d38d4e5d18
2003-12-23 Benjamin Kosnik <bkoz@redhat.com> * include/ext/new_allocator.h (new_allocator): Proper allocator class. (__new_alloc): Delete. * include/ext/malloc_allocator.h (malloc_allocator): Same. (__malloc_alloc): Delete. * include/ext/mt_allocator.h: Same, but weakly. * include/ext/debug_allocator.h: Convert to the new style. * include/ext/pool_allocator.h: Use global new and delete directly. * include/backward/alloc.h: Don't inject malloc_allocator, or debug_allocator. * testsuite/ext/allocators.cc: Minimal fixups for usage of new classes. Comment out tests with __pool_alloc for now. * testsuite/performance/allocator.cc: Same. From-SVN: r74965
859 lines
26 KiB
C++
859 lines
26 KiB
C++
// MT-optimized allocator -*- C++ -*-
|
|
|
|
// Copyright (C) 2003 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
/** @file ext/mt_allocator.h
|
|
* This file is a GNU extension to the Standard C++ Library.
|
|
* You should only include this header if you are using GCC 3 or later.
|
|
*/
|
|
|
|
#ifndef _MT_ALLOCATOR_H
|
|
#define _MT_ALLOCATOR_H 1
|
|
|
|
#include <new>
|
|
#include <memory>
|
|
#include <cstdlib>
|
|
#include <bits/functexcept.h>
|
|
#include <bits/gthr.h>
|
|
#include <bits/atomicity.h>
|
|
|
|
namespace __gnu_cxx
|
|
{
|
|
/**
|
|
* This is a fixed size (power of 2) allocator which - when
|
|
* compiled with thread support - will maintain one freelist per
|
|
* size per thread plus a "global" one. Steps are taken to limit
|
|
* the per thread freelist sizes (by returning excess back to
|
|
* "global").
|
|
*
|
|
* Usage examples:
|
|
* @code
|
|
* vector<int, __gnu_cxx::__mt_alloc<int> > v1;
|
|
*
|
|
* typedef __gnu_cxx::__mt_alloc<char> > string_allocator;
|
|
* std::basic_string<char, std::char_traits<char>, string_allocator> s1;
|
|
* @endcode
|
|
*/
|
|
template<typename _Tp>
|
|
class __mt_alloc
|
|
{
|
|
public:
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef _Tp* pointer;
|
|
typedef const _Tp* const_pointer;
|
|
typedef _Tp& reference;
|
|
typedef const _Tp& const_reference;
|
|
typedef _Tp value_type;
|
|
|
|
template<typename _Tp1>
|
|
struct rebind
|
|
{ typedef __mt_alloc<_Tp1> other; };
|
|
|
|
__mt_alloc() throw()
|
|
{
|
|
// XXX
|
|
}
|
|
|
|
__mt_alloc(const __mt_alloc&) throw()
|
|
{
|
|
// XXX
|
|
}
|
|
|
|
template<typename _Tp1>
|
|
__mt_alloc(const __mt_alloc<_Tp1>&) throw()
|
|
{
|
|
// XXX
|
|
}
|
|
|
|
~__mt_alloc() throw() { }
|
|
|
|
pointer
|
|
address(reference __x) const { return &__x; }
|
|
|
|
const_pointer
|
|
address(const_reference __x) const { return &__x; }
|
|
|
|
size_type
|
|
max_size() const throw()
|
|
{ return size_t(-1) / sizeof(_Tp); }
|
|
|
|
// _GLIBCXX_RESOLVE_LIB_DEFECTS
|
|
// 402. wrong new expression in [some_] allocator::construct
|
|
void
|
|
construct(pointer __p, const _Tp& __val)
|
|
{ ::new(__p) _Tp(__val); }
|
|
|
|
void
|
|
destroy(pointer __p) { __p->~_Tp(); }
|
|
|
|
private:
|
|
/*
|
|
* We need to create the initial lists and set up some variables
|
|
* before we can answer to the first request for memory.
|
|
* The initialization of these variables is done at file scope
|
|
* below class declaration.
|
|
*/
|
|
#ifdef __GTHREADS
|
|
static __gthread_once_t _S_once_mt;
|
|
#endif
|
|
static bool _S_initialized;
|
|
|
|
/*
|
|
* Using short int as type for the binmap implies we are never caching
|
|
* blocks larger than 65535 with this allocator
|
|
*/
|
|
typedef unsigned short int binmap_type;
|
|
static binmap_type* _S_binmap;
|
|
|
|
static void _S_init();
|
|
|
|
/*
|
|
* Variables used to "tune" the behavior of the allocator, assigned
|
|
* and explained in detail below.
