t = l;
black_h = black_h_l;
}
else
{
// XXX SHOULD BE the same as extract_min but slower.
/*
root = static_cast<_Rb_tree_node_ptr>(_Rb_tree_node_base::_S_minimum(r));
split(r, _S_key(_Rb_tree_increment(root)), _S_key(root), root, t, r, black_h, black_h_r);
*/
extract_min(r, root, r, black_h_r);
_GLIBCXX_PARALLEL_ASSERT(root != NULL);
concatenate<LeftRight>(root, l, r, black_h_l, black_h_r, t, black_h);
}
}
else
if (root != NULL)
concatenate<RightLeft>(root, r, l, black_h_r, black_h_l, t, black_h);
else
{
if (l == NULL)
{
t = r;
black_h = black_h_r;
}
else
{
// XXX SHOULD BE the same as extract_max but slower
/*
root = static_cast<_Rb_tree_node_ptr>(_Rb_tree_node_base::_S_maximum(l));
split(l, _S_key(root), _S_key(_Rb_tree_decrement(root)), root, l, t, black_h_l, black_h);
*/
extract_max(l, root, l, black_h_l);
_GLIBCXX_PARALLEL_ASSERT(root != NULL);
concatenate<RightLeft>(root, r, l, black_h_r, black_h_l, t, black_h);
}
}
#ifndef NDEBUG
if (root!=NULL) ++count1;
_GLIBCXX_PARALLEL_ASSERT(t == NULL or t->_M_color == std::_S_black);
bool b = rb_verify_tree(t, count);
if (not b){
_GLIBCXX_PARALLEL_ASSERT(false);
}
_GLIBCXX_PARALLEL_ASSERT(count1+count2 == count);
#endif
}
/** @brief Concatenate two red-black subtrees using and a not NULL
* intermediate node.
*
* @c S is the symmetry parameter.
* @param rt Intermediate node.
* @param l Left subtree.
* @param r Right subtree.
* @param black_h_l Black height of left subtree.
* @param black_h_r Black height of right subtree.
* @param t Tree resulting of the concatenation
* @param black_h Black height of the resulting tree
* @pre Left tree is higher than right tree. @c rt != NULL
* @post @c t is correct red-black tree with height @c black_h.
*/
template<typename S>
static void
concatenate(const _Rb_tree_node_ptr rt, _Rb_tree_node_ptr l,
_Rb_tree_node_ptr r, int black_h_l, int black_h_r,
_Rb_tree_node_ptr& t, int& black_h)
{
_Rb_tree_node_base* root = l;
_Rb_tree_node_ptr parent = NULL;
black_h = black_h_l;
_GLIBCXX_PARALLEL_ASSERT(black_h_l >= black_h_r);
while (black_h_l != black_h_r)
{
if (l->_M_color == std::_S_black)
--black_h_l;
parent = l;
l = static_cast<_Rb_tree_node_ptr>(S::right(l));
_GLIBCXX_PARALLEL_ASSERT((black_h_l == 0 and (l == NULL or l->_M_color == std::_S_red)) or (black_h_l != 0 and l != NULL));
_GLIBCXX_PARALLEL_ASSERT((black_h_r == 0 and (r == NULL or r->_M_color == std::_S_red)) or (black_h_r != 0 and r != NULL));
}
if (l != NULL and l->_M_color == std::_S_red)
{
//the root needs to be black
parent = l;
l = static_cast<_Rb_tree_node_ptr>(S::right(l));
}
_GLIBCXX_PARALLEL_ASSERT(l != NULL ? l->_M_color == std::_S_black : true);
_GLIBCXX_PARALLEL_ASSERT(r != NULL ? r->_M_color == std::_S_black : true);
t = plant<S>(rt, l, r);
t->_M_parent = parent;
if (parent != NULL)
{
S::right(parent) = t;
black_h += _Rb_tree_rebalance(t, root);
t = static_cast<_Rb_tree_node_ptr> (root);
}
else
{
++black_h;
t->_M_color = std::_S_black;
}
_GLIBCXX_PARALLEL_ASSERT(t->_M_color == std::_S_black);
}
/** @brief Split a tree according to key in three parts: a left
* child, a right child and an intermediate node.
