1fae9801e4
From-SVN: r189878
1730 lines
40 KiB
C
1730 lines
40 KiB
C
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
#include <limits.h>
|
|
#include <stdlib.h>
|
|
#include <pthread.h>
|
|
#include <unistd.h>
|
|
|
|
#include "config.h"
|
|
|
|
#ifdef HAVE_DL_ITERATE_PHDR
|
|
#include <link.h>
|
|
#endif
|
|
|
|
#include "runtime.h"
|
|
#include "arch.h"
|
|
#include "defs.h"
|
|
#include "malloc.h"
|
|
#include "go-defer.h"
|
|
|
|
#ifdef USING_SPLIT_STACK
|
|
|
|
/* FIXME: These are not declared anywhere. */
|
|
|
|
extern void __splitstack_getcontext(void *context[10]);
|
|
|
|
extern void __splitstack_setcontext(void *context[10]);
|
|
|
|
extern void *__splitstack_makecontext(size_t, void *context[10], size_t *);
|
|
|
|
extern void * __splitstack_resetcontext(void *context[10], size_t *);
|
|
|
|
extern void *__splitstack_find(void *, void *, size_t *, void **, void **,
|
|
void **);
|
|
|
|
extern void __splitstack_block_signals (int *, int *);
|
|
|
|
extern void __splitstack_block_signals_context (void *context[10], int *,
|
|
int *);
|
|
|
|
#endif
|
|
|
|
#ifndef PTHREAD_STACK_MIN
|
|
# define PTHREAD_STACK_MIN 8192
|
|
#endif
|
|
|
|
#if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK)
|
|
# define StackMin PTHREAD_STACK_MIN
|
|
#else
|
|
# define StackMin 2 * 1024 * 1024
|
|
#endif
|
|
|
|
uintptr runtime_stacks_sys;
|
|
|
|
static void schedule(G*);
|
|
|
|
static void gtraceback(G*);
|
|
|
|
typedef struct Sched Sched;
|
|
|
|
M runtime_m0;
|
|
G runtime_g0; // idle goroutine for m0
|
|
|
|
#ifdef __rtems__
|
|
#define __thread
|
|
#endif
|
|
|
|
static __thread G *g;
|
|
static __thread M *m;
|
|
|
|
#ifndef SETCONTEXT_CLOBBERS_TLS
|
|
|
|
static inline void
|
|
initcontext(void)
|
|
{
|
|
}
|
|
|
|
static inline void
|
|
fixcontext(ucontext_t *c __attribute__ ((unused)))
|
|
{
|
|
}
|
|
|
|
# else
|
|
|
|
# if defined(__x86_64__) && defined(__sun__)
|
|
|
|
// x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs
|
|
// register to that of the thread which called getcontext. The effect
|
|
// is that the address of all __thread variables changes. This bug
|
|
// also affects pthread_self() and pthread_getspecific. We work
|
|
// around it by clobbering the context field directly to keep %fs the
|
|
// same.
|
|
|
|
static __thread greg_t fs;
|
|
|
|
static inline void
|
|
initcontext(void)
|
|
{
|
|
ucontext_t c;
|
|
|
|
getcontext(&c);
|
|
fs = c.uc_mcontext.gregs[REG_FSBASE];
|
|
}
|
|
|
|
static inline void
|
|
fixcontext(ucontext_t* c)
|
|
{
|
|
c->uc_mcontext.gregs[REG_FSBASE] = fs;
|
|
}
|
|
|
|
# else
|
|
|
|
# error unknown case for SETCONTEXT_CLOBBERS_TLS
|
|
|
|
# endif
|
|
|
|
#endif
|
|
|
|
// We can not always refer to the TLS variables directly. The
|
|
// compiler will call tls_get_addr to get the address of the variable,
|
|
// and it may hold it in a register across a call to schedule. When
|
|
// we get back from the call we may be running in a different thread,
|
|
// in which case the register now points to the TLS variable for a
|
|
// different thread. We use non-inlinable functions to avoid this
|
|
// when necessary.
|
|
|
|
G* runtime_g(void) __attribute__ ((noinline, no_split_stack));
|
|
|
|
G*
|
|
runtime_g(void)
|
|
{
|
|
return g;
|
|
}
|
|
|
|
M* runtime_m(void) __attribute__ ((noinline, no_split_stack));
|
|
|
|
M*
|
|
runtime_m(void)
|
|
{
|
|
return m;
|
|
}
|
|
|
|
int32 runtime_gcwaiting;
|
|
|
|
// The static TLS size. See runtime_newm.
|
|
static int tlssize;
|
|
|
|
#ifdef HAVE_DL_ITERATE_PHDR
|
|
|
|
// Called via dl_iterate_phdr.
|
|
|
|
static int
|
|
addtls(struct dl_phdr_info* info, size_t size __attribute__ ((unused)), void *data)
|
|
{
|
|
size_t *total = (size_t *)data;
|
|
unsigned int i;
|
|
|
|
for(i = 0; i < info->dlpi_phnum; ++i) {
|
|
if(info->dlpi_phdr[i].p_type == PT_TLS)
|
|
*total += info->dlpi_phdr[i].p_memsz;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Set the total TLS size.
|
|
|
|
static void
|
|
inittlssize()
|
|
{
|
|
size_t total = 0;
|
|
|
|
dl_iterate_phdr(addtls, (void *)&total);
|
|
tlssize = total;
|
|
}
|
|
|
|
#else
|
|
|
|
static void
|
|
inittlssize()
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
// Go scheduler
|
|
//
|
|
// The go scheduler's job is to match ready-to-run goroutines (`g's)
|
|
// with waiting-for-work schedulers (`m's). If there are ready g's
|
|
// and no waiting m's, ready() will start a new m running in a new
|
|
// OS thread, so that all ready g's can run simultaneously, up to a limit.
|
|
// For now, m's never go away.
|
|
//
|
|
// By default, Go keeps only one kernel thread (m) running user code
|
|
// at a single time; other threads may be blocked in the operating system.
|
|
// Setting the environment variable $GOMAXPROCS or calling
|
|
// runtime.GOMAXPROCS() will change the number of user threads
|
|
// allowed to execute simultaneously. $GOMAXPROCS is thus an
|
|
// approximation of the maximum number of cores to use.
|
|
//
|
|
// Even a program that can run without deadlock in a single process
|
|
// might use more m's if given the chance. For example, the prime
|
|
// sieve will use as many m's as there are primes (up to runtime_sched.mmax),
|
|
// allowing different stages of the pipeline to execute in parallel.
|
|
// We could revisit this choice, only kicking off new m's for blocking
|
|
// system calls, but that would limit the amount of parallel computation
|
|
// that go would try to do.
|
|
//
|
|
// In general, one could imagine all sorts of refinements to the
|
|
// scheduler, but the goal now is just to get something working on
|
|
// Linux and OS X.
|
|
|
|
struct Sched {
|
|
Lock;
|
|
|
|
G *gfree; // available g's (status == Gdead)
|
|
int32 goidgen;
|
|
|
|
G *ghead; // g's waiting to run
|
|
G *gtail;
|
|
int32 gwait; // number of g's waiting to run
|
|
int32 gcount; // number of g's that are alive
|
|
int32 grunning; // number of g's running on cpu or in syscall
|
|
|
|
M *mhead; // m's waiting for work
|
|
int32 mwait; // number of m's waiting for work
|
|
int32 mcount; // number of m's that have been created
|
|
|
|
volatile uint32 atomic; // atomic scheduling word (see below)
|
|
|
|
int32 profilehz; // cpu profiling rate
|
|
|
|
bool init; // running initialization
|
|
bool lockmain; // init called runtime.LockOSThread
|
|
|
|
Note stopped; // one g can set waitstop and wait here for m's to stop
|
|
};
|
|
|
|
// The atomic word in sched is an atomic uint32 that
|
|
// holds these fields.