|
|
*/
|
|
static size_t _S_max_bytes;
|
|
static size_t _S_chunk_size;
|
|
static size_t _S_max_threads;
|
|
static size_t _S_no_of_bins;
|
|
static size_t _S_freelist_headroom;
|
|
|
|
/*
|
|
* Each requesting thread is assigned an id ranging from 1 to
|
|
* _S_max_threads. Thread id 0 is used as a global memory pool.
|
|
* In order to get constant performance on the thread assignment
|
|
* routine, we keep a list of free ids. When a thread first requests
|
|
* memory we remove the first record in this list and stores the address
|
|
* in a __gthread_key. When initializing the __gthread_key
|
|
* we specify a destructor. When this destructor (i.e. the thread dies)
|
|
* is called, we return the thread id to the back of this list.
|
|
*/
|
|
#ifdef __GTHREADS
|
|
struct thread_record
|
|
{
|
|
/*
|
|
* Points to next free thread id record. NULL if last record in list.
|
|
*/
|
|
thread_record* next;
|
|
|
|
/*
|
|
* Thread id ranging from 1 to _S_max_threads.
|
|
*/
|
|
size_t id;
|
|
};
|
|
|
|
static thread_record* _S_thread_freelist_first;
|
|
static thread_record* _S_thread_freelist_last;
|
|
static __gthread_mutex_t _S_thread_freelist_mutex;
|
|
static void _S_thread_key_destr(void* freelist_pos);
|
|
static __gthread_key_t _S_thread_key;
|
|
static size_t _S_get_thread_id();
|
|
#endif
|
|
|
|
struct block_record
|
|
{
|
|
/*
|
|
* Points to the next block_record for its thread_id.
|
|
*/
|
|
block_record* next;
|
|
|
|
/*
|
|
* The thread id of the thread which has requested this block.
|
|
* All blocks are initially "owned" by global pool thread id 0.
|
|
*/
|
|
size_t thread_id;
|
|
};
|
|
|
|
struct bin_record
|
|
{
|
|
/*
|
|
* An "array" of pointers to the first/last free block for each
|
|
* thread id. Memory to these "arrays" is allocated in _S_init()
|
|
* for _S_max_threads + global pool 0.
|
|
*/
|
|
block_record** first;
|
|
block_record** last;
|
|
|
|
/*
|
|
* An "array" of counters used to keep track of the amount of blocks
|
|
* that are on the freelist/used for each thread id.
|
|
* Memory to these "arrays" is allocated in _S_init()
|
|
* for _S_max_threads + global pool 0.
|
|
*/
|
|
size_t* free;
|
|
size_t* used;
|
|
|
|
/*
|
|
* Each bin has its own mutex which is used to ensure data integrity
|
|
* while changing "ownership" on a block.
|
|
* The mutex is initialized in _S_init().
|
|
*/
|
|
#ifdef __GTHREADS
|
|
__gthread_mutex_t* mutex;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* An "array" of bin_records each of which represents a specific
|
|
* power of 2 size. Memory to this "array" is allocated in _S_init().
|
|
*/
|
|
static bin_record* _S_bin;
|
|
|
|
public:
|
|
pointer
|
|
allocate(size_t __n, std::allocator<void>::const_pointer __h = 0)
|
|
{
|
|
/*
|
|
* Requests larger than _S_max_bytes are handled by
|
|
* new/delete directly
|
|
*/
|
|
if (__n > _S_max_bytes)
|
|
{
|
|
void* __ret = malloc(__n * sizeof(_Tp));
|
|
if (!__ret)
|
|
__throw_bad_alloc();
|
|
return static_cast<_Tp*>(__ret);
|
|
}
|
|
|
|
/*
|
|
* Although the test in __gthread_once() would suffice, we
|
|
* wrap test of the once condition in our own unlocked
|
|
* check. This saves one function call to pthread_once()
|
|
* (which itself only tests for the once value unlocked anyway
|
|
* and immediately returns if set)
|
|
*/
|
|
if (!_S_initialized)
|
|
{
|
|
#ifdef __GTHREADS
|
|
if (__gthread_active_p())
|
|
__gthread_once(&_S_once_mt, _S_init);
|
|
else
|
|
#endif
|
|
{
|
|
_S_max_threads = 0;
|
|
_S_init();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Round up to power of 2 and figure out which bin to use
|
|
*/
|
|
size_t bin = _S_binmap[__n];
|
|
|
|
#ifdef __GTHREADS
|
|
size_t thread_id = _S_get_thread_id();
|
|
#else
|
|
size_t thread_id = 0;
|
|
#endif
|
|
|
|
block_record* block;
|
|
|
|
/*
|
|
* Find out if we have blocks on our freelist.
