gcc/libstdc++-v3/include/bits/stl_list.h
Jonathan Wakely 47519a5687 PR libstdc++/92124 fix incorrect container move assignment
The container requirements say that for move assignment "All existing
elements of [the target] are either move assigned or destroyed". Some of
our containers currently use __make_move_if_noexcept which makes the
move depend on whether the element type is nothrow move constructible.
This is incorrect, because the standard says we must move assign, not
move or copy depending on the move constructor.

Use make_move_iterator instead so that we move unconditionally. This
ensures existing elements won't be copy assigned.

	PR libstdc++/92124
	* include/bits/forward_list.h
	(_M_move_assign(forward_list&&, false_type)): Do not use
	__make_move_if_noexcept, instead move unconditionally.
	* include/bits/stl_deque.h (_M_move_assign2(deque&&, false_type)):
	Likewise.
	* include/bits/stl_list.h (_M_move_assign(list&&, false_type)):
	Likewise.
	* include/bits/stl_vector.h (_M_move_assign(vector&&, false_type)):
	Likewise.
	* testsuite/23_containers/vector/92124.cc: New test.

From-SVN: r277113
2019-10-17 15:21:27 +01:00

2102 lines
66 KiB
C++

// List implementation -*- C++ -*-
// Copyright (C) 2001-2019 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file bits/stl_list.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{list}
*/
#ifndef _STL_LIST_H
#define _STL_LIST_H 1
#include <bits/concept_check.h>
#include <ext/alloc_traits.h>
#if __cplusplus >= 201103L
#include <initializer_list>
#include <bits/allocated_ptr.h>
#include <ext/aligned_buffer.h>
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
namespace __detail
{
// Supporting structures are split into common and templated
// types; the latter publicly inherits from the former in an
// effort to reduce code duplication. This results in some
// "needless" static_cast'ing later on, but it's all safe
// downcasting.
/// Common part of a node in the %list.
struct _List_node_base
{
_List_node_base* _M_next;
_List_node_base* _M_prev;
static void
swap(_List_node_base& __x, _List_node_base& __y) _GLIBCXX_USE_NOEXCEPT;
void
_M_transfer(_List_node_base* const __first,
_List_node_base* const __last) _GLIBCXX_USE_NOEXCEPT;
void
_M_reverse() _GLIBCXX_USE_NOEXCEPT;
void
_M_hook(_List_node_base* const __position) _GLIBCXX_USE_NOEXCEPT;
void
_M_unhook() _GLIBCXX_USE_NOEXCEPT;
};
/// The %list node header.
struct _List_node_header : public _List_node_base
{
#if _GLIBCXX_USE_CXX11_ABI
std::size_t _M_size;
#endif
_List_node_header() _GLIBCXX_NOEXCEPT
{ _M_init(); }
#if __cplusplus >= 201103L
_List_node_header(_List_node_header&& __x) noexcept
: _List_node_base{ __x._M_next, __x._M_prev }
# if _GLIBCXX_USE_CXX11_ABI
, _M_size(__x._M_size)
# endif
{
if (__x._M_base()->_M_next == __x._M_base())
this->_M_next = this->_M_prev = this;
else
{
this->_M_next->_M_prev = this->_M_prev->_M_next = this->_M_base();
__x._M_init();
}
}
void
_M_move_nodes(_List_node_header&& __x)
{
_List_node_base* const __xnode = __x._M_base();
if (__xnode->_M_next == __xnode)
_M_init();
else
{
_List_node_base* const __node = this->_M_base();
__node->_M_next = __xnode->_M_next;
__node->_M_prev = __xnode->_M_prev;
__node->_M_next->_M_prev = __node->_M_prev->_M_next = __node;
# if _GLIBCXX_USE_CXX11_ABI
_M_size = __x._M_size;
# endif
__x._M_init();
}
}
#endif
void
_M_init() _GLIBCXX_NOEXCEPT
{
this->_M_next = this->_M_prev = this;
#if _GLIBCXX_USE_CXX11_ABI
this->_M_size = 0;
#endif
}
private:
_List_node_base* _M_base() { return this; }
};
} // namespace detail
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
/// An actual node in the %list.
template<typename _Tp>
struct _List_node : public __detail::_List_node_base
{
#if __cplusplus >= 201103L
__gnu_cxx::__aligned_membuf<_Tp> _M_storage;
_Tp* _M_valptr() { return _M_storage._M_ptr(); }
_Tp const* _M_valptr() const { return _M_storage._M_ptr(); }
#else
_Tp _M_data;
_Tp* _M_valptr() { return std::__addressof(_M_data); }
_Tp const* _M_valptr() const { return std::__addressof(_M_data); }
#endif
};
/**
* @brief A list::iterator.
*
* All the functions are op overloads.
*/
template<typename _Tp>
struct _List_iterator
{
typedef _List_iterator<_Tp> _Self;
typedef _List_node<_Tp> _Node;
typedef ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
typedef _Tp value_type;
typedef _Tp* pointer;
typedef _Tp& reference;
_List_iterator() _GLIBCXX_NOEXCEPT
: _M_node() { }
explicit
_List_iterator(__detail::_List_node_base* __x) _GLIBCXX_NOEXCEPT
: _M_node(__x) { }
_Self
_M_const_cast() const _GLIBCXX_NOEXCEPT
{ return *this; }
// Must downcast from _List_node_base to _List_node to get to value.
reference
operator*() const _GLIBCXX_NOEXCEPT
{ return *static_cast<_Node*>(_M_node)->_M_valptr(); }
pointer
operator->() const _GLIBCXX_NOEXCEPT
{ return static_cast<_Node*>(_M_node)->_M_valptr(); }
_Self&
operator++() _GLIBCXX_NOEXCEPT
{
_M_node = _M_node->_M_next;
return *this;
}
_Self
operator++(int) _GLIBCXX_NOEXCEPT
{
_Self __tmp = *this;
_M_node = _M_node->_M_next;
return __tmp;
}
_Self&
operator--() _GLIBCXX_NOEXCEPT
{
_M_node = _M_node->_M_prev;
return *this;
}
_Self
operator--(int) _GLIBCXX_NOEXCEPT
{
_Self __tmp = *this;
_M_node = _M_node->_M_prev;
return __tmp;
}
friend bool
operator==(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
{ return __x._M_node == __y._M_node; }
friend bool
operator!=(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
{ return __x._M_node != __y._M_node; }
// The only member points to the %list element.
__detail::_List_node_base* _M_node;
};
/**
* @brief A list::const_iterator.
*
* All the functions are op overloads.