*
* Trees are concatenated once the recursive call returns. That
* is, from bottom to top (i. e. smaller to larger), so the cost
* bounds for split hold.
* @param t Root of the tree to split.
* @param key Key to split according to.
* @param prev_k Key to split the intermediate node
* @param root Out parameter. If a node exists whose key is
* smaller or equal than @c key, but strictly larger than @c
* prev_k, this is returned. Otherwise, it is null.
* @param l Root of left subtree returned, nodes less than @c key.
* @param r Root of right subtree returned, nodes greater or
* equal than @c key.
* @param black_h_l Black height of the left subtree.
* @param black_h_r Black height of the right subtree.
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
* @return Black height of t */
template<typename StrictlyLessOrEqual>
int
split(_Rb_tree_node_ptr t, const key_type& key, const key_type& prev_k,
_Rb_tree_node_ptr& root, _Rb_tree_node_ptr& l, _Rb_tree_node_ptr& r,
int& black_h_l, int& black_h_r,
StrictlyLessOrEqual strictly_less_or_less_equal) const
{
if (t != NULL)
{
// Must be initialized, in case we never go left!!!
root = NULL;
int h = split_not_null(t, key, prev_k, root, l, r, black_h_l, black_h_r, strictly_less_or_less_equal);
#ifndef NDEBUG
_GLIBCXX_PARALLEL_ASSERT(l == NULL or base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_maximum(l)),key));
_GLIBCXX_PARALLEL_ASSERT(r == NULL or not base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_minimum(r)),key));
int count1, count2;
_GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(l, count1));
_GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(r, count2));
_GLIBCXX_PARALLEL_ASSERT(root == NULL or base_type::_M_impl._M_key_compare(prev_k, base_type::_S_key(root)) and not base_type::_M_impl._M_key_compare(key, base_type::_S_key(root)));
_GLIBCXX_PARALLEL_ASSERT(root != NULL or l==NULL or not base_type::_M_impl._M_key_compare(prev_k, base_type::_S_key(base_type::_S_maximum(l))));
#endif
return h;
}
r = NULL;
root = NULL;
l = NULL;
black_h_r = 0;
black_h_l = 0;
return 0;
}
/** @brief Split a tree according to key in three parts: a left
* child, a right child and an intermediate node.
*
* @param t Root of the tree to split.
* @param key Key to split according to.
* @param prev_k Key to split the intermediate node
* @param root Out parameter. If a node exists whose key is
* smaller or equal than @c key, but strictly larger than @c
* prev_k, this is returned. Otherwise, it is null.
* @param l Root of left subtree returned, nodes less than @c key.
* @param r Root of right subtree returned, nodes greater or
* equal than @c key.
* @param black_h_l Black height of the left subtree.
* @param black_h_r Black height of the right subtree.
* @param strictly_less_or_equal Comparator to deal transparently
* with repetitions with respect to the uniqueness of the
* wrapping container
* @pre t != NULL
* @return Black height of t */
template<typename StrictlyLessOrEqual>
int
split_not_null(const _Rb_tree_node_ptr t, const key_type& key,
const key_type& prev_k, _Rb_tree_node_ptr& root,
_Rb_tree_node_ptr& l, _Rb_tree_node_ptr& r, int& black_h_l,
int& black_h_r,
StrictlyLessOrEqual strictly_less_or_equal) const
{
_GLIBCXX_PARALLEL_ASSERT (t != NULL);
int black_h, b_h;
int black_node = 0;
if (t->_M_color == std::_S_black)
++black_node;
if (strictly_less_or_equal(key, base_type::_S_key(t)))
{
if (t->_M_left != NULL )
{
// t->M_right is at most one node
// go to the left
b_h = black_h = split_not_null( static_cast<_Rb_tree_node_ptr>(t->_M_left), key, prev_k, root, l, r, black_h_l, black_h_r, strictly_less_or_equal);
// Moin root and right subtree to already existing right
// half, leave left subtree.
