gcc/libstdc++-v3/testsuite/25_algorithms/binary_search.cc
Kelley Cook 83f517994d All files: Update FSF address.
2005-08-17  Kelley Cook  <kcook@gcc.gnu.org>

	* All files: Update FSF address.

From-SVN: r103192
2005-08-17 02:28:44 +00:00

184 lines
4.6 KiB
C++

// Copyright (C) 2001 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.
// 25.3.3 [lib.alg.binary.search] Binary search algorithms.
#include <algorithm>
#include <testsuite_hooks.h>
bool test __attribute__((unused)) = true;
const int A[] = {1, 2, 3, 3, 3, 5, 8};
const int C[] = {8, 5, 3, 3, 3, 2, 1};
const int N = sizeof(A) / sizeof(int);
// A comparison, equalivalent to std::greater<int> without the
// dependency on <functional>.
struct gt
{
bool
operator()(const int& x, const int& y) const
{ return x > y; }
};
// Each test performs general-case, bookend, not-found condition,
// and predicate functional checks.
// 25.3.3.1 lower_bound, with and without comparison predicate
void
test01()
{
using std::lower_bound;
const int first = A[0];
const int last = A[N - 1];
const int* p = lower_bound(A, A + N, 3);
VERIFY(p == A + 2);
const int* q = lower_bound(A, A + N, first);
VERIFY(q == A + 0);
const int* r = lower_bound(A, A + N, last);
VERIFY(r == A + N - 1);
const int* s = lower_bound(A, A + N, 4);
VERIFY(s == A + 5);
const int* t = lower_bound(C, C + N, 3, gt());
VERIFY(t == C + 2);
const int* u = lower_bound(C, C + N, first, gt());
VERIFY(u == C + N - 1);
const int* v = lower_bound(C, C + N, last, gt());
VERIFY(v == C + 0);
const int* w = lower_bound(C, C + N, 4, gt());
VERIFY(w == C + 2);
}
// 25.3.3.2 upper_bound, with and without comparison predicate
void
test02()
{
using std::upper_bound;
const int first = A[0];
const int last = A[N - 1];
const int* p = upper_bound(A, A + N, 3);
VERIFY(p == A + 5);
const int* q = upper_bound(A, A + N, first);
VERIFY(q == A + 1);
const int* r = upper_bound(A, A + N, last);
VERIFY(r == A + N);
const int* s = upper_bound(A, A + N, 4);
VERIFY(s == A + 5);
const int* t = upper_bound(C, C + N, 3, gt());
VERIFY(t == C + 5);
const int* u = upper_bound(C, C + N, first, gt());
VERIFY(u == C + N);
const int* v = upper_bound(C, C + N, last, gt());
VERIFY(v == C + 1);
const int* w = upper_bound(C, C + N, 4, gt());
VERIFY(w == C + 2);
}
// 25.3.3.3 equal_range, with and without comparison predicate
void
test03()
{
using std::equal_range;
typedef std::pair<const int*, const int*> Ipair;
const int first = A[0];
const int last = A[N - 1];
Ipair p = equal_range(A, A + N, 3);
VERIFY(p.first == A + 2);
VERIFY(p.second == A + 5);
Ipair q = equal_range(A, A + N, first);
VERIFY(q.first == A + 0);
VERIFY(q.second == A + 1);
Ipair r = equal_range(A, A + N, last);
VERIFY(r.first == A + N - 1);
VERIFY(r.second == A + N);
Ipair s = equal_range(A, A + N, 4);
VERIFY(s.first == A + 5);
VERIFY(s.second == A + 5);
Ipair t = equal_range(C, C + N, 3, gt());
VERIFY(t.first == C + 2);
VERIFY(t.second == C + 5);
Ipair u = equal_range(C, C + N, first, gt());
VERIFY(u.first == C + N - 1);
VERIFY(u.second == C + N);
Ipair v = equal_range(C, C + N, last, gt());
VERIFY(v.first == C + 0);
VERIFY(v.second == C + 1);
Ipair w = equal_range(C, C + N, 4, gt());
VERIFY(w.first == C + 2);
VERIFY(w.second == C + 2);
}
// 25.3.3.4 binary_search, with and without comparison predicate
void
test04()
{
using std::binary_search;
const int first = A[0];
const int last = A[N - 1];
VERIFY(binary_search(A, A + N, 5));
VERIFY(binary_search(A, A + N, first));
VERIFY(binary_search(A, A + N, last));
VERIFY(!binary_search(A, A + N, 4));
VERIFY(binary_search(C, C + N, 5, gt()));
VERIFY(binary_search(C, C + N, first, gt()));
VERIFY(binary_search(C, C + N, last, gt()));
VERIFY(!binary_search(C, C + N, 4, gt()));
}
int
main()
{
test01();
test02();
test03();
test04();
return 0;
}