gcc/libstdc++-v3/testsuite/18_support/numeric_limits.cc
Peter Schmid dac2c906db numeric_limits.cc: Check the maximum and minimum values of the wchar_t type.
2002-09-25  Peter Schmid  <schmid@snake.iap.physik.tu-darmstadt.de>

	* testsuite/18_support/numeric_limits.cc: Check the maximum and
	minimum values of the wchar_t type.

From-SVN: r57512
2002-09-25 19:37:04 +00:00

372 lines
9.1 KiB
C++

// { dg-options "-mieee" { target alpha*-*-* } }
// 1999-08-23 bkoz
// Copyright (C) 1999, 2001, 2002 Free Software Foundation
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// 18.2.1.1 template class numeric_limits
#include <limits>
#include <limits.h>
#include <float.h>
#include <cwchar>
#include <testsuite_hooks.h>
template<typename T>
struct extrema {
static T min;
static T max;
};
#define DEFINE_EXTREMA(T, m, M) \
template<> T extrema<T>::min = m; \
template<> T extrema<T>::max = M
DEFINE_EXTREMA(char, CHAR_MIN, CHAR_MAX);
DEFINE_EXTREMA(signed char, SCHAR_MIN, SCHAR_MAX);
DEFINE_EXTREMA(unsigned char, 0, UCHAR_MAX);
DEFINE_EXTREMA(short, SHRT_MIN, SHRT_MAX);
DEFINE_EXTREMA(unsigned short, 0, USHRT_MAX);
DEFINE_EXTREMA(int, INT_MIN, INT_MAX);
DEFINE_EXTREMA(unsigned, 0U, UINT_MAX);
DEFINE_EXTREMA(long, LONG_MIN, LONG_MAX);
DEFINE_EXTREMA(unsigned long, 0UL, ULONG_MAX);
#if _GLIBCPP_USE_WCHAR_T
DEFINE_EXTREMA(wchar_t, WCHAR_MIN, WCHAR_MAX);
#endif //_GLIBCPP_USE_WCHAR_T
DEFINE_EXTREMA(float, FLT_MIN, FLT_MAX);
DEFINE_EXTREMA(double, DBL_MIN, DBL_MAX);
DEFINE_EXTREMA(long double, LDBL_MIN, LDBL_MAX);
#undef DEFINE_EXTREMA
template<typename T>
void test_extrema()
{
bool test = true;
T limits_min = std::numeric_limits<T>::min();
T limits_max = std::numeric_limits<T>::max();
T extrema_min = extrema<T>::min;
T extrema_max = extrema<T>::max;
VERIFY( extrema_min == limits_min );
VERIFY( extrema_max == limits_max );
}
#ifdef __FreeBSD__
// This specialization allows the extra precision unmentioned in
// system headers yet supported by long double on FreeBSD or Solaris
// to not cause a gratuitous FAIL for the entire test. Using this
// technique to compare the residual against epsilon ensures that any
// major breakage will still be detected (although obviously not as
// tight as the exact equality check that would have been generated by
// default). This replacement test is allowable by the fact that C++
// limits should match the system provided limits for C even if they
// were wrong verses the actual FP hardware.
template<>
void test_extrema<long double>()
{
typedef long double T;
bool test = true;
T limits_min = std::numeric_limits<T>::min();
T limits_max = std::numeric_limits<T>::max();
T extrema_min = extrema<T>::min;
T extrema_max = extrema<T>::max;
T epsilon = std::numeric_limits<T>::epsilon();
VERIFY( (extrema_min - limits_min) < epsilon );
VERIFY( (limits_min - extrema_min) < epsilon );
VERIFY( (extrema_max / limits_max) < (1 + epsilon) );
VERIFY( (limits_max / extrema_max) < (1 + epsilon) );
}
#endif
template<typename T>
void test_epsilon()
{
bool test = true;
T epsilon = std::numeric_limits<T>::epsilon();
T one = 1;
VERIFY( one != (one + epsilon) );
}
#ifdef __CHAR_UNSIGNED__
#define char_is_signed false
#else
#define char_is_signed true
#endif
void test_sign()
{
bool test = true;
VERIFY( std::numeric_limits<char>::is_signed == char_is_signed );
VERIFY( std::numeric_limits<signed char>::is_signed == true );
VERIFY( std::numeric_limits<unsigned char>::is_signed == false );
VERIFY( std::numeric_limits<short>::is_signed == true );
VERIFY( std::numeric_limits<unsigned short>::is_signed == false );
VERIFY( std::numeric_limits<int>::is_signed == true );
VERIFY( std::numeric_limits<unsigned>::is_signed == false );
VERIFY( std::numeric_limits<long>::is_signed == true );
VERIFY( std::numeric_limits<unsigned long>::is_signed == false );
VERIFY( std::numeric_limits<float>::is_signed == true );
VERIFY( std::numeric_limits<double>::is_signed == true );
VERIFY( std::numeric_limits<long double>::is_signed == true );
}
template<typename T>
void
test_infinity()
{
bool test;
if (std::numeric_limits<T>::has_infinity)
{
T inf = std::numeric_limits<T>::infinity();
test = (inf + inf == inf);
}
else
test = true;
VERIFY (test);
}