*/
template<typename _Tp>
struct _List_const_iterator
{
typedef _List_const_iterator<_Tp> _Self;
typedef const _List_node<_Tp> _Node;
typedef _List_iterator<_Tp> iterator;
typedef ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
typedef _Tp value_type;
typedef const _Tp* pointer;
typedef const _Tp& reference;
_List_const_iterator() _GLIBCXX_NOEXCEPT
: _M_node() { }
explicit
_List_const_iterator(const __detail::_List_node_base* __x)
_GLIBCXX_NOEXCEPT
: _M_node(__x) { }
_List_const_iterator(const iterator& __x) _GLIBCXX_NOEXCEPT
: _M_node(__x._M_node) { }
iterator
_M_const_cast() const _GLIBCXX_NOEXCEPT
{ return iterator(const_cast<__detail::_List_node_base*>(_M_node)); }
// Must downcast from List_node_base to _List_node to get to value.
reference
operator*() const _GLIBCXX_NOEXCEPT
{ return *static_cast<_Node*>(_M_node)->_M_valptr(); }
pointer
operator->() const _GLIBCXX_NOEXCEPT
{ return static_cast<_Node*>(_M_node)->_M_valptr(); }
_Self&
operator++() _GLIBCXX_NOEXCEPT
{
_M_node = _M_node->_M_next;
return *this;
}
_Self
operator++(int) _GLIBCXX_NOEXCEPT
{
_Self __tmp = *this;
_M_node = _M_node->_M_next;
return __tmp;
}
_Self&
operator--() _GLIBCXX_NOEXCEPT
{
_M_node = _M_node->_M_prev;
return *this;
}
_Self
operator--(int) _GLIBCXX_NOEXCEPT
{
_Self __tmp = *this;
_M_node = _M_node->_M_prev;
return __tmp;
}
friend bool
operator==(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
{ return __x._M_node == __y._M_node; }
friend bool
operator!=(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
{ return __x._M_node != __y._M_node; }
// The only member points to the %list element.
const __detail::_List_node_base* _M_node;
};
_GLIBCXX_BEGIN_NAMESPACE_CXX11
/// See bits/stl_deque.h's _Deque_base for an explanation.
template<typename _Tp, typename _Alloc>
class _List_base
{
protected:
typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
rebind<_Tp>::other _Tp_alloc_type;
typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tp_alloc_traits;
typedef typename _Tp_alloc_traits::template
rebind<_List_node<_Tp> >::other _Node_alloc_type;
typedef __gnu_cxx::__alloc_traits<_Node_alloc_type> _Node_alloc_traits;
#if !_GLIBCXX_INLINE_VERSION
static size_t
_S_distance(const __detail::_List_node_base* __first,
const __detail::_List_node_base* __last)
{
size_t __n = 0;
while (__first != __last)
{
__first = __first->_M_next;
++__n;
}
return __n;
}
#endif
struct _List_impl
: public _Node_alloc_type
{
__detail::_List_node_header _M_node;
_List_impl() _GLIBCXX_NOEXCEPT_IF(
is_nothrow_default_constructible<_Node_alloc_type>::value)
: _Node_alloc_type()
{ }
_List_impl(const _Node_alloc_type& __a) _GLIBCXX_NOEXCEPT
: _Node_alloc_type(__a)
{ }
#if __cplusplus >= 201103L
_List_impl(_List_impl&&) = default;
_List_impl(_Node_alloc_type&& __a, _List_impl&& __x)
: _Node_alloc_type(std::move(__a)), _M_node(std::move(__x._M_node))
{ }
_List_impl(_Node_alloc_type&& __a) noexcept
: _Node_alloc_type(std::move(__a))
{ }
#endif
};
_List_impl _M_impl;
#if _GLIBCXX_USE_CXX11_ABI
size_t _M_get_size() const { return _M_impl._M_node._M_size; }
void _M_set_size(size_t __n) { _M_impl._M_node._M_size = __n; }
void _M_inc_size(size_t __n) { _M_impl._M_node._M_size += __n; }
void _M_dec_size(size_t __n) { _M_impl._M_node._M_size -= __n; }
# if !_GLIBCXX_INLINE_VERSION
size_t
_M_distance(const __detail::_List_node_base* __first,
const __detail::_List_node_base* __last) const
{ return _S_distance(__first, __last); }
// return the stored size
size_t _M_node_count() const { return _M_get_size(); }
# endif
#else
// dummy implementations used when the size is not stored
size_t _M_get_size() const { return 0; }
void _M_set_size(size_t) { }
void _M_inc_size(size_t) { }
void _M_dec_size(size_t) { }
# if !_GLIBCXX_INLINE_VERSION
size_t _M_distance(const void*, const void*) const { return 0; }
// count the number of nodes
size_t _M_node_count() const
{
return _S_distance(_M_impl._M_node._M_next,
std::__addressof(_M_impl._M_node));
}
# endif
#endif
typename _Node_alloc_traits::pointer
_M_get_node()
{ return _Node_alloc_traits::allocate(_M_impl, 1); }
void
_M_put_node(typename _Node_alloc_traits::pointer __p) _GLIBCXX_NOEXCEPT
{ _Node_alloc_traits::deallocate(_M_impl, __p, 1); }
public:
typedef _Alloc allocator_type;
_Node_alloc_type&
_M_get_Node_allocator() _GLIBCXX_NOEXCEPT
{ return _M_impl; }
const _Node_alloc_type&
_M_get_Node_allocator() const _GLIBCXX_NOEXCEPT
{ return _M_impl; }
#if __cplusplus >= 201103L
_List_base() = default;
#else
_List_base() { }
#endif
_List_base(const _Node_alloc_type& __a) _GLIBCXX_NOEXCEPT
: _M_impl(__a)
{ }
#if __cplusplus >= 201103L
_List_base(_List_base&&) = default;
# if !_GLIBCXX_INLINE_VERSION
_List_base(_List_base&& __x, _Node_alloc_type&& __a)
: _M_impl(std::move(__a))
{
if (__x._M_get_Node_allocator() == _M_get_Node_allocator())
_M_move_nodes(std::move(__x));
// else caller must move individual elements.
}
# endif
// Used when allocator is_always_equal.
_List_base(_Node_alloc_type&& __a, _List_base&& __x)
: _M_impl(std::move(__a), std::move(__x._M_impl))
{ }
// Used when allocator !is_always_equal.
_List_base(_Node_alloc_type&& __a)
: _M_impl(std::move(__a))
{ }
void
_M_move_nodes(_List_base&& __x)
{ _M_impl._M_node._M_move_nodes(std::move(__x._M_impl._M_node)); }
#endif
// This is what actually destroys the list.
~_List_base() _GLIBCXX_NOEXCEPT
{ _M_clear(); }
void
_M_clear() _GLIBCXX_NOEXCEPT;
void
_M_init() _GLIBCXX_NOEXCEPT
{ this->_M_impl._M_node._M_init(); }
};
/**
* @brief A standard container with linear time access to elements,
* and fixed time insertion/deletion at any point in the sequence.
*
* @ingroup sequences
*
* @tparam _Tp Type of element.
* @tparam _Alloc Allocator type, defaults to allocator<_Tp>.
*
* Meets the requirements of a <a href="tables.html#65">container</a>, a
* <a href="tables.html#66">reversible container</a>, and a
* <a href="tables.html#67">sequence</a>, including the
* <a href="tables.html#68">optional sequence requirements</a> with the
* %exception of @c at and @c operator[].