force_black_root(t->_M_right, b_h);
concatenate(t, r, static_cast<_Rb_tree_node_ptr>(t->_M_right), black_h_r, b_h, r, black_h_r);
}
else
{
// t->M_right is at most one node
r = t;
black_h_r = black_node;
force_black_root(r, black_h_r);
black_h = 0;
l = NULL;
black_h_l = 0;
}
_GLIBCXX_PARALLEL_ASSERT(l == NULL or base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_maximum(l)),key));
_GLIBCXX_PARALLEL_ASSERT(r == NULL or not base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_minimum(r)),key));
}
else
{
if (t->_M_right != NULL )
{
// Go to the right.
if (strictly_less_or_equal(prev_k, base_type::_S_key(t)))
root = t;
b_h = black_h = split_not_null(static_cast<_Rb_tree_node_ptr>(t->_M_right), key, prev_k, root, l, r, black_h_l, black_h_r, strictly_less_or_equal);
// Join root and left subtree to already existing left
// half, leave right subtree.
force_black_root(t->_M_left, b_h);
if (root != t)
{
// There was another point where we went right.
concatenate(t, static_cast<_Rb_tree_node_ptr>(t->_M_left), l, b_h, black_h_l, l, black_h_l);
}
else
{
l = static_cast<_Rb_tree_node_ptr>(t->_M_left);
black_h_l = b_h;
}
_GLIBCXX_PARALLEL_ASSERT(l == NULL or base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_maximum(l)),key));
_GLIBCXX_PARALLEL_ASSERT(r == NULL or not base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_minimum(r)),key));
}
else
{
if (strictly_less_or_equal(prev_k, base_type::_S_key(t)))
{
root = t;
l= static_cast<_Rb_tree_node_ptr>(t->_M_left);
make_black_leaf(l, black_h_l);
_GLIBCXX_PARALLEL_ASSERT(l == NULL or base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_maximum(l)),key));
}
else
{
l= t;
black_h_l = black_node;
force_black_root(l, black_h_l);
_GLIBCXX_PARALLEL_ASSERT(l == NULL or base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_maximum(l)),key));
}
r = NULL;
black_h = 0;
black_h_r = 0;
}
}
return black_h + black_node;
}
/** @brief Color the root black and update the black height accordingly.
*
* @param t Root of the tree.
* @param black_h Black height of the tree @c t (out) */
static void force_black_root(_Rb_tree_node_base* t, int& black_h)
{
if (t != NULL and t->_M_color == std::_S_red)
{
t->_M_color = std::_S_black;
++ black_h;
}
}
/** @brief Split the tree in two parts: the minimum element from a
tree (i. e. leftmost) and the rest (right subtree)
* @param t Root of the tree
* @param root Minimum element (out)
* @param r Right subtree: @c t - {@c root}
* @param black_h_r Black height of the right subtree.
* @return Black height of the original tree */
int
extract_min(const _Rb_tree_node_ptr t, _Rb_tree_node_ptr& root,
_Rb_tree_node_ptr& r, int& black_h_r) const
{
_GLIBCXX_PARALLEL_ASSERT (t != NULL);
int black_h, b_h;
int black_node = 0;
if (t->_M_color == std::_S_black)
++black_node;
if (t->_M_left != NULL )
{
// t->M_right is at most one node
// go to the left
b_h = black_h = extract_min( static_cast<_Rb_tree_node_ptr>(t->_M_left), root, r, black_h_r);
// Join root and right subtree to already existing right
// half, leave left subtree
force_black_root(t->_M_right, b_h);
concatenate(t, r, static_cast<_Rb_tree_node_ptr>(t->_M_right), black_h_r, b_h, r, black_h_r);
}
else
{
// t->M_right is at most one node
root = t;
if (t->_M_right == NULL)
{
r = NULL;
black_h_r = 0;
}
else
{
r = static_cast<_Rb_tree_node_ptr>(t->_M_right);
black_h_r = 1;
r->_M_color = std::_S_black;
}
black_h = 0;
}
return black_h + black_node;
}
/** @brief Split the tree in two parts: the greatest element from
a tree (i. e. rightmost) and the rest (left subtree)
* @param t Root of the tree
* @param root Maximum element (out)
* @param l Left subtree: @c t - {@c root}
* @param black_h_l Black height of the left subtree.
