gcc/libgo/go/crypto/aes/cipher_amd64.go
Ian Lance Taylor e0f69f36ea libgo: change build procedure to use build tags
Previously the libgo Makefile explicitly listed the set of files to
    compile for each package.  For packages that use build tags, this
    required a lot of awkward automake conditionals in the Makefile.
    
    This CL changes the build to look at the build tags in the files.
    The new shell script libgo/match.sh does the matching.  This required
    adjusting a lot of build tags, and removing some files that are never
    used.  I verified that the exact same sets of files are compiled on
    amd64 GNU/Linux.  I also tested the build on i386 Solaris.
    
    Writing match.sh revealed some bugs in the build tag handling that
    already exists, in a slightly different form, in the gotest shell
    script.  This CL fixes those problems as well.
    
    The old code used automake conditionals to handle systems that were
    missing strerror_r and wait4.  Rather than deal with those in Go, those
    functions are now implemented in runtime/go-nosys.c when necessary, so
    the Go code can simply assume that they exist.
    
    The os testsuite looked for dir_unix.go, which was never built for gccgo
    and has now been removed.  I changed the testsuite to look for dir.go
    instead.
    
    Reviewed-on: https://go-review.googlesource.com/25546

From-SVN: r239189
2016-08-06 00:36:33 +00:00

86 lines
1.9 KiB
Go

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
package aes
import (
"crypto/cipher"
)
// defined in asm_amd64.s
func hasAsm() bool
func encryptBlockAsm(nr int, xk *uint32, dst, src *byte)
func decryptBlockAsm(nr int, xk *uint32, dst, src *byte)
func expandKeyAsm(nr int, key *byte, enc *uint32, dec *uint32)
type aesCipherAsm struct {
aesCipher
}
var useAsm = hasAsm()
func newCipher(key []byte) (cipher.Block, error) {
if !useAsm {
return newCipherGeneric(key)
}
n := len(key) + 28
c := aesCipherAsm{aesCipher{make([]uint32, n), make([]uint32, n)}}
rounds := 10
switch len(key) {
case 128 / 8:
rounds = 10
case 192 / 8:
rounds = 12
case 256 / 8:
rounds = 14
}
expandKeyAsm(rounds, &key[0], &c.enc[0], &c.dec[0])
if hasGCMAsm() {
return &aesCipherGCM{c}, nil
}
return &c, nil
}
func (c *aesCipherAsm) BlockSize() int { return BlockSize }
func (c *aesCipherAsm) Encrypt(dst, src []byte) {
if len(src) < BlockSize {
panic("crypto/aes: input not full block")
}
if len(dst) < BlockSize {
panic("crypto/aes: output not full block")
}
encryptBlockAsm(len(c.enc)/4-1, &c.enc[0], &dst[0], &src[0])
}
func (c *aesCipherAsm) Decrypt(dst, src []byte) {
if len(src) < BlockSize {
panic("crypto/aes: input not full block")
}
if len(dst) < BlockSize {
panic("crypto/aes: output not full block")
}
decryptBlockAsm(len(c.dec)/4-1, &c.dec[0], &dst[0], &src[0])
}
// expandKey is used by BenchmarkExpand to ensure that the asm implementation
// of key expansion is used for the benchmark when it is available.
func expandKey(key []byte, enc, dec []uint32) {
if useAsm {
rounds := 10 // rounds needed for AES128
switch len(key) {
case 192 / 8:
rounds = 12
case 256 / 8:
rounds = 14
}
expandKeyAsm(rounds, &key[0], &enc[0], &dec[0])
} else {
expandKeyGo(key, enc, dec)
}
}