|
|
* If so, go ahead and use them directly without
|
|
* having to lock anything.
|
|
*/
|
|
if (_S_bin[bin].first[thread_id] == NULL)
|
|
{
|
|
/*
|
|
* Are we using threads?
|
|
* - Yes, lock and check if there are free blocks on the global
|
|
* list (and if not add new ones), get the first one
|
|
* and change owner.
|
|
* - No, all operations are made directly to global pool 0
|
|
* no need to lock or change ownership but check for free
|
|
* blocks on global list (and if not add new ones) and
|
|
* get the first one.
|
|
*/
|
|
#ifdef __GTHREADS
|
|
if (__gthread_active_p())
|
|
{
|
|
__gthread_mutex_lock(_S_bin[bin].mutex);
|
|
|
|
if (_S_bin[bin].first[0] == NULL)
|
|
{
|
|
_S_bin[bin].first[0] =
|
|
(block_record*)malloc(_S_chunk_size);
|
|
|
|
if (!_S_bin[bin].first[0])
|
|
{
|
|
__gthread_mutex_unlock(_S_bin[bin].mutex);
|
|
__throw_bad_alloc();
|
|
}
|
|
|
|
size_t bin_t = 1 << bin;
|
|
size_t block_count =
|
|
_S_chunk_size /(bin_t + sizeof(block_record));
|
|
|
|
_S_bin[bin].free[0] = block_count;
|
|
|
|
block_count--;
|
|
block = _S_bin[bin].first[0];
|
|
|
|
while (block_count > 0)
|
|
{
|
|
block->next = (block_record*)((char*)block +
|
|
(bin_t + sizeof(block_record)));
|
|
block = block->next;
|
|
block_count--;
|
|
}
|
|
|
|
block->next = NULL;
|
|
_S_bin[bin].last[0] = block;
|
|
}
|
|
|
|
block = _S_bin[bin].first[0];
|
|
|
|
/*
|
|
* Remove from list and count down the available counter on
|
|
* global pool 0.
|
|
*/
|
|
_S_bin[bin].first[0] = _S_bin[bin].first[0]->next;
|
|
_S_bin[bin].free[0]--;
|
|
|
|
__gthread_mutex_unlock(_S_bin[bin].mutex);
|
|
|
|
/*
|
|
* Now that we have removed the block from the global
|
|
* freelist we can change owner and update the used
|
|
* counter for this thread without locking.
|
|
*/
|
|
block->thread_id = thread_id;
|
|
_S_bin[bin].used[thread_id]++;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
_S_bin[bin].first[0] = (block_record*)malloc(_S_chunk_size);
|
|
|
|
if (!_S_bin[bin].first[0])
|
|
__throw_bad_alloc();
|
|
|
|
size_t bin_t = 1 << bin;
|
|
size_t block_count =
|
|
_S_chunk_size / (bin_t + sizeof(block_record));
|
|
|
|
_S_bin[bin].free[0] = block_count;
|
|
|
|
block_count--;
|
|
block = _S_bin[bin].first[0];
|
|
|
|
while (block_count > 0)
|
|
{
|
|
block->next = (block_record*)((char*)block +
|
|
(bin_t + sizeof(block_record)));
|
|
block = block->next;
|
|
block_count--;
|
|
}
|
|
|
|
block->next = NULL;
|
|
_S_bin[bin].last[0] = block;
|
|
|
|
block = _S_bin[bin].first[0];
|
|
|
|
/*
|
|
* Remove from list and count down the available counter on
|
|
* global pool 0 and increase it's used counter.
|
|
*/
|
|
_S_bin[bin].first[0] = _S_bin[bin].first[0]->next;
|
|
_S_bin[bin].free[0]--;
|
|
_S_bin[bin].used[0]++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* "Default" operation - we have blocks on our own freelist
|
|
* grab the first record and update the counters.