* @return Black height of the original tree */
int
extract_max(const _Rb_tree_node_ptr t, _Rb_tree_node_ptr& root,
_Rb_tree_node_ptr& l, int& black_h_l) const
{
_GLIBCXX_PARALLEL_ASSERT (t != NULL);
int black_h, b_h;
int black_node = 0;
if (t->_M_color == std::_S_black)
++black_node;
if (t->_M_right != NULL )
{
b_h = black_h = extract_max(static_cast<_Rb_tree_node_ptr>(t->_M_right), root, l, black_h_l);
// Join root and left subtree to already existing left half,
// leave right subtree.
force_black_root(t->_M_left, b_h);
concatenate(t, static_cast<_Rb_tree_node_ptr>(t->_M_left), l, b_h, black_h_l, l, black_h_l);
}
else
{
root = t;
if (t->_M_left == NULL)
{
l = NULL;
black_h_l = 0;
}
else
{
l = static_cast<_Rb_tree_node_ptr>(t->_M_left);
black_h_l = 1;
l->_M_color = std::_S_black;
}
black_h = 0;
}
return black_h + black_node;
}
/** @brief Split tree according to key in two parts: a left tree
* and a right subtree
*
* Trees are concatenated once the recursive call returns. That
* is, from bottom to top (i. e. smaller to larger), so the cost
* bounds for split hold.
* @param t Root of the tree to split.
* @param key Key to split according to.
* @param l Root of left subtree returned, nodes less than @c key.
* @param r Root of right subtree returned, nodes greater than @c key.
* @param black_h_l Black height of the left subtree.
* @param black_h_r Black height of the right subtree.
* @return Black height of the original tree */
int
split(const _Rb_tree_node_ptr t, const key_type& key,
_Rb_tree_node_ptr& l, _Rb_tree_node_ptr& r, int& black_h_l,
int& black_h_r) const
{
if (t != NULL)
{
int black_h, b_h;
int black_node = 0;
if (t->_M_color == std::_S_black)
++black_node;
if (not (base_type::_M_impl._M_key_compare(base_type::_S_key(t), key)))
{
// Go to the left.
b_h = black_h = split( static_cast<_Rb_tree_node_ptr>(t->_M_left), key, l, r, black_h_l, black_h_r);
// Join root and right subtree to already existing right
// half, leave left subtree.
force_black_root(t->_M_right, b_h);
concatenate(t, r, static_cast<_Rb_tree_node_ptr>(t->_M_right), black_h_r, b_h, r, black_h_r);
}
else
{
// Go to the right.
b_h = black_h = split(static_cast<_Rb_tree_node_ptr>(t->_M_right), key, l, r, black_h_l, black_h_r);
// Join root and left subtree to already existing left
// half, leave right subtree.
force_black_root(t->_M_left, b_h);
concatenate(t, static_cast<_Rb_tree_node_ptr>(t->_M_left), l, b_h, black_h_l, l, black_h_l);
}
return black_h + black_node;
}
else
{
r = NULL;
l = NULL;
black_h_r = 0;
black_h_l = 0;
return 0;
}
}
/** @brief Insert an existing node in tree and rebalance it, if
* appropriate.
*
* The keyword "local" is used because no attributes of the
* red-black tree are changed, so this insertion is not yet seen
* by the global data structure.
* @param t Root of tree to insert into.
* @param new_t Existing node to insert.
* @param existing Number of existing elements before insertion
* (in) and after (out). Specifically, the counter is incremented
* by one for unique containers if the key of new_t was already
* in the tree.
