Jonathan Wakely ce657a7414 Simplify std::scoped_lock destructor
* include/std/mutex (scoped_lock::~scoped_lock()): Use fold
	expression.

From-SVN: r272187
2019-06-12 15:52:06 +01:00

708 lines
18 KiB
C++

// <mutex> -*- C++ -*-
// Copyright (C) 2003-2019 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file include/mutex
* This is a Standard C++ Library header.
*/
#ifndef _GLIBCXX_MUTEX
#define _GLIBCXX_MUTEX 1
#pragma GCC system_header
#if __cplusplus < 201103L
# include <bits/c++0x_warning.h>
#else
#include <tuple>
#include <chrono>
#include <exception>
#include <type_traits>
#include <system_error>
#include <bits/std_mutex.h>
#include <bits/unique_lock.h>
#if ! _GTHREAD_USE_MUTEX_TIMEDLOCK
# include <condition_variable>
# include <thread>
#endif
#ifndef _GLIBCXX_HAVE_TLS
# include <bits/std_function.h>
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @addtogroup mutexes
* @{
*/
#ifdef _GLIBCXX_HAS_GTHREADS
// Common base class for std::recursive_mutex and std::recursive_timed_mutex
class __recursive_mutex_base
{
protected:
typedef __gthread_recursive_mutex_t __native_type;
__recursive_mutex_base(const __recursive_mutex_base&) = delete;
__recursive_mutex_base& operator=(const __recursive_mutex_base&) = delete;
#ifdef __GTHREAD_RECURSIVE_MUTEX_INIT
__native_type _M_mutex = __GTHREAD_RECURSIVE_MUTEX_INIT;
__recursive_mutex_base() = default;
#else
__native_type _M_mutex;
__recursive_mutex_base()
{
// XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may)
__GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION(&_M_mutex);
}
~__recursive_mutex_base()
{ __gthread_recursive_mutex_destroy(&_M_mutex); }
#endif
};
/// The standard recursive mutex type.
class recursive_mutex : private __recursive_mutex_base
{
public:
typedef __native_type* native_handle_type;
recursive_mutex() = default;
~recursive_mutex() = default;
recursive_mutex(const recursive_mutex&) = delete;
recursive_mutex& operator=(const recursive_mutex&) = delete;
void
lock()
{
int __e = __gthread_recursive_mutex_lock(&_M_mutex);
// EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
if (__e)
__throw_system_error(__e);
}
bool
try_lock() noexcept
{
// XXX EINVAL, EAGAIN, EBUSY
return !__gthread_recursive_mutex_trylock(&_M_mutex);
}
void
unlock()
{
// XXX EINVAL, EAGAIN, EBUSY
__gthread_recursive_mutex_unlock(&_M_mutex);
}
native_handle_type
native_handle() noexcept
{ return &_M_mutex; }
};
#if _GTHREAD_USE_MUTEX_TIMEDLOCK
template<typename _Derived>
class __timed_mutex_impl
{
protected:
typedef chrono::high_resolution_clock __clock_t;
template<typename _Rep, typename _Period>
bool
_M_try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
{
using chrono::steady_clock;
auto __rt = chrono::duration_cast<steady_clock::duration>(__rtime);
if (ratio_greater<steady_clock::period, _Period>())
++__rt;
return _M_try_lock_until(steady_clock::now() + __rt);
}
template<typename _Duration>
bool
_M_try_lock_until(const chrono::time_point<__clock_t,
_Duration>& __atime)
{
auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
__gthread_time_t __ts = {
static_cast<std::time_t>(__s.time_since_epoch().count()),
static_cast<long>(__ns.count())
};
return static_cast<_Derived*>(this)->_M_timedlock(__ts);
}
template<typename _Clock, typename _Duration>
bool
_M_try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
{
auto __rtime = __atime - _Clock::now();
return _M_try_lock_until(__clock_t::now() + __rtime);
}
};
/// The standard timed mutex type.