|
|
//
|
|
// [15 bits] mcpu number of m's executing on cpu
|
|
// [15 bits] mcpumax max number of m's allowed on cpu
|
|
// [1 bit] waitstop some g is waiting on stopped
|
|
// [1 bit] gwaiting gwait != 0
|
|
//
|
|
// These fields are the information needed by entersyscall
|
|
// and exitsyscall to decide whether to coordinate with the
|
|
// scheduler. Packing them into a single machine word lets
|
|
// them use a fast path with a single atomic read/write and
|
|
// no lock/unlock. This greatly reduces contention in
|
|
// syscall- or cgo-heavy multithreaded programs.
|
|
//
|
|
// Except for entersyscall and exitsyscall, the manipulations
|
|
// to these fields only happen while holding the schedlock,
|
|
// so the routines holding schedlock only need to worry about
|
|
// what entersyscall and exitsyscall do, not the other routines
|
|
// (which also use the schedlock).
|
|
//
|
|
// In particular, entersyscall and exitsyscall only read mcpumax,
|
|
// waitstop, and gwaiting. They never write them. Thus, writes to those
|
|
// fields can be done (holding schedlock) without fear of write conflicts.
|
|
// There may still be logic conflicts: for example, the set of waitstop must
|
|
// be conditioned on mcpu >= mcpumax or else the wait may be a
|
|
// spurious sleep. The Promela model in proc.p verifies these accesses.
|
|
enum {
|
|
mcpuWidth = 15,
|
|
mcpuMask = (1<<mcpuWidth) - 1,
|
|
mcpuShift = 0,
|
|
mcpumaxShift = mcpuShift + mcpuWidth,
|
|
waitstopShift = mcpumaxShift + mcpuWidth,
|
|
gwaitingShift = waitstopShift+1,
|
|
|
|
// The max value of GOMAXPROCS is constrained
|
|
// by the max value we can store in the bit fields
|
|
// of the atomic word. Reserve a few high values
|
|
// so that we can detect accidental decrement
|
|
// beyond zero.
|
|
maxgomaxprocs = mcpuMask - 10,
|
|
};
|
|
|
|
#define atomic_mcpu(v) (((v)>>mcpuShift)&mcpuMask)
|
|
#define atomic_mcpumax(v) (((v)>>mcpumaxShift)&mcpuMask)
|
|
#define atomic_waitstop(v) (((v)>>waitstopShift)&1)
|
|
#define atomic_gwaiting(v) (((v)>>gwaitingShift)&1)
|
|
|
|
Sched runtime_sched;
|
|
int32 runtime_gomaxprocs;
|
|
bool runtime_singleproc;
|
|
|
|
static bool canaddmcpu(void);
|
|
|
|
// An m that is waiting for notewakeup(&m->havenextg). This may
|
|
// only be accessed while the scheduler lock is held. This is used to
|
|
// minimize the number of times we call notewakeup while the scheduler
|
|
// lock is held, since the m will normally move quickly to lock the
|
|
// scheduler itself, producing lock contention.
|
|
static M* mwakeup;
|
|
|
|
// Scheduling helpers. Sched must be locked.
|
|
static void gput(G*); // put/get on ghead/gtail
|
|
static G* gget(void);
|
|
static void mput(M*); // put/get on mhead
|
|
static M* mget(G*);
|
|
static void gfput(G*); // put/get on gfree
|
|
static G* gfget(void);
|
|
static void matchmg(void); // match m's to g's
|
|
static void readylocked(G*); // ready, but sched is locked
|
|
static void mnextg(M*, G*);
|
|
static void mcommoninit(M*);
|
|
|
|
void
|
|
setmcpumax(uint32 n)
|
|
{
|
|
uint32 v, w;
|
|
|
|
for(;;) {
|
|
v = runtime_sched.atomic;
|
|
w = v;
|
|
w &= ~(mcpuMask<<mcpumaxShift);
|
|
w |= n<<mcpumaxShift;
|
|
if(runtime_cas(&runtime_sched.atomic, v, w))
|
|
break;
|
|
}
|
|
}
|
|
|
|
// First function run by a new goroutine. This replaces gogocall.
|
|
static void
|
|
kickoff(void)
|
|
{
|
|
void (*fn)(void*);
|
|
|
|
fn = (void (*)(void*))(g->entry);
|
|
fn(g->param);
|
|
runtime_goexit();
|
|
}
|
|
|
|
// Switch context to a different goroutine. This is like longjmp.
|
|
static void runtime_gogo(G*) __attribute__ ((noinline));
|
|
static void
|
|
runtime_gogo(G* newg)
|
|
{
|
|
#ifdef USING_SPLIT_STACK
|
|
__splitstack_setcontext(&newg->stack_context[0]);
|
|
#endif
|
|
g = newg;
|
|
newg->fromgogo = true;
|
|
fixcontext(&newg->context);
|
|
setcontext(&newg->context);
|
|
runtime_throw("gogo setcontext returned");
|
|
}
|
|
|
|
// Save context and call fn passing g as a parameter. This is like
|
|
// setjmp. Because getcontext always returns 0, unlike setjmp, we use
|
|
// g->fromgogo as a code. It will be true if we got here via
|
|
// setcontext. g == nil the first time this is called in a new m.
|
|
static void runtime_mcall(void (*)(G*)) __attribute__ ((noinline));
|
|
static void
|
|
runtime_mcall(void (*pfn)(G*))
|
|
{
|
|
M *mp;
|
|
G *gp;
|
|
#ifndef USING_SPLIT_STACK
|
|
int i;
|
|
#endif
|
|
|
|
// Ensure that all registers are on the stack for the garbage
|
|
// collector.
|
|
__builtin_unwind_init();
|
|
|
|
mp = m;
|
|
gp = g;
|
|
if(gp == mp->g0)
|
|
runtime_throw("runtime: mcall called on m->g0 stack");
|
|
|
|
if(gp != nil) {
|
|
|
|
#ifdef USING_SPLIT_STACK
|
|
__splitstack_getcontext(&g->stack_context[0]);
|
|
#else
|
|
gp->gcnext_sp = &i;
|
|
#endif
|
|
gp->fromgogo = false;
|
|
getcontext(&gp->context);
|
|
|
|
// When we return from getcontext, we may be running
|
|
// in a new thread. That means that m and g may have
|
|
// changed. They are global variables so we will
|
|
// reload them, but the addresses of m and g may be
|
|
// cached in our local stack frame, and those
|
|
// addresses may be wrong. Call functions to reload
|
|
// the values for this thread.
|
|
mp = runtime_m();
|
|
gp = runtime_g();
|
|
|
|
if(gp->traceback != nil)
|
|
gtraceback(gp);
|
|
}
|
|
if (gp == nil || !gp->fromgogo) {
|
|
#ifdef USING_SPLIT_STACK
|
|
__splitstack_setcontext(&mp->g0->stack_context[0]);
|
|
#endif
|
|
mp->g0->entry = (byte*)pfn;
|
|
mp->g0->param = gp;
|
|
|
|
// It's OK to set g directly here because this case
|
|
// can not occur if we got here via a setcontext to
|
|
// the getcontext call just above.
|
|
g = mp->g0;
|
|
|
|
fixcontext(&mp->g0->context);
|
|
setcontext(&mp->g0->context);
|
|
runtime_throw("runtime: mcall function returned");
|
|
}
|
|
}
|
|
|
|
// Keep trace of scavenger's goroutine for deadlock detection.