|
|
*/
|
|
block = _S_bin[bin].first[thread_id];
|
|
|
|
_S_bin[bin].first[thread_id] = _S_bin[bin].first[thread_id]->next;
|
|
_S_bin[bin].free[thread_id]--;
|
|
_S_bin[bin].used[thread_id]++;
|
|
}
|
|
|
|
return static_cast<_Tp*>(static_cast<void*>((char*)block + sizeof(block_record)));
|
|
}
|
|
|
|
void
|
|
deallocate(pointer __p, size_type __n)
|
|
{
|
|
/*
|
|
* Requests larger than _S_max_bytes are handled by
|
|
* malloc/free directly
|
|
*/
|
|
if (__n > _S_max_bytes)
|
|
{
|
|
free(__p);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Round up to power of 2 and figure out which bin to use
|
|
*/
|
|
size_t bin = _S_binmap[__n];
|
|
|
|
#ifdef __GTHREADS
|
|
size_t thread_id = _S_get_thread_id();
|
|
#else
|
|
size_t thread_id = 0;
|
|
#endif
|
|
|
|
block_record* block = (block_record*)((char*)__p
|
|
- sizeof(block_record));
|
|
|
|
/*
|
|
* This block will always be at the back of a list and thus
|
|
* we set its next pointer to NULL.
|
|
*/
|
|
block->next = NULL;
|
|
|
|
#ifdef __GTHREADS
|
|
if (__gthread_active_p())
|
|
{
|
|
/*
|
|
* Calculate the number of records to remove from our freelist
|
|
*/
|
|
int remove = _S_bin[bin].free[thread_id] -
|
|
(_S_bin[bin].used[thread_id] / _S_freelist_headroom);
|
|
|
|
/*
|
|
* The calculation above will almost always tell us to
|
|
* remove one or two records at a time, but this creates
|
|
* too much contention when locking and therefore we
|
|
* wait until the number of records is "high enough".
|
|
*/
|
|
if (remove > (int)(100 * (_S_no_of_bins - bin)) &&
|
|
remove > (int)(_S_bin[bin].free[thread_id] /
|
|
_S_freelist_headroom))
|
|
{
|
|
__gthread_mutex_lock(_S_bin[bin].mutex);
|
|
|
|
while (remove > 0)
|
|
{
|
|
if (_S_bin[bin].first[0] == NULL)
|
|
_S_bin[bin].first[0] = _S_bin[bin].first[thread_id];
|
|
else
|
|
_S_bin[bin].last[0]->next = _S_bin[bin].first[thread_id];
|
|
|
|
_S_bin[bin].last[0] = _S_bin[bin].first[thread_id];
|
|
|
|
_S_bin[bin].first[thread_id] =
|
|
_S_bin[bin].first[thread_id]->next;
|
|
|
|
_S_bin[bin].free[0]++;
|
|
_S_bin[bin].free[thread_id]--;
|
|
|
|
remove--;
|
|
}
|
|
|
|
_S_bin[bin].last[0]->next = NULL;
|
|
|
|
__gthread_mutex_unlock(_S_bin[bin].mutex);
|
|
}
|
|
|
|
/*
|
|
* Did we allocate this block?
|
|
* - Yes, return it to our freelist
|
|
* - No, return it to global pool
|
|
*/
|
|
if (thread_id == block->thread_id)
|
|
{
|
|
if (_S_bin[bin].first[thread_id] == NULL)
|
|
_S_bin[bin].first[thread_id] = block;
|
|
else
|
|
_S_bin[bin].last[thread_id]->next = block;
|
|
|
|
_S_bin[bin].last[thread_id] = block;
|
|
|
|
_S_bin[bin].free[thread_id]++;
|
|
_S_bin[bin].used[thread_id]--;
|
|
}
|
|
else
|
|
{
|
|
__gthread_mutex_lock(_S_bin[bin].mutex);
|
|
|
|
if (_S_bin[bin].first[0] == NULL)
|
|
_S_bin[bin].first[0] = block;
|
|
else
|
|
_S_bin[bin].last[0]->next = block;
|
|
|
|
_S_bin[bin].last[0] = block;
|
|
|
|
_S_bin[bin].free[0]++;
|
|
_S_bin[bin].used[block->thread_id]--;
|
|
|
|
__gthread_mutex_unlock(_S_bin[bin].mutex);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/*
|
|
* Single threaded application - return to global pool
|
|
*/
|
|
if (_S_bin[bin].first[0] == NULL)
|
|
_S_bin[bin].first[0] = block;
|
|
else
|
|
_S_bin[bin].last[0]->next = block;
|
|
|
|
_S_bin[bin].last[0] = block;
|
|
|
|
_S_bin[bin].free[0]++;
|
|
_S_bin[bin].used[0]--;
|
|
}
|
|
}
|
|
};
|
|
|
|
template<typename _Tp>
|
|
void
|
|
__mt_alloc<_Tp>::
|
|
_S_init()
|
|
{
|
|
/*
|
|
* Calculate the number of bins required based on _S_max_bytes,
|
|
* _S_no_of_bins is initialized to 1 below.