* @param black_h Black height of the resulting tree (out)
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
* @return Resulting tree after insertion */
template<typename StrictlyLessOrLessEqual>
_Rb_tree_node_ptr
_M_insert_local(_Rb_tree_node_base* t, const _Rb_tree_node_ptr new_t,
size_type& existing, int& black_h,
StrictlyLessOrLessEqual strictly_less_or_less_equal)
{
_GLIBCXX_PARALLEL_ASSERT(t != NULL);
if (_M_insert_local_top_down(t, new_t, NULL, NULL, true, strictly_less_or_less_equal))
{
t->_M_parent = NULL;
black_h += _Rb_tree_rebalance(new_t, t);
_GLIBCXX_PARALLEL_ASSERT(t->_M_color == std::_S_black);
return static_cast<_Rb_tree_node_ptr>(t);
}
else
{
base_type::_M_destroy_node(new_t);
++existing;
force_black_root(t, black_h);
return static_cast<_Rb_tree_node_ptr>(t);
}
}
/***** Dealing with repetitions (CORRECTNESS ISSUE) *****/
/** @brief Insert an existing node in tree, do no rebalancing.
* @param t Root of tree to insert into.
* @param new_t Existing node to insert.
* @param eq_t Node candidate to be equal than new_t, only
* relevant for unique containers
* @param parent Parent node of @c t
* @param is_left True if @c t is a left child of @c
* parent. False otherwise.
* @param strictly_less_or_less_equal Comparator to deal
* transparently with repetitions with respect to the uniqueness
* of the wrapping container
* @return Success of the insertion
*/
template<typename StrictlyLessOrLessEqual>
bool
_M_insert_local_top_down(_Rb_tree_node_base* t,
const _Rb_tree_node_ptr new_t,
_Rb_tree_node_base* eq_t,
_Rb_tree_node_base* parent, const bool is_left,
StrictlyLessOrLessEqual strictly_less_or_less_equal) const
{
if (t != NULL)
{
if (strictly_less_or_less_equal(_S_key(new_t), _S_key(static_cast<_Rb_tree_node_ptr>(t))))
{
return _M_insert_local_top_down(t->_M_left, new_t, eq_t, t, true, strictly_less_or_less_equal);
}
else
{
return _M_insert_local_top_down(t->_M_right, new_t, t, t, false, strictly_less_or_less_equal);
}
}
_GLIBCXX_PARALLEL_ASSERT(parent != NULL);
// Base case.
if (eq_t == NULL or strictly_less_or_less_equal(_S_key(static_cast<_Rb_tree_node_ptr>(eq_t)), _S_key(new_t)))
{
// The element to be inserted did not existed.
if (is_left)
{
parent->_M_left = new_t;
}
else
{
parent->_M_right = new_t;
}
new_t->_M_parent = parent;
new_t->_M_left = NULL;
new_t->_M_right = NULL;
new_t->_M_color = std::_S_red;
return true;
}
else
return false;
}
/** @brief Rebalance a tree locally.
*
* Essentially, it is the same function as insert_erase from the
* base class, but without the insertion and without using any
* tree attributes.
* @param __x Root of the current subtree to rebalance.
* @param __root Root of tree where @c __x is in (rebalancing
* stops when root is reached)
* @return Increment in the black height after rebalancing
*/
static int
_Rb_tree_rebalance(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
_GLIBCXX_PARALLEL_ASSERT(__root->_M_color == std::_S_black);
// Rebalance.