|
|
static G *scvg;
|
|
|
|
// The bootstrap sequence is:
|
|
//
|
|
// call osinit
|
|
// call schedinit
|
|
// make & queue new G
|
|
// call runtime_mstart
|
|
//
|
|
// The new G calls runtime_main.
|
|
void
|
|
runtime_schedinit(void)
|
|
{
|
|
int32 n;
|
|
const byte *p;
|
|
|
|
m = &runtime_m0;
|
|
g = &runtime_g0;
|
|
m->g0 = g;
|
|
m->curg = g;
|
|
g->m = m;
|
|
|
|
initcontext();
|
|
inittlssize();
|
|
|
|
m->nomemprof++;
|
|
runtime_mallocinit();
|
|
mcommoninit(m);
|
|
|
|
runtime_goargs();
|
|
runtime_goenvs();
|
|
|
|
// For debugging:
|
|
// Allocate internal symbol table representation now,
|
|
// so that we don't need to call malloc when we crash.
|
|
// runtime_findfunc(0);
|
|
|
|
runtime_gomaxprocs = 1;
|
|
p = runtime_getenv("GOMAXPROCS");
|
|
if(p != nil && (n = runtime_atoi(p)) != 0) {
|
|
if(n > maxgomaxprocs)
|
|
n = maxgomaxprocs;
|
|
runtime_gomaxprocs = n;
|
|
}
|
|
// wait for the main goroutine to start before taking
|
|
// GOMAXPROCS into account.
|
|
setmcpumax(1);
|
|
runtime_singleproc = runtime_gomaxprocs == 1;
|
|
|
|
canaddmcpu(); // mcpu++ to account for bootstrap m
|
|
m->helpgc = 1; // flag to tell schedule() to mcpu--
|
|
runtime_sched.grunning++;
|
|
|
|
// Can not enable GC until all roots are registered.
|
|
// mstats.enablegc = 1;
|
|
m->nomemprof--;
|
|
}
|
|
|
|
extern void main_init(void) __asm__ ("__go_init_main");
|
|
extern void main_main(void) __asm__ ("main.main");
|
|
|
|
// The main goroutine.
|
|
void
|
|
runtime_main(void)
|
|
{
|
|
// Lock the main goroutine onto this, the main OS thread,
|
|
// during initialization. Most programs won't care, but a few
|
|
// do require certain calls to be made by the main thread.
|
|
// Those can arrange for main.main to run in the main thread
|
|
// by calling runtime.LockOSThread during initialization
|
|
// to preserve the lock.
|
|
runtime_LockOSThread();
|
|
// From now on, newgoroutines may use non-main threads.
|
|
setmcpumax(runtime_gomaxprocs);
|
|
runtime_sched.init = true;
|
|
scvg = __go_go(runtime_MHeap_Scavenger, nil);
|
|
main_init();
|
|
runtime_sched.init = false;
|
|
if(!runtime_sched.lockmain)
|
|
runtime_UnlockOSThread();
|
|
|
|
// For gccgo we have to wait until after main is initialized
|
|
// to enable GC, because initializing main registers the GC
|
|
// roots.
|
|
mstats.enablegc = 1;
|
|
|
|
// The deadlock detection has false negatives.
|
|
// Let scvg start up, to eliminate the false negative
|
|
// for the trivial program func main() { select{} }.
|
|
runtime_gosched();
|
|
|
|
main_main();
|
|
runtime_exit(0);
|
|
for(;;)
|
|
*(int32*)0 = 0;
|
|
}
|
|
|
|
// Lock the scheduler.
|
|
static void
|
|
schedlock(void)
|
|
{
|
|
runtime_lock(&runtime_sched);
|
|
}
|
|
|
|
// Unlock the scheduler.
|
|
static void
|
|
schedunlock(void)
|
|
{
|
|
M *m;
|
|
|
|
m = mwakeup;
|
|
mwakeup = nil;
|
|
runtime_unlock(&runtime_sched);
|
|
if(m != nil)
|
|
runtime_notewakeup(&m->havenextg);
|
|
}
|
|
|
|
void
|
|
runtime_goexit(void)
|
|
{
|
|
g->status = Gmoribund;
|
|
runtime_gosched();
|
|
}
|
|
|
|
void
|
|
runtime_goroutineheader(G *g)
|
|
{
|
|
const char *status;
|
|
|
|
switch(g->status) {
|
|
case Gidle:
|
|
status = "idle";
|
|
break;
|
|
case Grunnable:
|
|
status = "runnable";
|
|
break;
|
|
case Grunning:
|
|
status = "running";
|
|
break;
|
|
case Gsyscall:
|
|
status = "syscall";
|
|
break;
|
|
case Gwaiting:
|
|
if(g->waitreason)
|
|
status = g->waitreason;
|
|
else
|
|
status = "waiting";
|
|
break;
|
|
case Gmoribund:
|
|
status = "moribund";
|
|
break;
|
|
default:
|
|
status = "???";
|
|
break;
|
|
}
|
|
runtime_printf("goroutine %d [%s]:\n", g->goid, status);
|
|
}
|
|
|
|
void
|
|
runtime_goroutinetrailer(G *g)
|
|
{
|
|
if(g != nil && g->gopc != 0 && g->goid != 1) {
|
|
struct __go_string fn;
|
|
struct __go_string file;
|
|
int line;
|
|
|
|
if(__go_file_line(g->gopc - 1, &fn, &file, &line)) {
|
|
runtime_printf("created by %s\n", fn.__data);
|
|
runtime_printf("\t%s:%d\n", file.__data, line);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct Traceback
|
|
{
|
|
G* gp;
|
|
uintptr pcbuf[100];
|
|
int32 c;
|
|
};
|
|
|
|
void
|
|
runtime_tracebackothers(G * volatile me)
|
|
{
|
|
G * volatile g;
|
|
Traceback traceback;
|
|
|
|
traceback.gp = me;
|
|
for(g = runtime_allg; g != nil; g = g->alllink) {
|
|
if(g == me || g->status == Gdead)
|
|
continue;
|
|
runtime_printf("\n");
|
|
runtime_goroutineheader(g);
|
|
|
|
// Our only mechanism for doing a stack trace is
|
|
// _Unwind_Backtrace. And that only works for the
|
|
// current thread, not for other random goroutines.
|
|
// So we need to switch context to the goroutine, get
|
|
// the backtrace, and then switch back.
|
|
|
|
// This means that if g is running or in a syscall, we
|
|
// can't reliably print a stack trace. FIXME.
|
|
if(g->status == Gsyscall || g->status == Grunning) {
|
|
runtime_printf("no stack trace available\n");
|
|
runtime_goroutinetrailer(g);
|
|
continue;
|
|
}
|
|
|
|
g->traceback = &traceback;
|
|
|
|
#ifdef USING_SPLIT_STACK
|
|
__splitstack_getcontext(&me->stack_context[0]);
|
|
#endif
|
|
getcontext(&me->context);
|
|
|
|
if(g->traceback != nil) {
|
|
runtime_gogo(g);
|
|
}
|
|
|
|
runtime_printtrace(traceback.pcbuf, traceback.c);
|
|
runtime_goroutinetrailer(g);
|
|
}
|
|
}
|
|
|
|
// Do a stack trace of gp, and then restore the context to
|
|
// gp->dotraceback.
|
|
|
|
static void
|
|
gtraceback(G* gp)
|
|
{
|
|
Traceback* traceback;
|
|
|
|
traceback = gp->traceback;
|
|
gp->traceback = nil;
|
|
traceback->c = runtime_callers(1, traceback->pcbuf,
|
|
sizeof traceback->pcbuf / sizeof traceback->pcbuf[0]);
|
|
runtime_gogo(traceback->gp);
|
|
}
|
|
|
|
// Mark this g as m's idle goroutine.