|
|
*/
|
|
{
|
|
size_t bin_t = 1;
|
|
while (_S_max_bytes > bin_t)
|
|
{
|
|
bin_t = bin_t << 1;
|
|
_S_no_of_bins++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup the bin map for quick lookup of the relevant bin
|
|
*/
|
|
_S_binmap = (binmap_type*)
|
|
malloc ((_S_max_bytes + 1) * sizeof(binmap_type));
|
|
|
|
if (!_S_binmap)
|
|
__throw_bad_alloc();
|
|
|
|
binmap_type* bp_t = _S_binmap;
|
|
binmap_type bin_max_t = 1;
|
|
binmap_type bin_t = 0;
|
|
for (binmap_type ct = 0; ct <= _S_max_bytes; ct++)
|
|
{
|
|
if (ct > bin_max_t)
|
|
{
|
|
bin_max_t <<= 1;
|
|
bin_t++;
|
|
}
|
|
*bp_t++ = bin_t;
|
|
}
|
|
|
|
/*
|
|
* If __gthread_active_p() create and initialize the list of
|
|
* free thread ids. Single threaded applications use thread id 0
|
|
* directly and have no need for this.
|
|
*/
|
|
#ifdef __GTHREADS
|
|
if (__gthread_active_p())
|
|
{
|
|
_S_thread_freelist_first =
|
|
(thread_record*)malloc(sizeof(thread_record) * _S_max_threads);
|
|
|
|
if (!_S_thread_freelist_first)
|
|
__throw_bad_alloc();
|
|
|
|
/*
|
|
* NOTE! The first assignable thread id is 1 since the global
|
|
* pool uses id 0
|
|
*/
|
|
size_t i;
|
|
for (i = 1; i < _S_max_threads; i++)
|
|
{
|
|
_S_thread_freelist_first[i - 1].next =
|
|
&_S_thread_freelist_first[i];
|
|
|
|
_S_thread_freelist_first[i - 1].id = i;
|
|
}
|
|
|
|
/*
|
|
* Set last record and pointer to this
|
|
*/
|
|
_S_thread_freelist_first[i - 1].next = NULL;
|
|
_S_thread_freelist_first[i - 1].id = i;
|
|
_S_thread_freelist_last = &_S_thread_freelist_first[i - 1];
|
|
|
|
/*
|
|
* Initialize per thread key to hold pointer to
|
|
* _S_thread_freelist NOTE! Here's an ugly workaround - if
|
|
* _S_thread_key_destr is not explicitly called at least
|
|
* once it won't be linked into the application. This is the
|
|
* behavior of template methods and __gthread_key_create()
|
|
* takes only a pointer to the function and does not cause
|
|
* the compiler to create an instance.
|
|
*/
|
|
_S_thread_key_destr(NULL);
|
|
__gthread_key_create(&_S_thread_key, _S_thread_key_destr);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Initialize _S_bin and its members
|
|
*/
|
|
_S_bin = (bin_record*)malloc(sizeof(bin_record) * _S_no_of_bins);
|
|
|
|
if (!_S_bin)
|
|
__throw_bad_alloc();
|
|
|
|
for (size_t bin = 0; bin < _S_no_of_bins; bin++)
|
|
{
|
|
std::size_t __n = _S_max_threads + 1;
|
|
|
|
_S_bin[bin].first = (block_record**)
|
|
malloc(sizeof(block_record*) * __n);
|
|
|
|
if (!_S_bin[bin].first)
|
|
__throw_bad_alloc();
|
|
|
|
_S_bin[bin].last = (block_record**)
|
|
malloc(sizeof(block_record*) * __n);
|
|
|
|
if (!_S_bin[bin].last)
|
|
__throw_bad_alloc();
|
|
|
|
_S_bin[bin].free = (size_t*) malloc(sizeof(size_t) * __n);
|
|
|
|
if (!_S_bin[bin].free)
|
|
__throw_bad_alloc();
|
|
|
|
_S_bin[bin].used = (size_t*) malloc(sizeof(size_t) * __n);
|
|
|
|
if (!_S_bin[bin].used)
|
|
__throw_bad_alloc();
|
|
|
|
#ifdef __GTHREADS
|
|
_S_bin[bin].mutex =(__gthread_mutex_t*) malloc(sizeof(__gthread_mutex_t));
|
|
|
|
#ifdef __GTHREAD_MUTEX_INIT
|
|
{
|
|
// Do not copy a POSIX/gthr mutex once in use.