while (__x != __root and __x->_M_parent != __root and
__x->_M_parent->_M_color == std::_S_red)
{
_Rb_tree_node_base* const __xpp = __x->_M_parent->_M_parent;
if (__x->_M_parent == __xpp->_M_left)
{
_Rb_tree_node_base* const __y = __xpp->_M_right;
if (__y && __y->_M_color == std::_S_red)
{
__x->_M_parent->_M_color = std::_S_black;
__y->_M_color = std::_S_black;
__xpp->_M_color = std::_S_red;
__x = __xpp;
}
else
{
if (__x == __x->_M_parent->_M_right)
{
__x = __x->_M_parent;
std::_Rb_tree_rotate_left(__x, __root);
}
__x->_M_parent->_M_color = std::_S_black;
__xpp->_M_color = std::_S_red;
std::_Rb_tree_rotate_right(__xpp, __root);
}
}
else
{
_Rb_tree_node_base* const __y = __xpp->_M_left;
if (__y && __y->_M_color == std::_S_red)
{
__x->_M_parent->_M_color = std::_S_black;
__y->_M_color = std::_S_black;
__xpp->_M_color = std::_S_red;
__x = __xpp;
}
else
{
if (__x == __x->_M_parent->_M_left)
{
__x = __x->_M_parent;
std::_Rb_tree_rotate_right(__x, __root);
}
__x->_M_parent->_M_color = std::_S_black;
__xpp->_M_color = std::_S_red;
std::_Rb_tree_rotate_left(__xpp, __root);
}
}
}
if (__root->_M_color == std::_S_red)
{
__root->_M_color = std::_S_black;
_GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(static_cast<typename base_type::_Const_Link_type>(__root)));
return 1;
}
_GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(static_cast<typename base_type::_Const_Link_type>(__root)));
return 0;
}
/** @brief Analogous to class method rb_verify() but only for a subtree.
* @param __x Pointer to root of subtree to check.
* @param count Returned number of nodes.
* @return Tree correct.
*/
bool
rb_verify_tree(const typename base_type::_Const_Link_type __x, int& count) const
{
int bh;
return rb_verify_tree_node(__x) and rb_verify_tree(__x, count, bh);
}
/** @brief Verify that a subtree is binary search tree (verifies
key relationships)
* @param __x Pointer to root of subtree to check.
* @return Tree correct.
*/
bool
rb_verify_tree_node(const typename base_type::_Const_Link_type __x) const
{
if (__x == NULL)
return true;
else
{
return rb_verify_node(__x) and
rb_verify_tree_node(base_type::_S_left(__x)) and
rb_verify_tree_node( base_type::_S_right(__x));
}
}
/** @brief Verify all the properties of a red-black tree except
for the key ordering
* @param __x Pointer to (subtree) root node.
* @return Tree correct.
*/
static bool
rb_verify_tree(const typename base_type::_Const_Link_type __x)
{
int bh, count;
return rb_verify_tree(__x, count, bh);
}
/** @brief Verify all the properties of a red-black tree except
for the key ordering
* @param __x Pointer to (subtree) root node.
* @param count Number of nodes of @c __x (out).
* @param black_h Black height of @c __x (out).
* @return Tree correct.
*/
static bool
rb_verify_tree(const typename base_type::_Const_Link_type __x, int& count,
int& black_h)
{
if (__x == NULL)
{
count = 0;
black_h = 0;
return true;
}
typename base_type::_Const_Link_type __L = base_type::_S_left(__x);
typename base_type::_Const_Link_type __R = base_type::_S_right(__x);
int countL, countR = 0, bhL, bhR;
bool ret = rb_verify_tree(__L, countL, bhL);
ret = ret and rb_verify_tree(__R, countR, bhR);
count = 1 + countL + countR;
ret = ret and bhL == bhR;
black_h = bhL + ((__x->_M_color == std::_S_red)? 0 : 1);
return ret;
}
/** @brief Verify red-black properties (including key based) for a node
* @param __x Pointer to node.
* @return Node correct.