class timed_mutex
: private __mutex_base, public __timed_mutex_impl<timed_mutex>
{
public:
typedef __native_type* native_handle_type;
timed_mutex() = default;
~timed_mutex() = default;
timed_mutex(const timed_mutex&) = delete;
timed_mutex& operator=(const timed_mutex&) = delete;
void
lock()
{
int __e = __gthread_mutex_lock(&_M_mutex);
// EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
if (__e)
__throw_system_error(__e);
}
bool
try_lock() noexcept
{
// XXX EINVAL, EAGAIN, EBUSY
return !__gthread_mutex_trylock(&_M_mutex);
}
template <class _Rep, class _Period>
bool
try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
{ return _M_try_lock_for(__rtime); }
template <class _Clock, class _Duration>
bool
try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
{ return _M_try_lock_until(__atime); }
void
unlock()
{
// XXX EINVAL, EAGAIN, EBUSY
__gthread_mutex_unlock(&_M_mutex);
}
native_handle_type
native_handle() noexcept
{ return &_M_mutex; }
private:
friend class __timed_mutex_impl<timed_mutex>;
bool
_M_timedlock(const __gthread_time_t& __ts)
{ return !__gthread_mutex_timedlock(&_M_mutex, &__ts); }
};
/// recursive_timed_mutex
class recursive_timed_mutex
: private __recursive_mutex_base,
public __timed_mutex_impl<recursive_timed_mutex>
{
public:
typedef __native_type* native_handle_type;
recursive_timed_mutex() = default;
~recursive_timed_mutex() = default;
recursive_timed_mutex(const recursive_timed_mutex&) = delete;
recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;
void
lock()
{
int __e = __gthread_recursive_mutex_lock(&_M_mutex);
// EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
if (__e)
__throw_system_error(__e);
}
bool
try_lock() noexcept
{
// XXX EINVAL, EAGAIN, EBUSY
return !__gthread_recursive_mutex_trylock(&_M_mutex);
}
template <class _Rep, class _Period>
bool
try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
{ return _M_try_lock_for(__rtime); }
template <class _Clock, class _Duration>
bool
try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
{ return _M_try_lock_until(__atime); }
void
unlock()
{
// XXX EINVAL, EAGAIN, EBUSY
__gthread_recursive_mutex_unlock(&_M_mutex);
}
native_handle_type
native_handle() noexcept
{ return &_M_mutex; }
private:
friend class __timed_mutex_impl<recursive_timed_mutex>;
bool
_M_timedlock(const __gthread_time_t& __ts)
{ return !__gthread_recursive_mutex_timedlock(&_M_mutex, &__ts); }
};
#else // !_GTHREAD_USE_MUTEX_TIMEDLOCK
/// timed_mutex
class timed_mutex
{
mutex _M_mut;
condition_variable _M_cv;
bool _M_locked = false;
public:
timed_mutex() = default;
~timed_mutex() { __glibcxx_assert( !_M_locked ); }
timed_mutex(const timed_mutex&) = delete;
timed_mutex& operator=(const timed_mutex&) = delete;
void
lock()
{
unique_lock<mutex> __lk(_M_mut);
_M_cv.wait(__lk, [&]{ return !_M_locked; });
_M_locked = true;
}
bool
try_lock()
{
lock_guard<mutex> __lk(_M_mut);
if (_M_locked)
return false;
_M_locked = true;
return true;
}
template<typename _Rep, typename _Period>
bool
try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
{
unique_lock<mutex> __lk(_M_mut);
if (!_M_cv.wait_for(__lk, __rtime, [&]{ return !_M_locked; }))
return false;
_M_locked = true;
return true;
}
template<typename _Clock, typename _Duration>
bool
try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
{
unique_lock<mutex> __lk(_M_mut);
if (!_M_cv.wait_until(__lk, __atime, [&]{ return !_M_locked; }))
return false;
_M_locked = true;
return true;
}
void
unlock()
{
lock_guard<mutex> __lk(_M_mut);
__glibcxx_assert( _M_locked );
_M_locked = false;
_M_cv.notify_one();
}
};
/// recursive_timed_mutex
class recursive_timed_mutex
{
mutex _M_mut;
condition_variable _M_cv;
thread::id _M_owner;
unsigned _M_count = 0;
// Predicate type that tests whether the current thread can lock a mutex.
struct _Can_lock
{
// Returns true if the mutex is unlocked or is locked by _M_caller.