template<typename T>
void
test_denorm_min()
{
bool test;
if (std::numeric_limits<T>::has_denorm == std::denorm_present)
{
T denorm = std::numeric_limits<T>::denorm_min();
test = (denorm > 0);
}
else
test = true;
VERIFY (test);
}
template<typename T>
void
test_qnan()
{
bool test;
if (std::numeric_limits<T>::has_quiet_NaN)
{
T nan = std::numeric_limits<T>::quiet_NaN();
test = (nan != nan);
}
else
test = true;
VERIFY (test);
}
template<typename T>
void
test_is_iec559()
{
bool test;
if (std::numeric_limits<T>::is_iec559)
{
// IEC 559 requires all of the following.
test = (std::numeric_limits<T>::has_infinity
&& std::numeric_limits<T>::has_quiet_NaN
&& std::numeric_limits<T>::has_signaling_NaN);
}
else
{
// If we had all of the following, why didn't we set IEC 559?
test = (!std::numeric_limits<T>::has_infinity
|| !std::numeric_limits<T>::has_quiet_NaN
|| !std::numeric_limits<T>::has_signaling_NaN);
}
VERIFY (test);
}
template<typename T>
struct A
{
int key;
public:
A(int i = 0): key(i) { }
bool
operator==(int i) { return i == key; }
};
struct B
{
B(int i = 0) { }
};
bool test01()
{
bool test = true;
std::numeric_limits< A<B> > obj;
VERIFY( !obj.is_specialized );
VERIFY( obj.min() == 0 );
VERIFY( obj.max() == 0 );
VERIFY( obj.digits == 0 );
VERIFY( obj.digits10 == 0 );
VERIFY( !obj.is_signed );
VERIFY( !obj.is_integer );
VERIFY( !obj.is_exact );
VERIFY( obj.radix == 0 );
VERIFY( obj.epsilon() == 0 );
VERIFY( obj.round_error() == 0 );
VERIFY( obj.min_exponent == 0 );
VERIFY( obj.min_exponent10 == 0 );
VERIFY( obj.max_exponent == 0 );
VERIFY( obj.max_exponent10 == 0 );
VERIFY( !obj.has_infinity );
VERIFY( !obj.has_quiet_NaN );
VERIFY( !obj.has_signaling_NaN );
VERIFY( !obj.has_denorm );
VERIFY( !obj.has_denorm_loss );
VERIFY( obj.infinity() == 0 );
VERIFY( obj.quiet_NaN() == 0 );
VERIFY( obj.signaling_NaN() == 0 );
VERIFY( obj.denorm_min() == 0 );
VERIFY( !obj.is_iec559 );
VERIFY( !obj.is_bounded );
VERIFY( !obj.is_modulo );
VERIFY( !obj.traps );
VERIFY( !obj.tinyness_before );
VERIFY( obj.round_style == std::round_toward_zero );
#ifdef DEBUG_ASSERT
assert(test);
#endif
return test;
}
// test linkage of the generic bits
template struct std::numeric_limits<B>;
void test02()
{
typedef std::numeric_limits<B> b_nl_type;
// Should probably do all of them...
const int* pi1 = &b_nl_type::digits;
const int* pi2 = &b_nl_type::digits10;
const int* pi3 = &b_nl_type::max_exponent10;
const bool* pb1 = &b_nl_type::traps;
}
// libstdc++/5045
bool test03()
{
bool test = true;
VERIFY( std::numeric_limits<bool>::digits10 == 0 );
if (__CHAR_BIT__ == 8)
{
VERIFY( std::numeric_limits<signed char>::digits10 == 2 );
VERIFY( std::numeric_limits<unsigned char>::digits10 == 2 );
}
if (__CHAR_BIT__ * sizeof(short) == 16)
{
VERIFY( std::numeric_limits<signed short>::digits10 == 4 );
VERIFY( std::numeric_limits<unsigned short>::digits10 == 4 );
}
if (__CHAR_BIT__ * sizeof(int) == 32)
{
VERIFY( std::numeric_limits<signed int>::digits10 == 9 );
VERIFY( std::numeric_limits<unsigned int>::digits10 == 9 );
}
if (__CHAR_BIT__ * sizeof(long long) == 64)
{
VERIFY( std::numeric_limits<signed long long>::digits10 == 18 );
VERIFY( std::numeric_limits<unsigned long long>::digits10 == 19 );
}
#ifdef DEBUG_ASSERT
assert(test);
#endif
return test;
}
int main()
{
test01();
test02();
test03();
test_extrema<char>();
test_extrema<signed char>();
test_extrema<unsigned char>();
test_extrema<short>();
test_extrema<unsigned short>();
test_extrema<int>();
test_extrema<unsigned>();
test_extrema<long>();
test_extrema<unsigned long>();
test_extrema<float>();
test_extrema<double>();
test_extrema<long double>();
test_epsilon<float>();
test_epsilon<double>();
test_epsilon<long double>();
test_sign();
test_infinity<float>();
test_infinity<double>();
test_infinity<long double>();
test_denorm_min<float>();
test_denorm_min<double>();
test_denorm_min<long double>();
test_qnan<float>();
test_qnan<double>();
test_qnan<long double>();
// ??? How to test SNaN? We'd perhaps have to be prepared
// to catch SIGFPE. Can't rely on a signal getting through
// since the exception can be disabled in the FPU.
test_is_iec559<float>();
test_is_iec559<double>();
test_is_iec559<long double>();
return 0;
}