|
|
// This functionality might be used in environments where programs
|
|
// are limited to a single thread, to simulate a select-driven
|
|
// network server. It is not exposed via the standard runtime API.
|
|
void
|
|
runtime_idlegoroutine(void)
|
|
{
|
|
if(g->idlem != nil)
|
|
runtime_throw("g is already an idle goroutine");
|
|
g->idlem = m;
|
|
}
|
|
|
|
static void
|
|
mcommoninit(M *m)
|
|
{
|
|
m->id = runtime_sched.mcount++;
|
|
m->fastrand = 0x49f6428aUL + m->id + runtime_cputicks();
|
|
|
|
if(m->mcache == nil)
|
|
m->mcache = runtime_allocmcache();
|
|
|
|
runtime_callers(1, m->createstack, nelem(m->createstack));
|
|
|
|
// Add to runtime_allm so garbage collector doesn't free m
|
|
// when it is just in a register or thread-local storage.
|
|
m->alllink = runtime_allm;
|
|
// runtime_NumCgoCall() iterates over allm w/o schedlock,
|
|
// so we need to publish it safely.
|
|
runtime_atomicstorep(&runtime_allm, m);
|
|
}
|
|
|
|
// Try to increment mcpu. Report whether succeeded.
|
|
static bool
|
|
canaddmcpu(void)
|
|
{
|
|
uint32 v;
|
|
|
|
for(;;) {
|
|
v = runtime_sched.atomic;
|
|
if(atomic_mcpu(v) >= atomic_mcpumax(v))
|
|
return 0;
|
|
if(runtime_cas(&runtime_sched.atomic, v, v+(1<<mcpuShift)))
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// Put on `g' queue. Sched must be locked.
|
|
static void
|
|
gput(G *g)
|
|
{
|
|
M *m;
|
|
|
|
// If g is wired, hand it off directly.
|
|
if((m = g->lockedm) != nil && canaddmcpu()) {
|
|
mnextg(m, g);
|
|
return;
|
|
}
|
|
|
|
// If g is the idle goroutine for an m, hand it off.
|
|
if(g->idlem != nil) {
|
|
if(g->idlem->idleg != nil) {
|
|
runtime_printf("m%d idle out of sync: g%d g%d\n",
|
|
g->idlem->id,
|
|
g->idlem->idleg->goid, g->goid);
|
|
runtime_throw("runtime: double idle");
|
|
}
|
|
g->idlem->idleg = g;
|
|
return;
|
|
}
|
|
|
|
g->schedlink = nil;
|
|
if(runtime_sched.ghead == nil)
|
|
runtime_sched.ghead = g;
|
|
else
|
|
runtime_sched.gtail->schedlink = g;
|
|
runtime_sched.gtail = g;
|
|
|
|
// increment gwait.
|
|
// if it transitions to nonzero, set atomic gwaiting bit.
|
|
if(runtime_sched.gwait++ == 0)
|
|
runtime_xadd(&runtime_sched.atomic, 1<<gwaitingShift);
|
|
}
|
|
|
|
// Report whether gget would return something.
|
|
static bool
|
|
haveg(void)
|
|
{
|
|
return runtime_sched.ghead != nil || m->idleg != nil;
|
|
}
|
|
|
|
// Get from `g' queue. Sched must be locked.
|
|
static G*
|
|
gget(void)
|
|
{
|
|
G *g;
|
|
|
|
g = runtime_sched.ghead;
|
|
if(g){
|
|
runtime_sched.ghead = g->schedlink;
|
|
if(runtime_sched.ghead == nil)
|
|
runtime_sched.gtail = nil;
|
|
// decrement gwait.
|
|
// if it transitions to zero, clear atomic gwaiting bit.
|
|
if(--runtime_sched.gwait == 0)
|
|
runtime_xadd(&runtime_sched.atomic, -1<<gwaitingShift);
|
|
} else if(m->idleg != nil) {
|
|
g = m->idleg;
|
|
m->idleg = nil;
|
|
}
|
|
return g;
|
|
}
|
|
|
|
// Put on `m' list. Sched must be locked.
|
|
static void
|
|
mput(M *m)
|
|
{
|
|
m->schedlink = runtime_sched.mhead;
|
|
runtime_sched.mhead = m;
|
|
runtime_sched.mwait++;
|
|
}
|
|
|
|
// Get an `m' to run `g'. Sched must be locked.
|
|
static M*
|
|
mget(G *g)
|
|
{
|
|
M *m;
|
|
|
|
// if g has its own m, use it.
|
|
if(g && (m = g->lockedm) != nil)
|
|
return m;
|
|
|
|
// otherwise use general m pool.
|
|
if((m = runtime_sched.mhead) != nil){
|
|
runtime_sched.mhead = m->schedlink;
|
|
runtime_sched.mwait--;
|
|
}
|
|
return m;
|
|
}
|
|
|
|
// Mark g ready to run.
|
|
void
|
|
runtime_ready(G *g)
|
|
{
|
|
schedlock();
|
|
readylocked(g);
|
|
schedunlock();
|
|
}
|
|
|
|
// Mark g ready to run. Sched is already locked.
|
|
// G might be running already and about to stop.
|
|
// The sched lock protects g->status from changing underfoot.
|
|
static void
|
|
readylocked(G *g)
|
|
{
|
|
if(g->m){
|
|
// Running on another machine.
|
|
// Ready it when it stops.
|
|
g->readyonstop = 1;
|
|
return;
|
|
}
|
|
|
|
// Mark runnable.
|
|
if(g->status == Grunnable || g->status == Grunning) {
|
|
runtime_printf("goroutine %d has status %d\n", g->goid, g->status);
|
|
runtime_throw("bad g->status in ready");
|
|
}
|
|
g->status = Grunnable;
|
|
|
|
gput(g);
|
|
matchmg();
|
|
}
|
|
|
|
// Same as readylocked but a different symbol so that
|
|
// debuggers can set a breakpoint here and catch all
|
|
// new goroutines.
|
|
static void
|
|
newprocreadylocked(G *g)
|
|
{
|
|
readylocked(g);
|
|
}
|
|
|
|
// Pass g to m for running.
|
|
// Caller has already incremented mcpu.
|
|
static void
|
|
mnextg(M *m, G *g)
|
|
{
|
|
runtime_sched.grunning++;
|
|
m->nextg = g;
|
|
if(m->waitnextg) {
|
|
m->waitnextg = 0;
|
|
if(mwakeup != nil)
|
|
runtime_notewakeup(&mwakeup->havenextg);
|
|
mwakeup = m;
|
|
}
|
|
}
|
|
|
|
// Get the next goroutine that m should run.
|
|
// Sched must be locked on entry, is unlocked on exit.
|
|
// Makes sure that at most $GOMAXPROCS g's are
|
|
// running on cpus (not in system calls) at any given time.
|
|
static G*
|
|
nextgandunlock(void)
|
|
{
|
|
G *gp;
|
|
uint32 v;
|
|
|
|
top:
|
|
if(atomic_mcpu(runtime_sched.atomic) >= maxgomaxprocs)
|
|
runtime_throw("negative mcpu");
|
|
|
|
// If there is a g waiting as m->nextg, the mcpu++
|
|
// happened before it was passed to mnextg.
|
|
if(m->nextg != nil) {
|
|
gp = m->nextg;
|
|
m->nextg = nil;
|
|
schedunlock();
|
|
return gp;
|
|
}
|
|
|
|
if(m->lockedg != nil) {
|
|
// We can only run one g, and it's not available.