*
* This is a @e doubly @e linked %list. Traversal up and down the
* %list requires linear time, but adding and removing elements (or
* @e nodes) is done in constant time, regardless of where the
* change takes place. Unlike std::vector and std::deque,
* random-access iterators are not provided, so subscripting ( @c
* [] ) access is not allowed. For algorithms which only need
* sequential access, this lack makes no difference.
*
* Also unlike the other standard containers, std::list provides
* specialized algorithms %unique to linked lists, such as
* splicing, sorting, and in-place reversal.
*
* A couple points on memory allocation for list<Tp>:
*
* First, we never actually allocate a Tp, we allocate
* List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
* that after elements from %list<X,Alloc1> are spliced into
* %list<X,Alloc2>, destroying the memory of the second %list is a
* valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
*
* Second, a %list conceptually represented as
* @code
* A <---> B <---> C <---> D
* @endcode
* is actually circular; a link exists between A and D. The %list
* class holds (as its only data member) a private list::iterator
* pointing to @e D, not to @e A! To get to the head of the %list,
* we start at the tail and move forward by one. When this member
* iterator's next/previous pointers refer to itself, the %list is
* %empty.
*/
template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
class list : protected _List_base<_Tp, _Alloc>
{
#ifdef _GLIBCXX_CONCEPT_CHECKS
// concept requirements
typedef typename _Alloc::value_type _Alloc_value_type;
# if __cplusplus < 201103L
__glibcxx_class_requires(_Tp, _SGIAssignableConcept)
# endif
__glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
#endif
#if __cplusplus >= 201103L
static_assert(is_same<typename remove_cv<_Tp>::type, _Tp>::value,
"std::list must have a non-const, non-volatile value_type");
# if __cplusplus > 201703L || defined __STRICT_ANSI__
static_assert(is_same<typename _Alloc::value_type, _Tp>::value,
"std::list must have the same value_type as its allocator");
# endif
#endif
typedef _List_base<_Tp, _Alloc> _Base;
typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
typedef typename _Base::_Tp_alloc_traits _Tp_alloc_traits;
typedef typename _Base::_Node_alloc_type _Node_alloc_type;
typedef typename _Base::_Node_alloc_traits _Node_alloc_traits;
public:
typedef _Tp value_type;
typedef typename _Tp_alloc_traits::pointer pointer;
typedef typename _Tp_alloc_traits::const_pointer const_pointer;
typedef typename _Tp_alloc_traits::reference reference;
typedef typename _Tp_alloc_traits::const_reference const_reference;
typedef _List_iterator<_Tp> iterator;
typedef _List_const_iterator<_Tp> const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Alloc allocator_type;
protected:
// Note that pointers-to-_Node's can be ctor-converted to
// iterator types.
typedef _List_node<_Tp> _Node;
using _Base::_M_impl;
using _Base::_M_put_node;
using _Base::_M_get_node;
using _Base::_M_get_Node_allocator;
/**
* @param __args An instance of user data.
*
* Allocates space for a new node and constructs a copy of
* @a __args in it.
*/
#if __cplusplus < 201103L
_Node*
_M_create_node(const value_type& __x)
{
_Node* __p = this->_M_get_node();
__try
{
_Tp_alloc_type __alloc(_M_get_Node_allocator());
__alloc.construct(__p->_M_valptr(), __x);
}
__catch(...)
{
_M_put_node(__p);
__throw_exception_again;
}
return __p;
}
#else
template<typename... _Args>
_Node*
_M_create_node(_Args&&... __args)
{
auto __p = this->_M_get_node();
auto& __alloc = _M_get_Node_allocator();
__allocated_ptr<_Node_alloc_type> __guard{__alloc, __p};
_Node_alloc_traits::construct(__alloc, __p->_M_valptr(),
std::forward<_Args>(__args)...);
__guard = nullptr;
return __p;
}
#endif
#if _GLIBCXX_USE_CXX11_ABI
static size_t
_S_distance(const_iterator __first, const_iterator __last)
{ return std::distance(__first, __last); }
// return the stored size
size_t
_M_node_count() const
{ return this->_M_get_size(); }
#else
// dummy implementations used when the size is not stored
static size_t
_S_distance(const_iterator, const_iterator)
{ return 0; }
// count the number of nodes
size_t
_M_node_count() const
{ return std::distance(begin(), end()); }
#endif
public:
// [23.2.2.1] construct/copy/destroy
// (assign() and get_allocator() are also listed in this section)
/**
* @brief Creates a %list with no elements.
*/
#if __cplusplus >= 201103L
list() = default;
#else
list() { }
#endif
/**
* @brief Creates a %list with no elements.
* @param __a An allocator object.
*/
explicit
list(const allocator_type& __a) _GLIBCXX_NOEXCEPT
: _Base(_Node_alloc_type(__a)) { }
#if __cplusplus >= 201103L
/**
* @brief Creates a %list with default constructed elements.
* @param __n The number of elements to initially create.
* @param __a An allocator object.
*
* This constructor fills the %list with @a __n default
* constructed elements.
*/
explicit
list(size_type __n, const allocator_type& __a = allocator_type())
: _Base(_Node_alloc_type(__a))
{ _M_default_initialize(__n); }
/**
* @brief Creates a %list with copies of an exemplar element.
* @param __n The number of elements to initially create.
* @param __value An element to copy.
* @param __a An allocator object.
*
* This constructor fills the %list with @a __n copies of @a __value.
*/
list(size_type __n, const value_type& __value,
const allocator_type& __a = allocator_type())
: _Base(_Node_alloc_type(__a))
{ _M_fill_initialize(__n, __value); }
#else
/**
* @brief Creates a %list with copies of an exemplar element.
* @param __n The number of elements to initially create.
* @param __value An element to copy.
* @param __a An allocator object.
*
* This constructor fills the %list with @a __n copies of @a __value.
*/
explicit
list(size_type __n, const value_type& __value = value_type(),
const allocator_type& __a = allocator_type())
: _Base(_Node_alloc_type(__a))
{ _M_fill_initialize(__n, __value); }
#endif
/**
* @brief %List copy constructor.
* @param __x A %list of identical element and allocator types.
*
* The newly-created %list uses a copy of the allocation object used
* by @a __x (unless the allocator traits dictate a different object).
*/
list(const list& __x)
: _Base(_Node_alloc_traits::
_S_select_on_copy(__x._M_get_Node_allocator()))
{ _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
#if __cplusplus >= 201103L
/**
* @brief %List move constructor.
*
* The newly-created %list contains the exact contents of the moved
* instance. The contents of the moved instance are a valid, but
* unspecified %list.
*/
list(list&&) = default;
/**
* @brief Builds a %list from an initializer_list
* @param __l An initializer_list of value_type.
* @param __a An allocator object.
*
* Create a %list consisting of copies of the elements in the
* initializer_list @a __l. This is linear in __l.size().
