7bea4023f2
From-SVN: r188164
179 lines
4.1 KiB
C
179 lines
4.1 KiB
C
/* go-cgo.c -- SWIG support routines for libgo.
|
|
|
|
Copyright 2011 The Go Authors. All rights reserved.
|
|
Use of this source code is governed by a BSD-style
|
|
license that can be found in the LICENSE file. */
|
|
|
|
#include "runtime.h"
|
|
#include "go-alloc.h"
|
|
#include "interface.h"
|
|
#include "go-panic.h"
|
|
#include "go-string.h"
|
|
|
|
/* Go memory allocated by code not written in Go. We keep a linked
|
|
list of these allocations so that the garbage collector can see
|
|
them. */
|
|
|
|
struct cgoalloc
|
|
{
|
|
struct cgoalloc *next;
|
|
void *alloc;
|
|
};
|
|
|
|
/* Prepare to call from code written in Go to code written in C or
|
|
C++. This takes the current goroutine out of the Go scheduler, as
|
|
though it were making a system call. Otherwise the program can
|
|
lock up if the C code goes to sleep on a mutex or for some other
|
|
reason. This idea is to call this function, then immediately call
|
|
the C/C++ function. After the C/C++ function returns, call
|
|
syscall_cgocalldone. The usual Go code would look like
|
|
|
|
syscall.Cgocall()
|
|
defer syscall.Cgocalldone()
|
|
cfunction()
|
|
|
|
*/
|
|
|
|
/* We let Go code call these via the syscall package. */
|
|
void syscall_cgocall(void) __asm__ ("syscall.Cgocall");
|
|
void syscall_cgocalldone(void) __asm__ ("syscall.CgocallDone");
|
|
void syscall_cgocallback(void) __asm__ ("syscall.CgocallBack");
|
|
void syscall_cgocallbackdone(void) __asm__ ("syscall.CgocallBackDone");
|
|
|
|
void
|
|
syscall_cgocall ()
|
|
{
|
|
M* m;
|
|
G* g;
|
|
|
|
m = runtime_m ();
|
|
++m->ncgocall;
|
|
g = runtime_g ();
|
|
++g->ncgo;
|
|
runtime_entersyscall ();
|
|
}
|
|
|
|
/* Prepare to return to Go code from C/C++ code. */
|
|
|
|
void
|
|
syscall_cgocalldone ()
|
|
{
|
|
G* g;
|
|
|
|
g = runtime_g ();
|
|
__go_assert (g != NULL);
|
|
--g->ncgo;
|
|
if (g->ncgo == 0)
|
|
{
|
|
/* We are going back to Go, and we are not in a recursive call.
|
|
Let the garbage collector clean up any unreferenced
|
|
memory. */
|
|
g->cgoalloc = NULL;
|
|
}
|
|
|
|
/* If we are invoked because the C function called _cgo_panic, then
|
|
_cgo_panic will already have exited syscall mode. */
|
|
if (g->status == Gsyscall)
|
|
runtime_exitsyscall ();
|
|
}
|
|
|
|
/* Call back from C/C++ code to Go code. */
|
|
|
|
void
|
|
syscall_cgocallback ()
|
|
{
|
|
runtime_exitsyscall ();
|
|
}
|
|
|
|
/* Prepare to return to C/C++ code from a callback to Go code. */
|
|
|
|
void
|
|
syscall_cgocallbackdone ()
|
|
{
|
|
runtime_entersyscall ();
|
|
}
|
|
|
|
/* Allocate memory and save it in a list visible to the Go garbage
|
|
collector. */
|
|
|
|
void *
|
|
alloc_saved (size_t n)
|
|
{
|
|
void *ret;
|
|
G *g;
|
|
struct cgoalloc *c;
|
|
|
|
ret = __go_alloc (n);
|
|
|
|
g = runtime_g ();
|
|
c = (struct cgoalloc *) __go_alloc (sizeof (struct cgoalloc));
|
|
c->next = g->cgoalloc;
|
|
c->alloc = ret;
|
|
g->cgoalloc = c;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* These are routines used by SWIG. The gc runtime library provides
|
|
the same routines under the same name, though in that case the code
|
|
is required to import runtime/cgo. */
|
|
|
|
void *
|
|
_cgo_allocate (size_t n)
|
|
{
|
|
void *ret;
|
|
|
|
runtime_exitsyscall ();
|
|
ret = alloc_saved (n);
|
|
runtime_entersyscall ();
|
|
return ret;
|
|
}
|
|
|
|
extern const struct __go_type_descriptor string_type_descriptor
|
|
asm ("__go_tdn_string");
|
|
|
|
void
|
|
_cgo_panic (const char *p)
|
|
{
|
|
int len;
|
|
unsigned char *data;
|
|
struct __go_string *ps;
|
|
struct __go_empty_interface e;
|
|
|
|
runtime_exitsyscall ();
|
|
len = __builtin_strlen (p);
|
|
data = alloc_saved (len);
|
|
__builtin_memcpy (data, p, len);
|
|
ps = alloc_saved (sizeof *ps);
|
|
ps->__data = data;
|
|
ps->__length = len;
|
|
e.__type_descriptor = &string_type_descriptor;
|
|
e.__object = ps;
|
|
|
|
/* We don't call runtime_entersyscall here, because normally what
|
|
will happen is that we will walk up the stack to a Go deferred
|
|
function that calls recover. However, this will do the wrong
|
|
thing if this panic is recovered and the stack unwinding is
|
|
caught by a C++ exception handler. It might be possible to
|
|
handle this by calling runtime_entersyscall in the personality
|
|
function in go-unwind.c. FIXME. */
|
|
|
|
__go_panic (e);
|
|
}
|
|
|
|
/* Return the number of CGO calls. */
|
|
|
|
int64 runtime_NumCgoCall (void) __asm__ ("runtime.NumCgoCall");
|
|
|
|
int64
|
|
runtime_NumCgoCall (void)
|
|
{
|
|
int64 ret;
|
|
M* m;
|
|
|
|
ret = 0;
|
|
for (m = runtime_atomicloadp (&runtime_allm); m != NULL; m = m->alllink)
|
|
ret += m->ncgocall;
|
|
return ret;
|
|
}
|