|
|
// Make sure some other cpu is running to handle
|
|
// the ordinary run queue.
|
|
if(runtime_sched.gwait != 0) {
|
|
matchmg();
|
|
// m->lockedg might have been on the queue.
|
|
if(m->nextg != nil) {
|
|
gp = m->nextg;
|
|
m->nextg = nil;
|
|
schedunlock();
|
|
return gp;
|
|
}
|
|
}
|
|
} else {
|
|
// Look for work on global queue.
|
|
while(haveg() && canaddmcpu()) {
|
|
gp = gget();
|
|
if(gp == nil)
|
|
runtime_throw("gget inconsistency");
|
|
|
|
if(gp->lockedm) {
|
|
mnextg(gp->lockedm, gp);
|
|
continue;
|
|
}
|
|
runtime_sched.grunning++;
|
|
schedunlock();
|
|
return gp;
|
|
}
|
|
|
|
// The while loop ended either because the g queue is empty
|
|
// or because we have maxed out our m procs running go
|
|
// code (mcpu >= mcpumax). We need to check that
|
|
// concurrent actions by entersyscall/exitsyscall cannot
|
|
// invalidate the decision to end the loop.
|
|
//
|
|
// We hold the sched lock, so no one else is manipulating the
|
|
// g queue or changing mcpumax. Entersyscall can decrement
|
|
// mcpu, but if does so when there is something on the g queue,
|
|
// the gwait bit will be set, so entersyscall will take the slow path
|
|
// and use the sched lock. So it cannot invalidate our decision.
|
|
//
|
|
// Wait on global m queue.
|
|
mput(m);
|
|
}
|
|
|
|
// Look for deadlock situation.
|
|
// There is a race with the scavenger that causes false negatives:
|
|
// if the scavenger is just starting, then we have
|
|
// scvg != nil && grunning == 0 && gwait == 0
|
|
// and we do not detect a deadlock. It is possible that we should
|
|
// add that case to the if statement here, but it is too close to Go 1
|
|
// to make such a subtle change. Instead, we work around the
|
|
// false negative in trivial programs by calling runtime.gosched
|
|
// from the main goroutine just before main.main.
|
|
// See runtime_main above.
|
|
//
|
|
// On a related note, it is also possible that the scvg == nil case is
|
|
// wrong and should include gwait, but that does not happen in
|
|
// standard Go programs, which all start the scavenger.
|
|
//
|
|
if((scvg == nil && runtime_sched.grunning == 0) ||
|
|
(scvg != nil && runtime_sched.grunning == 1 && runtime_sched.gwait == 0 &&
|
|
(scvg->status == Grunning || scvg->status == Gsyscall))) {
|
|
runtime_throw("all goroutines are asleep - deadlock!");
|
|
}
|
|
|
|
m->nextg = nil;
|
|
m->waitnextg = 1;
|
|
runtime_noteclear(&m->havenextg);
|
|
|
|
// Stoptheworld is waiting for all but its cpu to go to stop.
|
|
// Entersyscall might have decremented mcpu too, but if so
|
|
// it will see the waitstop and take the slow path.
|
|
// Exitsyscall never increments mcpu beyond mcpumax.
|
|
v = runtime_atomicload(&runtime_sched.atomic);
|
|
if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) {
|
|
// set waitstop = 0 (known to be 1)
|
|
runtime_xadd(&runtime_sched.atomic, -1<<waitstopShift);
|
|
runtime_notewakeup(&runtime_sched.stopped);
|
|
}
|
|
schedunlock();
|
|
|
|
runtime_notesleep(&m->havenextg);
|
|
if(m->helpgc) {
|
|
runtime_gchelper();
|
|
m->helpgc = 0;
|
|
runtime_lock(&runtime_sched);
|
|
goto top;
|
|
}
|
|
if((gp = m->nextg) == nil)
|
|
runtime_throw("bad m->nextg in nextgoroutine");
|
|
m->nextg = nil;
|
|
return gp;
|
|
}
|
|
|
|
int32
|
|
runtime_helpgc(bool *extra)
|
|
{
|
|
M *mp;
|
|
int32 n, max;
|
|
|
|
// Figure out how many CPUs to use.
|
|
// Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
|
|
max = runtime_gomaxprocs;
|
|
if(max > runtime_ncpu)
|
|
max = runtime_ncpu > 0 ? runtime_ncpu : 1;
|
|
if(max > MaxGcproc)
|
|
max = MaxGcproc;
|
|
|
|
// We're going to use one CPU no matter what.
|
|
// Figure out the max number of additional CPUs.
|
|
max--;
|
|
|
|
runtime_lock(&runtime_sched);
|
|
n = 0;
|
|
while(n < max && (mp = mget(nil)) != nil) {
|
|
n++;
|
|
mp->helpgc = 1;
|
|
mp->waitnextg = 0;
|
|
runtime_notewakeup(&mp->havenextg);
|
|
}
|
|
runtime_unlock(&runtime_sched);
|
|
if(extra)
|
|
*extra = n != max;
|
|
return n;
|
|
}
|
|
|
|
void
|
|
runtime_stoptheworld(void)
|
|
{
|
|
uint32 v;
|
|
|
|
schedlock();
|
|
runtime_gcwaiting = 1;
|
|
|
|
setmcpumax(1);
|
|
|
|
// while mcpu > 1
|
|
for(;;) {
|
|
v = runtime_sched.atomic;
|
|
if(atomic_mcpu(v) <= 1)
|
|
break;
|
|
|
|
// It would be unsafe for multiple threads to be using
|
|
// the stopped note at once, but there is only
|
|
// ever one thread doing garbage collection.
|
|
runtime_noteclear(&runtime_sched.stopped);
|
|
if(atomic_waitstop(v))
|
|
runtime_throw("invalid waitstop");
|
|
|
|
// atomic { waitstop = 1 }, predicated on mcpu <= 1 check above
|
|
// still being true.
|
|
if(!runtime_cas(&runtime_sched.atomic, v, v+(1<<waitstopShift)))
|
|
continue;
|
|
|
|
schedunlock();
|
|
runtime_notesleep(&runtime_sched.stopped);
|
|
schedlock();
|
|
}
|
|
runtime_singleproc = runtime_gomaxprocs == 1;
|
|
schedunlock();
|
|
}
|
|
|
|
void
|
|
runtime_starttheworld(bool extra)
|
|
{
|
|
M *m;
|
|
|
|
schedlock();
|
|
runtime_gcwaiting = 0;
|
|
setmcpumax(runtime_gomaxprocs);
|
|
matchmg();
|
|
if(extra && canaddmcpu()) {
|
|
// Start a new m that will (we hope) be idle
|
|
// and so available to help when the next
|
|
// garbage collection happens.
|
|
// canaddmcpu above did mcpu++
|
|
// (necessary, because m will be doing various
|
|
// initialization work so is definitely running),
|
|
// but m is not running a specific goroutine,
|
|
// so set the helpgc flag as a signal to m's
|
|
// first schedule(nil) to mcpu-- and grunning--.
|
|
m = runtime_newm();
|
|
m->helpgc = 1;
|
|
runtime_sched.grunning++;
|
|
}
|
|
schedunlock();
|
|
}
|
|
|
|
// Called to start an M.
|
|
void*
|
|
runtime_mstart(void* mp)
|
|
{
|
|
m = (M*)mp;
|
|
g = m->g0;
|
|
|
|
initcontext();
|
|
|
|
g->entry = nil;
|
|
g->param = nil;
|
|
|
|
// Record top of stack for use by mcall.