bool
operator()() const noexcept
{ return _M_mx->_M_count == 0 || _M_mx->_M_owner == _M_caller; }
const recursive_timed_mutex* _M_mx;
thread::id _M_caller;
};
public:
recursive_timed_mutex() = default;
~recursive_timed_mutex() { __glibcxx_assert( _M_count == 0 ); }
recursive_timed_mutex(const recursive_timed_mutex&) = delete;
recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;
void
lock()
{
auto __id = this_thread::get_id();
_Can_lock __can_lock{this, __id};
unique_lock<mutex> __lk(_M_mut);
_M_cv.wait(__lk, __can_lock);
if (_M_count == -1u)
__throw_system_error(EAGAIN); // [thread.timedmutex.recursive]/3
_M_owner = __id;
++_M_count;
}
bool
try_lock()
{
auto __id = this_thread::get_id();
_Can_lock __can_lock{this, __id};
lock_guard<mutex> __lk(_M_mut);
if (!__can_lock())
return false;
if (_M_count == -1u)
return false;
_M_owner = __id;
++_M_count;
return true;
}
template<typename _Rep, typename _Period>
bool
try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
{
auto __id = this_thread::get_id();
_Can_lock __can_lock{this, __id};
unique_lock<mutex> __lk(_M_mut);
if (!_M_cv.wait_for(__lk, __rtime, __can_lock))
return false;
if (_M_count == -1u)
return false;
_M_owner = __id;
++_M_count;
return true;
}
template<typename _Clock, typename _Duration>
bool
try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
{
auto __id = this_thread::get_id();
_Can_lock __can_lock{this, __id};
unique_lock<mutex> __lk(_M_mut);
if (!_M_cv.wait_until(__lk, __atime, __can_lock))
return false;
if (_M_count == -1u)
return false;
_M_owner = __id;
++_M_count;
return true;
}
void
unlock()
{
lock_guard<mutex> __lk(_M_mut);
__glibcxx_assert( _M_owner == this_thread::get_id() );
__glibcxx_assert( _M_count > 0 );
if (--_M_count == 0)
{
_M_owner = {};
_M_cv.notify_one();
}
}
};
#endif
#endif // _GLIBCXX_HAS_GTHREADS
/// @cond undocumented
template<typename _Lock>
inline unique_lock<_Lock>
__try_to_lock(_Lock& __l)
{ return unique_lock<_Lock>{__l, try_to_lock}; }
template<int _Idx, bool _Continue = true>
struct __try_lock_impl
{
template<typename... _Lock>
static void
__do_try_lock(tuple<_Lock&...>& __locks, int& __idx)
{
__idx = _Idx;
auto __lock = std::__try_to_lock(std::get<_Idx>(__locks));
if (__lock.owns_lock())
{
constexpr bool __cont = _Idx + 2 < sizeof...(_Lock);
using __try_locker = __try_lock_impl<_Idx + 1, __cont>;
__try_locker::__do_try_lock(__locks, __idx);
if (__idx == -1)
__lock.release();
}
}
};
template<int _Idx>
struct __try_lock_impl<_Idx, false>
{
template<typename... _Lock>
static void
__do_try_lock(tuple<_Lock&...>& __locks, int& __idx)
{
__idx = _Idx;
auto __lock = std::__try_to_lock(std::get<_Idx>(__locks));
if (__lock.owns_lock())
{
__idx = -1;
__lock.release();
}
}
};
/// @endcond
/** @brief Generic try_lock.
* @param __l1 Meets Lockable requirements (try_lock() may throw).
* @param __l2 Meets Lockable requirements (try_lock() may throw).
* @param __l3 Meets Lockable requirements (try_lock() may throw).
* @return Returns -1 if all try_lock() calls return true. Otherwise returns
* a 0-based index corresponding to the argument that returned false.
* @post Either all arguments are locked, or none will be.
*
* Sequentially calls try_lock() on each argument.
*/
template<typename _Lock1, typename _Lock2, typename... _Lock3>
int
try_lock(_Lock1& __l1, _Lock2& __l2, _Lock3&... __l3)
{
int __idx;
auto __locks = std::tie(__l1, __l2, __l3...);
__try_lock_impl<0>::__do_try_lock(__locks, __idx);
return __idx;
}
/** @brief Generic lock.
* @param __l1 Meets Lockable requirements (try_lock() may throw).
* @param __l2 Meets Lockable requirements (try_lock() may throw).
* @param __l3 Meets Lockable requirements (try_lock() may throw).
* @throw An exception thrown by an argument's lock() or try_lock() member.
* @post All arguments are locked.
*
* All arguments are locked via a sequence of calls to lock(), try_lock()
* and unlock(). If the call exits via an exception any locks that were
* obtained will be released.