*/
list(initializer_list<value_type> __l,
const allocator_type& __a = allocator_type())
: _Base(_Node_alloc_type(__a))
{ _M_initialize_dispatch(__l.begin(), __l.end(), __false_type()); }
list(const list& __x, const allocator_type& __a)
: _Base(_Node_alloc_type(__a))
{ _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
private:
list(list&& __x, const allocator_type& __a, true_type) noexcept
: _Base(_Node_alloc_type(__a), std::move(__x))
{ }
list(list&& __x, const allocator_type& __a, false_type)
: _Base(_Node_alloc_type(__a))
{
if (__x._M_get_Node_allocator() == this->_M_get_Node_allocator())
this->_M_move_nodes(std::move(__x));
else
insert(begin(), std::__make_move_if_noexcept_iterator(__x.begin()),
std::__make_move_if_noexcept_iterator(__x.end()));
}
public:
list(list&& __x, const allocator_type& __a)
noexcept(_Node_alloc_traits::_S_always_equal())
: list(std::move(__x), __a,
typename _Node_alloc_traits::is_always_equal{})
{ }
#endif
/**
* @brief Builds a %list from a range.
* @param __first An input iterator.
* @param __last An input iterator.
* @param __a An allocator object.
*
* Create a %list consisting of copies of the elements from
* [@a __first,@a __last). This is linear in N (where N is
* distance(@a __first,@a __last)).
*/
#if __cplusplus >= 201103L
template<typename _InputIterator,
typename = std::_RequireInputIter<_InputIterator>>
list(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(_Node_alloc_type(__a))
{ _M_initialize_dispatch(__first, __last, __false_type()); }
#else
template<typename _InputIterator>
list(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(_Node_alloc_type(__a))
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
#endif
#if __cplusplus >= 201103L
/**
* No explicit dtor needed as the _Base dtor takes care of
* things. The _Base dtor only erases the elements, and note
* that if the elements themselves are pointers, the pointed-to
* memory is not touched in any way. Managing the pointer is
* the user's responsibility.
*/
~list() = default;
#endif
/**
* @brief %List assignment operator.
* @param __x A %list of identical element and allocator types.
*
* All the elements of @a __x are copied.
*
* Whether the allocator is copied depends on the allocator traits.
*/
list&
operator=(const list& __x);
#if __cplusplus >= 201103L
/**
* @brief %List move assignment operator.
* @param __x A %list of identical element and allocator types.
*
* The contents of @a __x are moved into this %list (without copying).
*
* Afterwards @a __x is a valid, but unspecified %list
*
* Whether the allocator is moved depends on the allocator traits.
*/
list&
operator=(list&& __x)
noexcept(_Node_alloc_traits::_S_nothrow_move())
{
constexpr bool __move_storage =
_Node_alloc_traits::_S_propagate_on_move_assign()
|| _Node_alloc_traits::_S_always_equal();
_M_move_assign(std::move(__x), __bool_constant<__move_storage>());
return *this;
}
/**
* @brief %List initializer list assignment operator.
* @param __l An initializer_list of value_type.
*
* Replace the contents of the %list with copies of the elements
* in the initializer_list @a __l. This is linear in l.size().
*/
list&
operator=(initializer_list<value_type> __l)
{
this->assign(__l.begin(), __l.end());
return *this;
}
#endif
/**
* @brief Assigns a given value to a %list.
* @param __n Number of elements to be assigned.
* @param __val Value to be assigned.
*
* This function fills a %list with @a __n copies of the given
* value. Note that the assignment completely changes the %list
* and that the resulting %list's size is the same as the number
* of elements assigned.
*/
void
assign(size_type __n, const value_type& __val)
{ _M_fill_assign(__n, __val); }
/**
* @brief Assigns a range to a %list.
* @param __first An input iterator.
* @param __last An input iterator.
*
* This function fills a %list with copies of the elements in the
* range [@a __first,@a __last).
*
* Note that the assignment completely changes the %list and
* that the resulting %list's size is the same as the number of
* elements assigned.
*/
#if __cplusplus >= 201103L
template<typename _InputIterator,
typename = std::_RequireInputIter<_InputIterator>>
void
assign(_InputIterator __first, _InputIterator __last)
{ _M_assign_dispatch(__first, __last, __false_type()); }
#else
template<typename _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
#endif
#if __cplusplus >= 201103L
/**
* @brief Assigns an initializer_list to a %list.
* @param __l An initializer_list of value_type.
*
* Replace the contents of the %list with copies of the elements
* in the initializer_list @a __l. This is linear in __l.size().
*/
void
assign(initializer_list<value_type> __l)
{ this->_M_assign_dispatch(__l.begin(), __l.end(), __false_type()); }
#endif
/// Get a copy of the memory allocation object.
allocator_type
get_allocator() const _GLIBCXX_NOEXCEPT
{ return allocator_type(_Base::_M_get_Node_allocator()); }
// iterators
/**
* Returns a read/write iterator that points to the first element in the
* %list. Iteration is done in ordinary element order.
*/
iterator
begin() _GLIBCXX_NOEXCEPT
{ return iterator(this->_M_impl._M_node._M_next); }
/**
* Returns a read-only (constant) iterator that points to the
* first element in the %list. Iteration is done in ordinary
* element order.
*/
const_iterator
begin() const _GLIBCXX_NOEXCEPT
{ return const_iterator(this->_M_impl._M_node._M_next); }
/**
* Returns a read/write iterator that points one past the last
* element in the %list. Iteration is done in ordinary element
* order.
*/
iterator
end() _GLIBCXX_NOEXCEPT
{ return iterator(&this->_M_impl._M_node); }
/**
* Returns a read-only (constant) iterator that points one past
* the last element in the %list. Iteration is done in ordinary
* element order.
*/
const_iterator
end() const _GLIBCXX_NOEXCEPT
{ return const_iterator(&this->_M_impl._M_node); }
/**
* Returns a read/write reverse iterator that points to the last
* element in the %list. Iteration is done in reverse element
* order.
*/
reverse_iterator
rbegin() _GLIBCXX_NOEXCEPT
{ return reverse_iterator(end()); }
/**
* Returns a read-only (constant) reverse iterator that points to
* the last element in the %list. Iteration is done in reverse
* element order.
*/
const_reverse_iterator
rbegin() const _GLIBCXX_NOEXCEPT
{ return const_reverse_iterator(end()); }
/**
* Returns a read/write reverse iterator that points to one
* before the first element in the %list. Iteration is done in
* reverse element order.
*/
reverse_iterator
rend() _GLIBCXX_NOEXCEPT
{ return reverse_iterator(begin()); }
/**
* Returns a read-only (constant) reverse iterator that points to one
* before the first element in the %list. Iteration is done in reverse
* element order.
*/
const_reverse_iterator
rend() const _GLIBCXX_NOEXCEPT
{ return const_reverse_iterator(begin()); }
#if __cplusplus >= 201103L
/**
* Returns a read-only (constant) iterator that points to the
* first element in the %list. Iteration is done in ordinary
* element order.
*/
const_iterator
cbegin() const noexcept
{ return const_iterator(this->_M_impl._M_node._M_next); }
/**
* Returns a read-only (constant) iterator that points one past
* the last element in the %list. Iteration is done in ordinary
* element order.