|
|
// Once we call schedule we're never coming back,
|
|
// so other calls can reuse this stack space.
|
|
#ifdef USING_SPLIT_STACK
|
|
__splitstack_getcontext(&g->stack_context[0]);
|
|
#else
|
|
g->gcinitial_sp = ∓
|
|
// Setting gcstack_size to 0 is a marker meaning that gcinitial_sp
|
|
// is the top of the stack, not the bottom.
|
|
g->gcstack_size = 0;
|
|
g->gcnext_sp = ∓
|
|
#endif
|
|
getcontext(&g->context);
|
|
|
|
if(g->entry != nil) {
|
|
// Got here from mcall.
|
|
void (*pfn)(G*) = (void (*)(G*))g->entry;
|
|
G* gp = (G*)g->param;
|
|
pfn(gp);
|
|
*(int*)0x21 = 0x21;
|
|
}
|
|
runtime_minit();
|
|
|
|
#ifdef USING_SPLIT_STACK
|
|
{
|
|
int dont_block_signals = 0;
|
|
__splitstack_block_signals(&dont_block_signals, nil);
|
|
}
|
|
#endif
|
|
|
|
// Install signal handlers; after minit so that minit can
|
|
// prepare the thread to be able to handle the signals.
|
|
if(m == &runtime_m0)
|
|
runtime_initsig();
|
|
|
|
schedule(nil);
|
|
return nil;
|
|
}
|
|
|
|
typedef struct CgoThreadStart CgoThreadStart;
|
|
struct CgoThreadStart
|
|
{
|
|
M *m;
|
|
G *g;
|
|
void (*fn)(void);
|
|
};
|
|
|
|
// Kick off new m's as needed (up to mcpumax).
|
|
// Sched is locked.
|
|
static void
|
|
matchmg(void)
|
|
{
|
|
G *gp;
|
|
M *mp;
|
|
|
|
if(m->mallocing || m->gcing)
|
|
return;
|
|
|
|
while(haveg() && canaddmcpu()) {
|
|
gp = gget();
|
|
if(gp == nil)
|
|
runtime_throw("gget inconsistency");
|
|
|
|
// Find the m that will run gp.
|
|
if((mp = mget(gp)) == nil)
|
|
mp = runtime_newm();
|
|
mnextg(mp, gp);
|
|
}
|
|
}
|
|
|
|
// Create a new m. It will start off with a call to runtime_mstart.
|
|
M*
|
|
runtime_newm(void)
|
|
{
|
|
M *m;
|
|
pthread_attr_t attr;
|
|
pthread_t tid;
|
|
size_t stacksize;
|
|
|
|
m = runtime_malloc(sizeof(M));
|
|
mcommoninit(m);
|
|
m->g0 = runtime_malg(-1, nil, nil);
|
|
|
|
if(pthread_attr_init(&attr) != 0)
|
|
runtime_throw("pthread_attr_init");
|
|
if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0)
|
|
runtime_throw("pthread_attr_setdetachstate");
|
|
|
|
stacksize = PTHREAD_STACK_MIN;
|
|
|
|
// With glibc before version 2.16 the static TLS size is taken
|
|
// out of the stack size, and we get an error or a crash if
|
|
// there is not enough stack space left. Add it back in if we
|
|
// can, in case the program uses a lot of TLS space. FIXME:
|
|
// This can be disabled in glibc 2.16 and later, if the bug is
|
|
// indeed fixed then.
|
|
stacksize += tlssize;
|
|
|
|
if(pthread_attr_setstacksize(&attr, stacksize) != 0)
|
|
runtime_throw("pthread_attr_setstacksize");
|
|
|
|
if(pthread_create(&tid, &attr, runtime_mstart, m) != 0)
|
|
runtime_throw("pthread_create");
|
|
|
|
return m;
|
|
}
|
|
|
|
// One round of scheduler: find a goroutine and run it.
|
|
// The argument is the goroutine that was running before
|
|
// schedule was called, or nil if this is the first call.
|
|
// Never returns.
|
|
static void
|
|
schedule(G *gp)
|
|
{
|
|
int32 hz;
|
|
uint32 v;
|
|
|
|
schedlock();
|
|
if(gp != nil) {
|
|
// Just finished running gp.
|
|
gp->m = nil;
|
|
runtime_sched.grunning--;
|
|
|
|
// atomic { mcpu-- }
|
|
v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift);
|
|
if(atomic_mcpu(v) > maxgomaxprocs)
|
|
runtime_throw("negative mcpu in scheduler");
|
|
|
|
switch(gp->status){
|
|
case Grunnable:
|
|
case Gdead:
|
|
// Shouldn't have been running!
|
|
runtime_throw("bad gp->status in sched");
|
|
case Grunning:
|
|
gp->status = Grunnable;
|
|
gput(gp);
|
|
break;
|
|
case Gmoribund:
|
|
gp->status = Gdead;
|
|
if(gp->lockedm) {
|
|
gp->lockedm = nil;
|
|
m->lockedg = nil;
|
|
}
|
|
gp->idlem = nil;
|
|
runtime_memclr(&gp->context, sizeof gp->context);
|
|
gfput(gp);
|
|
if(--runtime_sched.gcount == 0)
|
|
runtime_exit(0);
|
|
break;
|
|
}
|
|
if(gp->readyonstop){
|
|
gp->readyonstop = 0;
|
|
readylocked(gp);
|
|
}
|
|
} else if(m->helpgc) {
|
|
// Bootstrap m or new m started by starttheworld.
|
|
// atomic { mcpu-- }
|
|
v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift);
|
|
if(atomic_mcpu(v) > maxgomaxprocs)
|
|
runtime_throw("negative mcpu in scheduler");
|
|
// Compensate for increment in starttheworld().
|
|
runtime_sched.grunning--;
|
|
m->helpgc = 0;
|
|
} else if(m->nextg != nil) {
|
|
// New m started by matchmg.
|
|
} else {
|
|
runtime_throw("invalid m state in scheduler");
|
|
}
|
|
|
|
// Find (or wait for) g to run. Unlocks runtime_sched.
|
|
gp = nextgandunlock();
|
|
gp->readyonstop = 0;
|
|
gp->status = Grunning;
|
|
m->curg = gp;
|
|
gp->m = m;
|
|
|
|
// Check whether the profiler needs to be turned on or off.
|
|
hz = runtime_sched.profilehz;
|
|
if(m->profilehz != hz)
|
|
runtime_resetcpuprofiler(hz);
|
|
|
|
runtime_gogo(gp);
|
|
}
|
|
|
|
// Enter scheduler. If g->status is Grunning,
|
|
// re-queues g and runs everyone else who is waiting
|
|
// before running g again. If g->status is Gmoribund,
|
|
// kills off g.
|
|
void
|
|
runtime_gosched(void)
|
|
{
|
|
if(m->locks != 0)
|
|
runtime_throw("gosched holding locks");
|
|
if(g == m->g0)
|
|
runtime_throw("gosched of g0");
|
|
runtime_mcall(schedule);
|
|
}
|
|
|
|
// The goroutine g is about to enter a system call.
|
|
// Record that it's not using the cpu anymore.
|
|
// This is called only from the go syscall library and cgocall,
|
|
// not from the low-level system calls used by the runtime.
|
|
//
|
|
// Entersyscall cannot split the stack: the runtime_gosave must
|
|
// make g->sched refer to the caller's stack segment, because
|
|
// entersyscall is going to return immediately after.
|
|
// It's okay to call matchmg and notewakeup even after
|
|
// decrementing mcpu, because we haven't released the
|
|
// sched lock yet, so the garbage collector cannot be running.
