gcc/libgo/go/sync/mutex.go
Ian Lance Taylor c2047754c3 libgo: update to Go 1.8 release candidate 1
Compiler changes:
      * Change map assignment to use mapassign and assign value directly.
      * Change string iteration to use decoderune, faster for ASCII strings.
      * Change makeslice to take int, and use makeslice64 for larger values.
      * Add new noverflow field to hmap struct used for maps.
    
    Unresolved problems, to be fixed later:
      * Commented out test in go/types/sizes_test.go that doesn't compile.
      * Commented out reflect.TestStructOf test for padding after zero-sized field.
    
    Reviewed-on: https://go-review.googlesource.com/35231

gotools/:
	Updates for Go 1.8rc1.
	* Makefile.am (go_cmd_go_files): Add bug.go.
	(s-zdefaultcc): Write defaultPkgConfig.
	* Makefile.in: Rebuild.

From-SVN: r244456
2017-01-14 00:05:42 +00:00

132 lines
3.2 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package sync provides basic synchronization primitives such as mutual
// exclusion locks. Other than the Once and WaitGroup types, most are intended
// for use by low-level library routines. Higher-level synchronization is
// better done via channels and communication.
//
// Values containing the types defined in this package should not be copied.
package sync
import (
"internal/race"
"sync/atomic"
"unsafe"
)
func throw(string) // provided by runtime
// A Mutex is a mutual exclusion lock.
// Mutexes can be created as part of other structures;
// the zero value for a Mutex is an unlocked mutex.
//
// A Mutex must not be copied after first use.
type Mutex struct {
state int32
sema uint32
}
// A Locker represents an object that can be locked and unlocked.
type Locker interface {
Lock()
Unlock()
}
const (
mutexLocked = 1 << iota // mutex is locked
mutexWoken
mutexWaiterShift = iota
)
// Lock locks m.
// If the lock is already in use, the calling goroutine
// blocks until the mutex is available.
func (m *Mutex) Lock() {
// Fast path: grab unlocked mutex.
if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
if race.Enabled {
race.Acquire(unsafe.Pointer(m))
}
return
}
awoke := false
iter := 0
for {
old := m.state
new := old | mutexLocked
if old&mutexLocked != 0 {
if runtime_canSpin(iter) {
// Active spinning makes sense.
// Try to set mutexWoken flag to inform Unlock
// to not wake other blocked goroutines.
if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
awoke = true
}
runtime_doSpin()
iter++
continue
}
new = old + 1<<mutexWaiterShift
}
if awoke {
// The goroutine has been woken from sleep,
// so we need to reset the flag in either case.
if new&mutexWoken == 0 {
throw("sync: inconsistent mutex state")
}
new &^= mutexWoken
}
if atomic.CompareAndSwapInt32(&m.state, old, new) {
if old&mutexLocked == 0 {
break
}
runtime_SemacquireMutex(&m.sema)
awoke = true
iter = 0
}
}
if race.Enabled {
race.Acquire(unsafe.Pointer(m))
}
}
// Unlock unlocks m.
// It is a run-time error if m is not locked on entry to Unlock.
//
// A locked Mutex is not associated with a particular goroutine.
// It is allowed for one goroutine to lock a Mutex and then
// arrange for another goroutine to unlock it.
func (m *Mutex) Unlock() {
if race.Enabled {
_ = m.state
race.Release(unsafe.Pointer(m))
}
// Fast path: drop lock bit.
new := atomic.AddInt32(&m.state, -mutexLocked)
if (new+mutexLocked)&mutexLocked == 0 {
throw("sync: unlock of unlocked mutex")
}
old := new
for {
// If there are no waiters or a goroutine has already
// been woken or grabbed the lock, no need to wake anyone.
if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken) != 0 {
return
}
// Grab the right to wake someone.
new = (old - 1<<mutexWaiterShift) | mutexWoken
if atomic.CompareAndSwapInt32(&m.state, old, new) {
runtime_Semrelease(&m.sema)
return
}
old = m.state
}
}