*/
const_iterator
cend() const noexcept
{ return const_iterator(&this->_M_impl._M_node); }
/**
* Returns a read-only (constant) reverse iterator that points to
* the last element in the %list. Iteration is done in reverse
* element order.
*/
const_reverse_iterator
crbegin() const noexcept
{ return const_reverse_iterator(end()); }
/**
* Returns a read-only (constant) reverse iterator that points to one
* before the first element in the %list. Iteration is done in reverse
* element order.
*/
const_reverse_iterator
crend() const noexcept
{ return const_reverse_iterator(begin()); }
#endif
// [23.2.2.2] capacity
/**
* Returns true if the %list is empty. (Thus begin() would equal
* end().)
*/
_GLIBCXX_NODISCARD bool
empty() const _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
/** Returns the number of elements in the %list. */
size_type
size() const _GLIBCXX_NOEXCEPT
{ return _M_node_count(); }
/** Returns the size() of the largest possible %list. */
size_type
max_size() const _GLIBCXX_NOEXCEPT
{ return _Node_alloc_traits::max_size(_M_get_Node_allocator()); }
#if __cplusplus >= 201103L
/**
* @brief Resizes the %list to the specified number of elements.
* @param __new_size Number of elements the %list should contain.
*
* This function will %resize the %list to the specified number
* of elements. If the number is smaller than the %list's
* current size the %list is truncated, otherwise default
* constructed elements are appended.
*/
void
resize(size_type __new_size);
/**
* @brief Resizes the %list to the specified number of elements.
* @param __new_size Number of elements the %list should contain.
* @param __x Data with which new elements should be populated.
*
* This function will %resize the %list to the specified number
* of elements. If the number is smaller than the %list's
* current size the %list is truncated, otherwise the %list is
* extended and new elements are populated with given data.
*/
void
resize(size_type __new_size, const value_type& __x);
#else
/**
* @brief Resizes the %list to the specified number of elements.
* @param __new_size Number of elements the %list should contain.
* @param __x Data with which new elements should be populated.
*
* This function will %resize the %list to the specified number
* of elements. If the number is smaller than the %list's
* current size the %list is truncated, otherwise the %list is
* extended and new elements are populated with given data.
*/
void
resize(size_type __new_size, value_type __x = value_type());
#endif
// element access
/**
* Returns a read/write reference to the data at the first
* element of the %list.
*/
reference
front() _GLIBCXX_NOEXCEPT
{ return *begin(); }
/**
* Returns a read-only (constant) reference to the data at the first
* element of the %list.
*/
const_reference
front() const _GLIBCXX_NOEXCEPT
{ return *begin(); }
/**
* Returns a read/write reference to the data at the last element
* of the %list.
*/
reference
back() _GLIBCXX_NOEXCEPT
{
iterator __tmp = end();
--__tmp;
return *__tmp;
}
/**
* Returns a read-only (constant) reference to the data at the last
* element of the %list.
*/
const_reference
back() const _GLIBCXX_NOEXCEPT
{
const_iterator __tmp = end();
--__tmp;
return *__tmp;
}
// [23.2.2.3] modifiers
/**
* @brief Add data to the front of the %list.
* @param __x Data to be added.
*
* This is a typical stack operation. The function creates an
* element at the front of the %list and assigns the given data
* to it. Due to the nature of a %list this operation can be
* done in constant time, and does not invalidate iterators and
* references.
*/
void
push_front(const value_type& __x)
{ this->_M_insert(begin(), __x); }
#if __cplusplus >= 201103L
void
push_front(value_type&& __x)
{ this->_M_insert(begin(), std::move(__x)); }
template<typename... _Args>
#if __cplusplus > 201402L
reference
#else
void
#endif
emplace_front(_Args&&... __args)
{
this->_M_insert(begin(), std::forward<_Args>(__args)...);
#if __cplusplus > 201402L
return front();
#endif
}
#endif
/**
* @brief Removes first element.
*
* This is a typical stack operation. It shrinks the %list by
* one. Due to the nature of a %list this operation can be done
* in constant time, and only invalidates iterators/references to
* the element being removed.
*
* Note that no data is returned, and if the first element's data
* is needed, it should be retrieved before pop_front() is
* called.
*/
void
pop_front() _GLIBCXX_NOEXCEPT
{ this->_M_erase(begin()); }
/**
* @brief Add data to the end of the %list.
* @param __x Data to be added.
*
* This is a typical stack operation. The function creates an
* element at the end of the %list and assigns the given data to
* it. Due to the nature of a %list this operation can be done
* in constant time, and does not invalidate iterators and
* references.
*/
void
push_back(const value_type& __x)
{ this->_M_insert(end(), __x); }
#if __cplusplus >= 201103L
void
push_back(value_type&& __x)
{ this->_M_insert(end(), std::move(__x)); }
template<typename... _Args>
#if __cplusplus > 201402L
reference
#else
void
#endif
emplace_back(_Args&&... __args)
{
this->_M_insert(end(), std::forward<_Args>(__args)...);
#if __cplusplus > 201402L
return back();
#endif
}
#endif
/**
* @brief Removes last element.
*
* This is a typical stack operation. It shrinks the %list by
* one. Due to the nature of a %list this operation can be done
* in constant time, and only invalidates iterators/references to
* the element being removed.
*
* Note that no data is returned, and if the last element's data
* is needed, it should be retrieved before pop_back() is called.
*/
void
pop_back() _GLIBCXX_NOEXCEPT
{ this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
#if __cplusplus >= 201103L
/**
* @brief Constructs object in %list before specified iterator.
* @param __position A const_iterator into the %list.
* @param __args Arguments.
* @return An iterator that points to the inserted data.
*
* This function will insert an object of type T constructed
* with T(std::forward<Args>(args)...) before the specified
* location. Due to the nature of a %list this operation can
* be done in constant time, and does not invalidate iterators
* and references.
*/
template<typename... _Args>
iterator
emplace(const_iterator __position, _Args&&... __args);
/**
* @brief Inserts given value into %list before specified iterator.
* @param __position A const_iterator into the %list.
* @param __x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given value before
* the specified location. Due to the nature of a %list this
* operation can be done in constant time, and does not
* invalidate iterators and references.
*/
iterator
insert(const_iterator __position, const value_type& __x);
#else
/**
* @brief Inserts given value into %list before specified iterator.
* @param __position An iterator into the %list.
* @param __x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given value before
* the specified location. Due to the nature of a %list this
* operation can be done in constant time, and does not
* invalidate iterators and references.
*/
iterator
insert(iterator __position, const value_type& __x);
#endif
#if __cplusplus >= 201103L
/**
* @brief Inserts given rvalue into %list before specified iterator.
* @param __position A const_iterator into the %list.
* @param __x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given rvalue before
* the specified location. Due to the nature of a %list this
* operation can be done in constant time, and does not
* invalidate iterators and references.