|
|
|
|
void runtime_entersyscall(void) __attribute__ ((no_split_stack));
|
|
|
|
void
|
|
runtime_entersyscall(void)
|
|
{
|
|
uint32 v;
|
|
|
|
if(m->profilehz > 0)
|
|
runtime_setprof(false);
|
|
|
|
// Leave SP around for gc and traceback.
|
|
#ifdef USING_SPLIT_STACK
|
|
g->gcstack = __splitstack_find(nil, nil, &g->gcstack_size,
|
|
&g->gcnext_segment, &g->gcnext_sp,
|
|
&g->gcinitial_sp);
|
|
#else
|
|
g->gcnext_sp = (byte *) &v;
|
|
#endif
|
|
|
|
// Save the registers in the g structure so that any pointers
|
|
// held in registers will be seen by the garbage collector.
|
|
getcontext(&g->gcregs);
|
|
|
|
g->status = Gsyscall;
|
|
|
|
// Fast path.
|
|
// The slow path inside the schedlock/schedunlock will get
|
|
// through without stopping if it does:
|
|
// mcpu--
|
|
// gwait not true
|
|
// waitstop && mcpu <= mcpumax not true
|
|
// If we can do the same with a single atomic add,
|
|
// then we can skip the locks.
|
|
v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift);
|
|
if(!atomic_gwaiting(v) && (!atomic_waitstop(v) || atomic_mcpu(v) > atomic_mcpumax(v)))
|
|
return;
|
|
|
|
schedlock();
|
|
v = runtime_atomicload(&runtime_sched.atomic);
|
|
if(atomic_gwaiting(v)) {
|
|
matchmg();
|
|
v = runtime_atomicload(&runtime_sched.atomic);
|
|
}
|
|
if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) {
|
|
runtime_xadd(&runtime_sched.atomic, -1<<waitstopShift);
|
|
runtime_notewakeup(&runtime_sched.stopped);
|
|
}
|
|
|
|
schedunlock();
|
|
}
|
|
|
|
// The goroutine g exited its system call.
|
|
// Arrange for it to run on a cpu again.
|
|
// This is called only from the go syscall library, not
|
|
// from the low-level system calls used by the runtime.
|
|
void
|
|
runtime_exitsyscall(void)
|
|
{
|
|
G *gp;
|
|
uint32 v;
|
|
|
|
// Fast path.
|
|
// If we can do the mcpu++ bookkeeping and
|
|
// find that we still have mcpu <= mcpumax, then we can
|
|
// start executing Go code immediately, without having to
|
|
// schedlock/schedunlock.
|
|
// Also do fast return if any locks are held, so that
|
|
// panic code can use syscalls to open a file.
|
|
gp = g;
|
|
v = runtime_xadd(&runtime_sched.atomic, (1<<mcpuShift));
|
|
if((m->profilehz == runtime_sched.profilehz && atomic_mcpu(v) <= atomic_mcpumax(v)) || m->locks > 0) {
|
|
// There's a cpu for us, so we can run.
|
|
gp->status = Grunning;
|
|
// Garbage collector isn't running (since we are),
|
|
// so okay to clear gcstack.
|
|
#ifdef USING_SPLIT_STACK
|
|
gp->gcstack = nil;
|
|
#endif
|
|
gp->gcnext_sp = nil;
|
|
runtime_memclr(&gp->gcregs, sizeof gp->gcregs);
|
|
|
|
if(m->profilehz > 0)
|
|
runtime_setprof(true);
|
|
return;
|
|
}
|
|
|
|
// Tell scheduler to put g back on the run queue:
|
|
// mostly equivalent to g->status = Grunning,
|
|
// but keeps the garbage collector from thinking
|
|
// that g is running right now, which it's not.
|
|
gp->readyonstop = 1;
|
|
|
|
// All the cpus are taken.
|
|
// The scheduler will ready g and put this m to sleep.
|
|
// When the scheduler takes g away from m,
|
|
// it will undo the runtime_sched.mcpu++ above.
|
|
runtime_gosched();
|
|
|
|
// Gosched returned, so we're allowed to run now.
|
|
// Delete the gcstack information that we left for
|
|
// the garbage collector during the system call.
|
|
// Must wait until now because until gosched returns
|
|
// we don't know for sure that the garbage collector
|
|
// is not running.
|
|
#ifdef USING_SPLIT_STACK
|
|
gp->gcstack = nil;
|
|
#endif
|
|
gp->gcnext_sp = nil;
|
|
runtime_memclr(&gp->gcregs, sizeof gp->gcregs);
|
|
}
|
|
|
|
// Allocate a new g, with a stack big enough for stacksize bytes.
|
|
G*
|
|
runtime_malg(int32 stacksize, byte** ret_stack, size_t* ret_stacksize)
|
|
{
|
|
G *newg;
|
|
|
|
newg = runtime_malloc(sizeof(G));
|
|
if(stacksize >= 0) {
|
|
#if USING_SPLIT_STACK
|
|
int dont_block_signals = 0;
|
|
|
|
*ret_stack = __splitstack_makecontext(stacksize,
|
|
&newg->stack_context[0],
|
|
ret_stacksize);
|
|
__splitstack_block_signals_context(&newg->stack_context[0],
|
|
&dont_block_signals, nil);
|
|
#else
|
|
*ret_stack = runtime_mallocgc(stacksize, FlagNoProfiling|FlagNoGC, 0, 0);
|
|
*ret_stacksize = stacksize;
|
|
newg->gcinitial_sp = *ret_stack;
|
|
newg->gcstack_size = stacksize;
|
|
runtime_xadd(&runtime_stacks_sys, stacksize);
|
|
#endif
|
|
}
|
|
return newg;
|
|
}
|
|
|
|
/* For runtime package testing. */
|
|
|
|
void runtime_testing_entersyscall(void)
|
|
__asm__("runtime.entersyscall");
|
|
|
|
void
|
|
runtime_testing_entersyscall()
|
|
{
|
|
runtime_entersyscall();
|
|
}
|
|
|
|
void runtime_testing_exitsyscall(void)
|
|
__asm__("runtime.exitsyscall");
|
|
|
|
void
|
|
runtime_testing_exitsyscall()
|
|
{
|
|
runtime_exitsyscall();
|
|
}
|
|
|
|
G*
|
|
__go_go(void (*fn)(void*), void* arg)
|
|
{
|
|
byte *sp;
|
|
size_t spsize;
|
|
G *newg;
|
|
|
|
schedlock();
|
|
|
|
if((newg = gfget()) != nil){
|
|
#ifdef USING_SPLIT_STACK
|
|
int dont_block_signals = 0;
|
|
|
|
sp = __splitstack_resetcontext(&newg->stack_context[0],
|
|
&spsize);
|
|
__splitstack_block_signals_context(&newg->stack_context[0],
|
|
&dont_block_signals, nil);
|
|
#else
|
|
sp = newg->gcinitial_sp;
|
|
spsize = newg->gcstack_size;
|
|
if(spsize == 0)
|
|
runtime_throw("bad spsize in __go_go");
|
|
newg->gcnext_sp = sp;
|
|
#endif
|
|
} else {
|
|
newg = runtime_malg(StackMin, &sp, &spsize);
|
|
if(runtime_lastg == nil)
|
|
runtime_allg = newg;
|
|
else
|
|
runtime_lastg->alllink = newg;
|
|
runtime_lastg = newg;
|
|
}
|
|
newg->status = Gwaiting;
|
|
newg->waitreason = "new goroutine";
|
|
|
|
newg->entry = (byte*)fn;
|
|
newg->param = arg;
|
|
newg->gopc = (uintptr)__builtin_return_address(0);
|
|
|
|
runtime_sched.gcount++;
|
|
runtime_sched.goidgen++;
|
|
newg->goid = runtime_sched.goidgen;
|
|
|
|
if(sp == nil)
|
|
runtime_throw("nil g->stack0");
|
|
|
|
{
|
|
// Avoid warnings about variables clobbered by
|
|
// longjmp.