*/
template<typename _L1, typename _L2, typename... _L3>
void
lock(_L1& __l1, _L2& __l2, _L3&... __l3)
{
while (true)
{
using __try_locker = __try_lock_impl<0, sizeof...(_L3) != 0>;
unique_lock<_L1> __first(__l1);
int __idx;
auto __locks = std::tie(__l2, __l3...);
__try_locker::__do_try_lock(__locks, __idx);
if (__idx == -1)
{
__first.release();
return;
}
}
}
#if __cplusplus >= 201703L
#define __cpp_lib_scoped_lock 201703
/** @brief A scoped lock type for multiple lockable objects.
*
* A scoped_lock controls mutex ownership within a scope, releasing
* ownership in the destructor.
*/
template<typename... _MutexTypes>
class scoped_lock
{
public:
explicit scoped_lock(_MutexTypes&... __m) : _M_devices(std::tie(__m...))
{ std::lock(__m...); }
explicit scoped_lock(adopt_lock_t, _MutexTypes&... __m) noexcept
: _M_devices(std::tie(__m...))
{ } // calling thread owns mutex
~scoped_lock()
{ std::apply([](auto&... __m) { (__m.unlock(), ...); }, _M_devices); }
scoped_lock(const scoped_lock&) = delete;
scoped_lock& operator=(const scoped_lock&) = delete;
private:
tuple<_MutexTypes&...> _M_devices;
};
template<>
class scoped_lock<>
{
public:
explicit scoped_lock() = default;
explicit scoped_lock(adopt_lock_t) noexcept { }
~scoped_lock() = default;
scoped_lock(const scoped_lock&) = delete;
scoped_lock& operator=(const scoped_lock&) = delete;
};
template<typename _Mutex>
class scoped_lock<_Mutex>
{
public:
using mutex_type = _Mutex;
explicit scoped_lock(mutex_type& __m) : _M_device(__m)
{ _M_device.lock(); }
explicit scoped_lock(adopt_lock_t, mutex_type& __m) noexcept
: _M_device(__m)
{ } // calling thread owns mutex
~scoped_lock()
{ _M_device.unlock(); }
scoped_lock(const scoped_lock&) = delete;
scoped_lock& operator=(const scoped_lock&) = delete;
private:
mutex_type& _M_device;
};
#endif // C++17
#ifdef _GLIBCXX_HAS_GTHREADS
/// Flag type used by std::call_once
struct once_flag
{
private:
typedef __gthread_once_t __native_type;
__native_type _M_once = __GTHREAD_ONCE_INIT;
public:
/// Constructor
constexpr once_flag() noexcept = default;
/// Deleted copy constructor
once_flag(const once_flag&) = delete;
/// Deleted assignment operator
once_flag& operator=(const once_flag&) = delete;
template<typename _Callable, typename... _Args>
friend void
call_once(once_flag& __once, _Callable&& __f, _Args&&... __args);
};
/// @cond undocumented
#ifdef _GLIBCXX_HAVE_TLS
extern __thread void* __once_callable;
extern __thread void (*__once_call)();
#else
extern function<void()> __once_functor;
extern void
__set_once_functor_lock_ptr(unique_lock<mutex>*);
extern mutex&
__get_once_mutex();
#endif
extern "C" void __once_proxy(void);
/// @endcond
/// Invoke a callable and synchronize with other calls using the same flag
template<typename _Callable, typename... _Args>
void
call_once(once_flag& __once, _Callable&& __f, _Args&&... __args)
{
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 2442. call_once() shouldn't DECAY_COPY()
auto __callable = [&] {
std::__invoke(std::forward<_Callable>(__f),
std::forward<_Args>(__args)...);
};
#ifdef _GLIBCXX_HAVE_TLS
__once_callable = std::__addressof(__callable);
__once_call = []{ (*(decltype(__callable)*)__once_callable)(); };
#else
unique_lock<mutex> __functor_lock(__get_once_mutex());
__once_functor = __callable;
__set_once_functor_lock_ptr(&__functor_lock);
#endif
int __e = __gthread_once(&__once._M_once, &__once_proxy);
#ifndef _GLIBCXX_HAVE_TLS
if (__functor_lock)
__set_once_functor_lock_ptr(0);
#endif
#ifdef __clang_analyzer__
// PR libstdc++/82481
__once_callable = nullptr;
__once_call = nullptr;
#endif
if (__e)
__throw_system_error(__e);
}
#endif // _GLIBCXX_HAS_GTHREADS
// @} group mutexes
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace
#endif // C++11
#endif // _GLIBCXX_MUTEX