*/
iterator
insert(const_iterator __position, value_type&& __x)
{ return emplace(__position, std::move(__x)); }
/**
* @brief Inserts the contents of an initializer_list into %list
* before specified const_iterator.
* @param __p A const_iterator into the %list.
* @param __l An initializer_list of value_type.
* @return An iterator pointing to the first element inserted
* (or __position).
*
* This function will insert copies of the data in the
* initializer_list @a l into the %list before the location
* specified by @a p.
*
* This operation is linear in the number of elements inserted and
* does not invalidate iterators and references.
*/
iterator
insert(const_iterator __p, initializer_list<value_type> __l)
{ return this->insert(__p, __l.begin(), __l.end()); }
#endif
#if __cplusplus >= 201103L
/**
* @brief Inserts a number of copies of given data into the %list.
* @param __position A const_iterator into the %list.
* @param __n Number of elements to be inserted.
* @param __x Data to be inserted.
* @return An iterator pointing to the first element inserted
* (or __position).
*
* This function will insert a specified number of copies of the
* given data before the location specified by @a position.
*
* This operation is linear in the number of elements inserted and
* does not invalidate iterators and references.
*/
iterator
insert(const_iterator __position, size_type __n, const value_type& __x);
#else
/**
* @brief Inserts a number of copies of given data into the %list.
* @param __position An iterator into the %list.
* @param __n Number of elements to be inserted.
* @param __x Data to be inserted.
*
* This function will insert a specified number of copies of the
* given data before the location specified by @a position.
*
* This operation is linear in the number of elements inserted and
* does not invalidate iterators and references.
*/
void
insert(iterator __position, size_type __n, const value_type& __x)
{
list __tmp(__n, __x, get_allocator());
splice(__position, __tmp);
}
#endif
#if __cplusplus >= 201103L
/**
* @brief Inserts a range into the %list.
* @param __position A const_iterator into the %list.
* @param __first An input iterator.
* @param __last An input iterator.
* @return An iterator pointing to the first element inserted
* (or __position).
*
* This function will insert copies of the data in the range [@a
* first,@a last) into the %list before the location specified by
* @a position.
*
* This operation is linear in the number of elements inserted and
* does not invalidate iterators and references.
*/
template<typename _InputIterator,
typename = std::_RequireInputIter<_InputIterator>>
iterator
insert(const_iterator __position, _InputIterator __first,
_InputIterator __last);
#else
/**
* @brief Inserts a range into the %list.
* @param __position An iterator into the %list.
* @param __first An input iterator.
* @param __last An input iterator.
*
* This function will insert copies of the data in the range [@a
* first,@a last) into the %list before the location specified by
* @a position.
*
* This operation is linear in the number of elements inserted and
* does not invalidate iterators and references.
*/
template<typename _InputIterator>
void
insert(iterator __position, _InputIterator __first,
_InputIterator __last)
{
list __tmp(__first, __last, get_allocator());
splice(__position, __tmp);
}
#endif
/**
* @brief Remove element at given position.
* @param __position Iterator pointing to element to be erased.
* @return An iterator pointing to the next element (or end()).
*
* This function will erase the element at the given position and thus
* shorten the %list by one.
*
* Due to the nature of a %list this operation can be done in
* constant time, and only invalidates iterators/references to
* the element being removed. The user is also cautioned that
* this function only erases the element, and that if the element
* is itself a pointer, the pointed-to memory is not touched in
* any way. Managing the pointer is the user's responsibility.
*/
iterator
#if __cplusplus >= 201103L
erase(const_iterator __position) noexcept;
#else
erase(iterator __position);
#endif
/**
* @brief Remove a range of elements.
* @param __first Iterator pointing to the first element to be erased.
* @param __last Iterator pointing to one past the last element to be
* erased.
* @return An iterator pointing to the element pointed to by @a last
* prior to erasing (or end()).
*
* This function will erase the elements in the range @a
* [first,last) and shorten the %list accordingly.
*
* This operation is linear time in the size of the range and only
* invalidates iterators/references to the element being removed.
* The user is also cautioned that this function only erases the
* elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer
* is the user's responsibility.
*/
iterator
#if __cplusplus >= 201103L
erase(const_iterator __first, const_iterator __last) noexcept
#else
erase(iterator __first, iterator __last)
#endif
{
while (__first != __last)
__first = erase(__first);
return __last._M_const_cast();
}
/**
* @brief Swaps data with another %list.
* @param __x A %list of the same element and allocator types.
*
* This exchanges the elements between two lists in constant
* time. Note that the global std::swap() function is
* specialized such that std::swap(l1,l2) will feed to this
* function.
*
* Whether the allocators are swapped depends on the allocator traits.
*/
void
swap(list& __x) _GLIBCXX_NOEXCEPT
{
__detail::_List_node_base::swap(this->_M_impl._M_node,
__x._M_impl._M_node);
size_t __xsize = __x._M_get_size();
__x._M_set_size(this->_M_get_size());
this->_M_set_size(__xsize);
_Node_alloc_traits::_S_on_swap(this->_M_get_Node_allocator(),
__x._M_get_Node_allocator());
}
/**
* Erases all the elements. Note that this function only erases
* the elements, and that if the elements themselves are
* pointers, the pointed-to memory is not touched in any way.
* Managing the pointer is the user's responsibility.
*/
void
clear() _GLIBCXX_NOEXCEPT
{
_Base::_M_clear();
_Base::_M_init();
}
// [23.2.2.4] list operations
/**
* @brief Insert contents of another %list.
* @param __position Iterator referencing the element to insert before.
* @param __x Source list.
*
* The elements of @a __x are inserted in constant time in front of
* the element referenced by @a __position. @a __x becomes an empty
* list.
*
* Requires this != @a __x.
*/
void
#if __cplusplus >= 201103L
splice(const_iterator __position, list&& __x) noexcept
#else
splice(iterator __position, list& __x)
#endif
{
if (!__x.empty())
{
_M_check_equal_allocators(__x);
this->_M_transfer(__position._M_const_cast(),
__x.begin(), __x.end());
this->_M_inc_size(__x._M_get_size());
__x._M_set_size(0);
}
}
#if __cplusplus >= 201103L
void
splice(const_iterator __position, list& __x) noexcept
{ splice(__position, std::move(__x)); }
#endif
#if __cplusplus >= 201103L
/**
* @brief Insert element from another %list.
* @param __position Const_iterator referencing the element to
* insert before.
* @param __x Source list.
* @param __i Const_iterator referencing the element to move.
*
* Removes the element in list @a __x referenced by @a __i and
* inserts it into the current list before @a __position.
*/
void
splice(const_iterator __position, list&& __x, const_iterator __i) noexcept
#else
/**
* @brief Insert element from another %list.
* @param __position Iterator referencing the element to insert before.
* @param __x Source list.
* @param __i Iterator referencing the element to move.
*
* Removes the element in list @a __x referenced by @a __i and
* inserts it into the current list before @a __position.