|
|
byte * volatile vsp = sp;
|
|
size_t volatile vspsize = spsize;
|
|
G * volatile vnewg = newg;
|
|
|
|
getcontext(&vnewg->context);
|
|
vnewg->context.uc_stack.ss_sp = vsp;
|
|
#ifdef MAKECONTEXT_STACK_TOP
|
|
vnewg->context.uc_stack.ss_sp += vspsize;
|
|
#endif
|
|
vnewg->context.uc_stack.ss_size = vspsize;
|
|
makecontext(&vnewg->context, kickoff, 0);
|
|
|
|
newprocreadylocked(vnewg);
|
|
schedunlock();
|
|
|
|
return vnewg;
|
|
}
|
|
}
|
|
|
|
// Put on gfree list. Sched must be locked.
|
|
static void
|
|
gfput(G *g)
|
|
{
|
|
g->schedlink = runtime_sched.gfree;
|
|
runtime_sched.gfree = g;
|
|
}
|
|
|
|
// Get from gfree list. Sched must be locked.
|
|
static G*
|
|
gfget(void)
|
|
{
|
|
G *g;
|
|
|
|
g = runtime_sched.gfree;
|
|
if(g)
|
|
runtime_sched.gfree = g->schedlink;
|
|
return g;
|
|
}
|
|
|
|
// Run all deferred functions for the current goroutine.
|
|
static void
|
|
rundefer(void)
|
|
{
|
|
Defer *d;
|
|
|
|
while((d = g->defer) != nil) {
|
|
void (*pfn)(void*);
|
|
|
|
pfn = d->__pfn;
|
|
d->__pfn = nil;
|
|
if (pfn != nil)
|
|
(*pfn)(d->__arg);
|
|
g->defer = d->__next;
|
|
runtime_free(d);
|
|
}
|
|
}
|
|
|
|
void runtime_Goexit (void) asm ("runtime.Goexit");
|
|
|
|
void
|
|
runtime_Goexit(void)
|
|
{
|
|
rundefer();
|
|
runtime_goexit();
|
|
}
|
|
|
|
void runtime_Gosched (void) asm ("runtime.Gosched");
|
|
|
|
void
|
|
runtime_Gosched(void)
|
|
{
|
|
runtime_gosched();
|
|
}
|
|
|
|
// Implementation of runtime.GOMAXPROCS.
|
|
// delete when scheduler is stronger
|
|
int32
|
|
runtime_gomaxprocsfunc(int32 n)
|
|
{
|
|
int32 ret;
|
|
uint32 v;
|
|
|
|
schedlock();
|
|
ret = runtime_gomaxprocs;
|
|
if(n <= 0)
|
|
n = ret;
|
|
if(n > maxgomaxprocs)
|
|
n = maxgomaxprocs;
|
|
runtime_gomaxprocs = n;
|
|
if(runtime_gomaxprocs > 1)
|
|
runtime_singleproc = false;
|
|
if(runtime_gcwaiting != 0) {
|
|
if(atomic_mcpumax(runtime_sched.atomic) != 1)
|
|
runtime_throw("invalid mcpumax during gc");
|
|
schedunlock();
|
|
return ret;
|
|
}
|
|
|
|
setmcpumax(n);
|
|
|
|
// If there are now fewer allowed procs
|
|
// than procs running, stop.
|
|
v = runtime_atomicload(&runtime_sched.atomic);
|
|
if((int32)atomic_mcpu(v) > n) {
|
|
schedunlock();
|
|
runtime_gosched();
|
|
return ret;
|
|
}
|
|
// handle more procs
|
|
matchmg();
|
|
schedunlock();
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
runtime_LockOSThread(void)
|
|
{
|
|
if(m == &runtime_m0 && runtime_sched.init) {
|
|
runtime_sched.lockmain = true;
|
|
return;
|
|
}
|
|
m->lockedg = g;
|
|
g->lockedm = m;
|
|
}
|
|
|
|
void
|
|
runtime_UnlockOSThread(void)
|
|
{
|
|
if(m == &runtime_m0 && runtime_sched.init) {
|
|
runtime_sched.lockmain = false;
|
|
return;
|
|
}
|
|
m->lockedg = nil;
|
|
g->lockedm = nil;
|
|
}
|
|
|
|
bool
|
|
runtime_lockedOSThread(void)
|
|
{
|
|
return g->lockedm != nil && m->lockedg != nil;
|
|
}
|
|
|
|
// for testing of callbacks
|
|
|
|
_Bool runtime_golockedOSThread(void)
|
|
asm("runtime.golockedOSThread");
|
|
|
|
_Bool
|
|
runtime_golockedOSThread(void)
|
|
{
|
|
return runtime_lockedOSThread();
|
|
}
|
|
|
|
// for testing of wire, unwire
|
|
uint32
|
|
runtime_mid()
|
|
{
|
|
return m->id;
|
|
}
|
|
|
|
int32 runtime_NumGoroutine (void)
|
|
__asm__ ("runtime.NumGoroutine");
|
|
|
|
int32
|
|
runtime_NumGoroutine()
|
|
{
|
|
return runtime_sched.gcount;
|
|
}
|
|
|
|
int32
|
|
runtime_gcount(void)
|
|
{
|
|
return runtime_sched.gcount;
|
|
}
|
|
|
|
int32
|
|
runtime_mcount(void)
|
|
{
|
|
return runtime_sched.mcount;
|
|
}
|
|
|
|
static struct {
|
|
Lock;
|
|
void (*fn)(uintptr*, int32);
|
|
int32 hz;
|
|
uintptr pcbuf[100];
|
|
} prof;
|
|
|
|
// Called if we receive a SIGPROF signal.
|
|
void
|
|
runtime_sigprof()
|
|
{
|
|
int32 n;
|
|
|
|
if(prof.fn == nil || prof.hz == 0)
|
|
return;
|
|
|
|
runtime_lock(&prof);
|
|
if(prof.fn == nil) {
|
|
runtime_unlock(&prof);
|
|
return;
|
|
}
|
|
n = runtime_callers(0, prof.pcbuf, nelem(prof.pcbuf));
|
|
if(n > 0)
|
|
prof.fn(prof.pcbuf, n);
|
|
runtime_unlock(&prof);
|
|
}
|
|
|
|
// Arrange to call fn with a traceback hz times a second.
|
|
void
|
|
runtime_setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz)
|
|
{
|
|
// Force sane arguments.
|
|
if(hz < 0)
|
|
hz = 0;
|
|
if(hz == 0)
|
|
fn = nil;
|
|
if(fn == nil)
|
|
hz = 0;
|
|
|
|
// Stop profiler on this cpu so that it is safe to lock prof.
|
|
// if a profiling signal came in while we had prof locked,
|
|
// it would deadlock.
|
|
runtime_resetcpuprofiler(0);
|
|
|
|
runtime_lock(&prof);
|
|
prof.fn = fn;
|
|
prof.hz = hz;
|
|
runtime_unlock(&prof);
|
|
runtime_lock(&runtime_sched);
|
|
runtime_sched.profilehz = hz;
|
|
runtime_unlock(&runtime_sched);
|
|
|
|
if(hz != 0)
|
|
runtime_resetcpuprofiler(hz);
|
|
}
|