|
|
__gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
|
|
*_S_bin[bin].mutex = __tmp;
|
|
}
|
|
#else
|
|
{ __GTHREAD_MUTEX_INIT_FUNCTION (_S_bin[bin].mutex); }
|
|
#endif
|
|
#endif
|
|
|
|
for (size_t thread = 0; thread <= _S_max_threads; thread++)
|
|
{
|
|
_S_bin[bin].first[thread] = NULL;
|
|
_S_bin[bin].last[thread] = NULL;
|
|
_S_bin[bin].free[thread] = 0;
|
|
_S_bin[bin].used[thread] = 0;
|
|
}
|
|
}
|
|
|
|
_S_initialized = true;
|
|
}
|
|
|
|
#ifdef __GTHREADS
|
|
template<typename _Tp>
|
|
void
|
|
__mt_alloc<_Tp>::
|
|
_S_thread_key_destr(void* freelist_pos)
|
|
{
|
|
/*
|
|
* If the thread - when it dies - still has records on its
|
|
* freelist we return them to the global pool here.
|
|
*/
|
|
for (size_t bin = 0; bin < _S_no_of_bins; bin++)
|
|
{
|
|
block_record* block =
|
|
_S_bin[bin].first[((thread_record*)freelist_pos)->id];
|
|
|
|
if (block != NULL)
|
|
{
|
|
__gthread_mutex_lock(_S_bin[bin].mutex);
|
|
while (block != NULL)
|
|
{
|
|
if (_S_bin[bin].first[0] == NULL)
|
|
_S_bin[bin].first[0] = block;
|
|
else
|
|
_S_bin[bin].last[0]->next = block;
|
|
|
|
_S_bin[bin].last[0] = block;
|
|
block = block->next;
|
|
_S_bin[bin].free[0]++;
|
|
}
|
|
|
|
_S_bin[bin].last[0]->next = NULL;
|
|
__gthread_mutex_unlock(_S_bin[bin].mutex);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return this thread id record to thread_freelist
|
|
*/
|
|
__gthread_mutex_lock(&_S_thread_freelist_mutex);
|
|
_S_thread_freelist_last->next = (thread_record*)freelist_pos;
|
|
_S_thread_freelist_last = (thread_record*)freelist_pos;
|
|
_S_thread_freelist_last->next = NULL;
|
|
__gthread_mutex_unlock(&_S_thread_freelist_mutex);
|
|
}
|
|
|
|
template<typename _Tp>
|
|
size_t
|
|
__mt_alloc<_Tp>::
|
|
_S_get_thread_id()
|
|
{
|
|
/*
|
|
* If we have thread support and it's active we check the thread
|
|
* key value and return it's id or if it's not set we take the
|
|
* first record from _S_thread_freelist and sets the key and
|
|
* returns it's id.
|
|
*/
|
|
if (__gthread_active_p())
|
|
{
|
|
thread_record* freelist_pos;
|
|
|
|
if ((freelist_pos =
|
|
(thread_record*)__gthread_getspecific(_S_thread_key)) == NULL)
|
|
{
|
|
/*
|
|
* Since _S_max_threads must be larger than the
|
|
* theoretical max number of threads of the OS the list
|
|
* can never be empty.
|
|
*/
|
|
__gthread_mutex_lock(&_S_thread_freelist_mutex);
|
|
freelist_pos = _S_thread_freelist_first;
|
|
_S_thread_freelist_first = _S_thread_freelist_first->next;
|
|
__gthread_mutex_unlock(&_S_thread_freelist_mutex);
|
|
|
|
__gthread_setspecific(_S_thread_key, (void*)freelist_pos);
|
|
|
|
/*
|
|
* Since thread_ids may/will be reused (espcially in
|
|
* producer/consumer applications) we make sure that the
|
|
* list pointers and free counter is reset BUT as the
|
|
* "old" thread may still be owner of some memory (which
|
|
* is referred to by other threads and thus not freed)
|
|
* we don't reset the used counter.