*/
void
splice(iterator __position, list& __x, iterator __i)
#endif
{
iterator __j = __i._M_const_cast();
++__j;
if (__position == __i || __position == __j)
return;
if (this != std::__addressof(__x))
_M_check_equal_allocators(__x);
this->_M_transfer(__position._M_const_cast(),
__i._M_const_cast(), __j);
this->_M_inc_size(1);
__x._M_dec_size(1);
}
#if __cplusplus >= 201103L
/**
* @brief Insert element from another %list.
* @param __position Const_iterator referencing the element to
* insert before.
* @param __x Source list.
* @param __i Const_iterator referencing the element to move.
*
* Removes the element in list @a __x referenced by @a __i and
* inserts it into the current list before @a __position.
*/
void
splice(const_iterator __position, list& __x, const_iterator __i) noexcept
{ splice(__position, std::move(__x), __i); }
#endif
#if __cplusplus >= 201103L
/**
* @brief Insert range from another %list.
* @param __position Const_iterator referencing the element to
* insert before.
* @param __x Source list.
* @param __first Const_iterator referencing the start of range in x.
* @param __last Const_iterator referencing the end of range in x.
*
* Removes elements in the range [__first,__last) and inserts them
* before @a __position in constant time.
*
* Undefined if @a __position is in [__first,__last).
*/
void
splice(const_iterator __position, list&& __x, const_iterator __first,
const_iterator __last) noexcept
#else
/**
* @brief Insert range from another %list.
* @param __position Iterator referencing the element to insert before.
* @param __x Source list.
* @param __first Iterator referencing the start of range in x.
* @param __last Iterator referencing the end of range in x.
*
* Removes elements in the range [__first,__last) and inserts them
* before @a __position in constant time.
*
* Undefined if @a __position is in [__first,__last).
*/
void
splice(iterator __position, list& __x, iterator __first,
iterator __last)
#endif
{
if (__first != __last)
{
if (this != std::__addressof(__x))
_M_check_equal_allocators(__x);
size_t __n = _S_distance(__first, __last);
this->_M_inc_size(__n);
__x._M_dec_size(__n);
this->_M_transfer(__position._M_const_cast(),
__first._M_const_cast(),
__last._M_const_cast());
}
}
#if __cplusplus >= 201103L
/**
* @brief Insert range from another %list.
* @param __position Const_iterator referencing the element to
* insert before.
* @param __x Source list.
* @param __first Const_iterator referencing the start of range in x.
* @param __last Const_iterator referencing the end of range in x.
*
* Removes elements in the range [__first,__last) and inserts them
* before @a __position in constant time.
*
* Undefined if @a __position is in [__first,__last).
*/
void
splice(const_iterator __position, list& __x, const_iterator __first,
const_iterator __last) noexcept
{ splice(__position, std::move(__x), __first, __last); }
#endif
private:
#if __cplusplus > 201703L
# define __cpp_lib_list_remove_return_type 201806L
typedef size_type __remove_return_type;
# define _GLIBCXX_LIST_REMOVE_RETURN_TYPE_TAG \
__attribute__((__abi_tag__("__cxx20")))
#else
typedef void __remove_return_type;
# define _GLIBCXX_LIST_REMOVE_RETURN_TYPE_TAG
#endif
public:
/**
* @brief Remove all elements equal to value.
* @param __value The value to remove.
*
* Removes every element in the list equal to @a value.
* Remaining elements stay in list order. Note that this
* function only erases the elements, and that if the elements
* themselves are pointers, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's
* responsibility.
*/
_GLIBCXX_LIST_REMOVE_RETURN_TYPE_TAG
__remove_return_type
remove(const _Tp& __value);
/**
* @brief Remove all elements satisfying a predicate.
* @tparam _Predicate Unary predicate function or object.
*
* Removes every element in the list for which the predicate
* returns true. Remaining elements stay in list order. Note
* that this function only erases the elements, and that if the
* elements themselves are pointers, the pointed-to memory is
* not touched in any way. Managing the pointer is the user's
* responsibility.
*/
template<typename _Predicate>
__remove_return_type
remove_if(_Predicate);
/**
* @brief Remove consecutive duplicate elements.
*
* For each consecutive set of elements with the same value,
* remove all but the first one. Remaining elements stay in
* list order. Note that this function only erases the
* elements, and that if the elements themselves are pointers,
* the pointed-to memory is not touched in any way. Managing
* the pointer is the user's responsibility.
*/
_GLIBCXX_LIST_REMOVE_RETURN_TYPE_TAG
__remove_return_type
unique();
/**
* @brief Remove consecutive elements satisfying a predicate.
* @tparam _BinaryPredicate Binary predicate function or object.
*
* For each consecutive set of elements [first,last) that
* satisfy predicate(first,i) where i is an iterator in
* [first,last), remove all but the first one. Remaining
* elements stay in list order. Note that this function only
* erases the elements, and that if the elements themselves are
* pointers, the pointed-to memory is not touched in any way.
* Managing the pointer is the user's responsibility.
*/
template<typename _BinaryPredicate>
__remove_return_type
unique(_BinaryPredicate);
#undef _GLIBCXX_LIST_REMOVE_RETURN_TYPE_TAG
/**
* @brief Merge sorted lists.
* @param __x Sorted list to merge.
*
* Assumes that both @a __x and this list are sorted according to
* operator<(). Merges elements of @a __x into this list in
* sorted order, leaving @a __x empty when complete. Elements in
* this list precede elements in @a __x that are equal.
*/
#if __cplusplus >= 201103L
void
merge(list&& __x);
void
merge(list& __x)
{ merge(std::move(__x)); }
#else
void
merge(list& __x);
#endif
/**
* @brief Merge sorted lists according to comparison function.
* @tparam _StrictWeakOrdering Comparison function defining
* sort order.
* @param __x Sorted list to merge.
* @param __comp Comparison functor.
*
* Assumes that both @a __x and this list are sorted according to
* StrictWeakOrdering. Merges elements of @a __x into this list
* in sorted order, leaving @a __x empty when complete. Elements
* in this list precede elements in @a __x that are equivalent
* according to StrictWeakOrdering().
*/
#if __cplusplus >= 201103L
template<typename _StrictWeakOrdering>
void
merge(list&& __x, _StrictWeakOrdering __comp);
template<typename _StrictWeakOrdering>
void
merge(list& __x, _StrictWeakOrdering __comp)
{ merge(std::move(__x), __comp); }
#else
template<typename _StrictWeakOrdering>
void
merge(list& __x, _StrictWeakOrdering __comp);
#endif
/**
* @brief Reverse the elements in list.
*
* Reverse the order of elements in the list in linear time.
*/
void
reverse() _GLIBCXX_NOEXCEPT
{ this->_M_impl._M_node._M_reverse(); }
/**
* @brief Sort the elements.
*
* Sorts the elements of this list in NlogN time. Equivalent
* elements remain in list order.
*/
void
sort();
/**
* @brief Sort the elements according to comparison function.
*
* Sorts the elements of this list in NlogN time. Equivalent
* elements remain in list order.
*/
template<typename _StrictWeakOrdering>
void
sort(_StrictWeakOrdering);
protected:
// Internal constructor functions follow.