*/
bool
rb_verify_node(const typename base_type::_Const_Link_type __x) const
{
typename base_type::_Const_Link_type __L = base_type::_S_left(__x);
typename base_type::_Const_Link_type __R = base_type::_S_right(__x);
if (__x->_M_color == std::_S_red)
if ((__L && __L->_M_color == std::_S_red)
|| (__R && __R->_M_color == std::_S_red))
{
return false;
}
if (__L != NULL)
{
__L = static_cast<typename base_type::_Const_Link_type>(base_type::_S_maximum(__L));
if (base_type::_M_impl._M_key_compare(base_type::_S_key(__x), base_type::_S_key(__L)))
{
return false;
}
}
if (__R != NULL)
{
__R = static_cast<typename base_type::_Const_Link_type>(base_type::_S_minimum(__R));
if (base_type::_M_impl._M_key_compare(base_type::_S_key(__R), base_type::_S_key(__x)))
{
return false;
}
}
return true;
}
/** @brief Print all the information of the root.
* @param t Root of the tree.
*/
static void
print_root(_Rb_tree_node_base* t)
{
/*
if (t != NULL)
std::cout<< base_type::_S_key(t) << std::endl;
else
std::cout<< "NULL" << std::endl;
*/
}
/** @brief Print all the information of the tree.
* @param t Root of the tree.
*/
static void
print_tree(_Rb_tree_node_base* t)
{
/*
if (t != NULL)
{
print_tree(t->_M_left);
std::cout<< base_type::_S_key(t) << std::endl;
print_tree(t->_M_right);
}
*/
}
/** @brief Print blanks.
* @param b Number of blanks to print.
* @return A string with @c b blanks */
inline static std::string
blanks(int b)
{
/*
std::string s = "";
for (int i=0; i < b; ++i)
s += " ";
return s;
*/
}
/** @brief Print all the information of the tree.
* @param t Root of the tree.
* @param c Width of a printed key.
*/
template<typename Pointer>
static void
draw_tree(Pointer t, const int c)
{
/*
if (t == NULL)
{
std::cout << blanks(c) << "NULL" << std::endl;
return;
}
draw_tree(static_cast<Pointer>(t->_M_right), c + 8);
std::cout << blanks(c) << "" << base_type::_S_key(t) << " ";
if (t->_M_color == std::_S_black)
std::cout << "B" << std::endl;
else
std::cout << "R" << std::endl;
draw_tree(static_cast<Pointer>(t->_M_left), c + 8);
*/
}
public:
/** @brief Verify that all the red-black tree properties hold for
the stored tree, as well as the additional properties that the
STL implementation imposes.
*/
bool
rb_verify()
{
if (base_type::_M_impl._M_node_count == 0 || base_type::begin() == base_type::end())
{
bool res = base_type::_M_impl._M_node_count == 0 && base_type::begin() == base_type::end()
&& base_type::_M_impl._M_header._M_left ==base_type::_M_end()
&& base_type::_M_impl._M_header._M_right == base_type::_M_end();
_GLIBCXX_PARALLEL_ASSERT(res);
return res;
}
size_type i=0;
unsigned int __len = _Rb_tree_black_count(base_type::_M_leftmost(), base_type::_M_root());
for (typename base_type::const_iterator __it =base_type::begin(); __it != base_type::end(); ++__it)
{
typename base_type::_Const_Link_type __x = static_cast<typename base_type::_Const_Link_type>(__it._M_node);
if (not rb_verify_node(__x)) return false;
if (!base_type::_S_left(__x)&& !base_type::_S_right(__x) && _Rb_tree_black_count(__x,base_type::_M_root()) != __len)
{
_GLIBCXX_PARALLEL_ASSERT(false);
return false;
}
++i;
}
if (i != base_type::_M_impl._M_node_count)
printf("%ld != %ld\n", i, base_type::_M_impl._M_node_count);
if (base_type::_M_leftmost() != std::_Rb_tree_node_base::_S_minimum(base_type::_M_root()))
{
_GLIBCXX_PARALLEL_ASSERT(false);
return false;
}
if (base_type::_M_rightmost() != std::_Rb_tree_node_base::_S_maximum(base_type::_M_root()))
{
_GLIBCXX_PARALLEL_ASSERT(false);
return false;
}
_GLIBCXX_PARALLEL_ASSERT(i == base_type::_M_impl._M_node_count);
return true;
}
};
}
#endif