|
|
*/
|
|
for (size_t bin = 0; bin < _S_no_of_bins; bin++)
|
|
{
|
|
_S_bin[bin].first[freelist_pos->id] = NULL;
|
|
_S_bin[bin].last[freelist_pos->id] = NULL;
|
|
_S_bin[bin].free[freelist_pos->id] = 0;
|
|
}
|
|
}
|
|
|
|
return freelist_pos->id;
|
|
}
|
|
|
|
/*
|
|
* Otherwise (no thread support or inactive) all requests are
|
|
* served from the global pool 0.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
template<typename _Tp> __gthread_once_t
|
|
__mt_alloc<_Tp>::_S_once_mt = __GTHREAD_ONCE_INIT;
|
|
#endif
|
|
|
|
template<typename _Tp> bool
|
|
__mt_alloc<_Tp>::_S_initialized = false;
|
|
|
|
template<typename _Tp> typename __mt_alloc<_Tp>::binmap_type*
|
|
__mt_alloc<_Tp>::_S_binmap = NULL;
|
|
|
|
/*
|
|
* Allocation requests (after round-up to power of 2) below this
|
|
* value will be handled by the allocator. A raw malloc/free() call
|
|
* will be used for requests larger than this value.
|
|
*/
|
|
template<typename _Tp> size_t
|
|
__mt_alloc<_Tp>::_S_max_bytes = 128;
|
|
|
|
/*
|
|
* In order to avoid fragmenting and minimize the number of malloc()
|
|
* calls we always request new memory using this value. Based on
|
|
* previous discussions on the libstdc++ mailing list we have
|
|
* choosen the value below. See
|
|
* http://gcc.gnu.org/ml/libstdc++/2001-07/msg00077.html
|
|
*/
|
|
template<typename _Tp> size_t
|
|
__mt_alloc<_Tp>::_S_chunk_size = 4096 - 4 * sizeof(void*);
|
|
|
|
/*
|
|
* The maximum number of supported threads. Our Linux 2.4.18 reports
|
|
* 4070 in /proc/sys/kernel/threads-max
|
|
*/
|
|
template<typename _Tp> size_t
|
|
__mt_alloc<_Tp>::_S_max_threads = 4096;
|
|
|
|
/*
|
|
* Actual value calculated in _S_init()
|
|
*/
|
|
template<typename _Tp> size_t
|
|
__mt_alloc<_Tp>::_S_no_of_bins = 1;
|
|
|
|
/*
|
|
* Each time a deallocation occurs in a threaded application we make
|
|
* sure that there are no more than _S_freelist_headroom % of used
|
|
* memory on the freelist. If the number of additional records is
|
|
* more than _S_freelist_headroom % of the freelist, we move these
|
|
* records back to the global pool.
|
|
*/
|
|
template<typename _Tp> size_t
|
|
__mt_alloc<_Tp>::_S_freelist_headroom = 10;
|
|
|
|
/*
|
|
* Actual initialization in _S_init()
|
|
*/
|
|
#ifdef __GTHREADS
|
|
template<typename _Tp> typename __mt_alloc<_Tp>::thread_record*
|
|
__mt_alloc<_Tp>::_S_thread_freelist_first = NULL;
|
|
|
|
template<typename _Tp> typename __mt_alloc<_Tp>::thread_record*
|
|
__mt_alloc<_Tp>::_S_thread_freelist_last = NULL;
|
|
|
|
template<typename _Tp> __gthread_mutex_t
|
|
__mt_alloc<_Tp>::_S_thread_freelist_mutex = __GTHREAD_MUTEX_INIT;
|
|
|
|
/*
|
|
* Actual initialization in _S_init()
|
|
*/
|
|
template<typename _Tp> __gthread_key_t
|
|
__mt_alloc<_Tp>::_S_thread_key;
|
|
#endif
|
|
|
|
template<typename _Tp> typename __mt_alloc<_Tp>::bin_record*
|
|
__mt_alloc<_Tp>::_S_bin = NULL;
|
|
} // namespace __gnu_cxx
|
|
|
|
#endif
|