// Called by the range constructor to implement [23.1.1]/9
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 438. Ambiguity in the "do the right thing" clause
template<typename _Integer>
void
_M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
{ _M_fill_initialize(static_cast<size_type>(__n), __x); }
// Called by the range constructor to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
__false_type)
{
for (; __first != __last; ++__first)
#if __cplusplus >= 201103L
emplace_back(*__first);
#else
push_back(*__first);
#endif
}
// Called by list(n,v,a), and the range constructor when it turns out
// to be the same thing.
void
_M_fill_initialize(size_type __n, const value_type& __x)
{
for (; __n; --__n)
push_back(__x);
}
#if __cplusplus >= 201103L
// Called by list(n).
void
_M_default_initialize(size_type __n)
{
for (; __n; --__n)
emplace_back();
}
// Called by resize(sz).
void
_M_default_append(size_type __n);
#endif
// Internal assign functions follow.
// Called by the range assign to implement [23.1.1]/9
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 438. Ambiguity in the "do the right thing" clause
template<typename _Integer>
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign(__n, __val); }
// Called by the range assign to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type);
// Called by assign(n,t), and the range assign when it turns out
// to be the same thing.
void
_M_fill_assign(size_type __n, const value_type& __val);
// Moves the elements from [first,last) before position.
void
_M_transfer(iterator __position, iterator __first, iterator __last)
{ __position._M_node->_M_transfer(__first._M_node, __last._M_node); }
// Inserts new element at position given and with value given.
#if __cplusplus < 201103L
void
_M_insert(iterator __position, const value_type& __x)
{
_Node* __tmp = _M_create_node(__x);
__tmp->_M_hook(__position._M_node);
this->_M_inc_size(1);
}
#else
template<typename... _Args>
void
_M_insert(iterator __position, _Args&&... __args)
{
_Node* __tmp = _M_create_node(std::forward<_Args>(__args)...);
__tmp->_M_hook(__position._M_node);
this->_M_inc_size(1);
}
#endif
// Erases element at position given.
void
_M_erase(iterator __position) _GLIBCXX_NOEXCEPT
{
this->_M_dec_size(1);
__position._M_node->_M_unhook();
_Node* __n = static_cast<_Node*>(__position._M_node);
#if __cplusplus >= 201103L
_Node_alloc_traits::destroy(_M_get_Node_allocator(), __n->_M_valptr());
#else
_Tp_alloc_type(_M_get_Node_allocator()).destroy(__n->_M_valptr());
#endif
_M_put_node(__n);
}
// To implement the splice (and merge) bits of N1599.
void
_M_check_equal_allocators(list& __x) _GLIBCXX_NOEXCEPT
{
if (std::__alloc_neq<typename _Base::_Node_alloc_type>::
_S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator()))
__builtin_abort();
}
// Used to implement resize.
const_iterator
_M_resize_pos(size_type& __new_size) const;
#if __cplusplus >= 201103L
void
_M_move_assign(list&& __x, true_type) noexcept
{
this->_M_clear();
this->_M_move_nodes(std::move(__x));
std::__alloc_on_move(this->_M_get_Node_allocator(),
__x._M_get_Node_allocator());
}
void
_M_move_assign(list&& __x, false_type)
{
if (__x._M_get_Node_allocator() == this->_M_get_Node_allocator())
_M_move_assign(std::move(__x), true_type{});
else
// The rvalue's allocator cannot be moved, or is not equal,
// so we need to individually move each element.
_M_assign_dispatch(std::make_move_iterator(__x.begin()),
std::make_move_iterator(__x.end()),
__false_type{});
}
#endif
};
#if __cpp_deduction_guides >= 201606
template<typename _InputIterator, typename _ValT
= typename iterator_traits<_InputIterator>::value_type,
typename _Allocator = allocator<_ValT>,
typename = _RequireInputIter<_InputIterator>,
typename = _RequireAllocator<_Allocator>>
list(_InputIterator, _InputIterator, _Allocator = _Allocator())
-> list<_ValT, _Allocator>;
#endif
_GLIBCXX_END_NAMESPACE_CXX11
/**
* @brief List equality comparison.
* @param __x A %list.
* @param __y A %list of the same type as @a __x.
* @return True iff the size and elements of the lists are equal.
*
* This is an equivalence relation. It is linear in the size of
* the lists. Lists are considered equivalent if their sizes are
* equal, and if corresponding elements compare equal.
*/
template<typename _Tp, typename _Alloc>
inline bool
operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
{
#if _GLIBCXX_USE_CXX11_ABI
if (__x.size() != __y.size())
return false;
#endif
typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
const_iterator __end1 = __x.end();
const_iterator __end2 = __y.end();
const_iterator __i1 = __x.begin();
const_iterator __i2 = __y.begin();
while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
{
++__i1;
++__i2;
}
return __i1 == __end1 && __i2 == __end2;
}
/**
* @brief List ordering relation.
* @param __x A %list.
* @param __y A %list of the same type as @a __x.
* @return True iff @a __x is lexicographically less than @a __y.
*
* This is a total ordering relation. It is linear in the size of the
* lists. The elements must be comparable with @c <.
*
* See std::lexicographical_compare() for how the determination is made.
*/
template<typename _Tp, typename _Alloc>
inline bool
operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
{ return std::lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end()); }
/// Based on operator==
template<typename _Tp, typename _Alloc>
inline bool
operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
{ return !(__x == __y); }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
{ return __y < __x; }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
{ return !(__y < __x); }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
{ return !(__x < __y); }
/// See std::list::swap().
template<typename _Tp, typename _Alloc>
inline void
swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
_GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
{ __x.swap(__y); }
_GLIBCXX_END_NAMESPACE_CONTAINER
#if _GLIBCXX_USE_CXX11_ABI
// Detect when distance is used to compute the size of the whole list.
template<typename _Tp>
inline ptrdiff_t
__distance(_GLIBCXX_STD_C::_List_iterator<_Tp> __first,
_GLIBCXX_STD_C::_List_iterator<_Tp> __last,
input_iterator_tag __tag)
{
typedef _GLIBCXX_STD_C::_List_const_iterator<_Tp> _CIter;
return std::__distance(_CIter(__first), _CIter(__last), __tag);
}
template<typename _Tp>
inline ptrdiff_t
__distance(_GLIBCXX_STD_C::_List_const_iterator<_Tp> __first,
_GLIBCXX_STD_C::_List_const_iterator<_Tp> __last,
input_iterator_tag)
{
typedef __detail::_List_node_header _Sentinel;
_GLIBCXX_STD_C::_List_const_iterator<_Tp> __beyond = __last;
++__beyond;
const bool __whole = __first == __beyond;
if (__builtin_constant_p (__whole) && __whole)
return static_cast<const _Sentinel*>(__last._M_node)->_M_size;
ptrdiff_t __n = 0;
while (__first != __last)
{
++__first;
++__n;
}
return __n;
}
#endif
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std
#endif /* _STL_LIST_H */