gcc/libgo/go/math/exp_port.go
Ian Lance Taylor ff5f50c52c Remove the types float and complex.
Update to current version of Go library.

Update testsuite for removed types.

	* go-lang.c (go_langhook_init): Omit float_type_size when calling
	go_create_gogo.
	* go-c.h: Update declaration of go_create_gogo.

From-SVN: r169098
2011-01-21 18:19:03 +00:00

193 lines
5.4 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
//
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// exp(x)
// Returns the exponential of x.
//
// Method
// 1. Argument reduction:
// Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
// Given x, find r and integer k such that
//
// x = k*ln2 + r, |r| <= 0.5*ln2.
//
// Here r will be represented as r = hi-lo for better
// accuracy.
//
// 2. Approximation of exp(r) by a special rational function on
// the interval [0,0.34658]:
// Write
// R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
// We use a special Remes algorithm on [0,0.34658] to generate
// a polynomial of degree 5 to approximate R. The maximum error
// of this polynomial approximation is bounded by 2**-59. In
// other words,
// R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
// (where z=r*r, and the values of P1 to P5 are listed below)
// and
// | 5 | -59
// | 2.0+P1*z+...+P5*z - R(z) | <= 2
// | |
// The computation of exp(r) thus becomes
// 2*r
// exp(r) = 1 + -------
// R - r
// r*R1(r)
// = 1 + r + ----------- (for better accuracy)
// 2 - R1(r)
// where
// 2 4 10
// R1(r) = r - (P1*r + P2*r + ... + P5*r ).
//
// 3. Scale back to obtain exp(x):
// From step 1, we have
// exp(x) = 2**k * exp(r)
//
// Special cases:
// exp(INF) is INF, exp(NaN) is NaN;
// exp(-INF) is 0, and
// for finite argument, only exp(0)=1 is exact.
//
// Accuracy:
// according to an error analysis, the error is always less than
// 1 ulp (unit in the last place).
//
// Misc. info.
// For IEEE double
// if x > 7.09782712893383973096e+02 then exp(x) overflow
// if x < -7.45133219101941108420e+02 then exp(x) underflow
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
// Exp returns e**x, the base-e exponential of x.
//
// Special cases are:
// Exp(+Inf) = +Inf
// Exp(NaN) = NaN
// Very large values overflow to 0 or +Inf.
// Very small values underflow to 1.
func expGo(x float64) float64 {
const (
Ln2Hi = 6.93147180369123816490e-01
Ln2Lo = 1.90821492927058770002e-10
Log2e = 1.44269504088896338700e+00
Overflow = 7.09782712893383973096e+02
Underflow = -7.45133219101941108420e+02
NearZero = 1.0 / (1 << 28) // 2**-28
)
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
// special cases
switch {
case x != x || x > MaxFloat64: // IsNaN(x) || IsInf(x, 1):
return x
case x < -MaxFloat64: // IsInf(x, -1):
return 0
case x > Overflow:
return Inf(1)
case x < Underflow:
return 0
case -NearZero < x && x < NearZero:
return 1 + x
}
// reduce; computed as r = hi - lo for extra precision.
var k int
switch {
case x < 0:
k = int(Log2e*x - 0.5)
case x > 0:
k = int(Log2e*x + 0.5)
}
hi := x - float64(k)*Ln2Hi
lo := float64(k) * Ln2Lo
// compute
return exp(hi, lo, k)
}
// Exp2 returns 2**x, the base-2 exponential of x.
//
// Special cases are the same as Exp.
func exp2Go(x float64) float64 {
const (
Ln2Hi = 6.93147180369123816490e-01
Ln2Lo = 1.90821492927058770002e-10
Overflow = 1.0239999999999999e+03
Underflow = -1.0740e+03
)
// TODO: remove manual inlining of IsNaN and IsInf
// when compiler does it for us
// special cases
switch {
case x != x || x > MaxFloat64: // IsNaN(x) || IsInf(x, 1):
return x
case x < -MaxFloat64: // IsInf(x, -1):
return 0
case x > Overflow:
return Inf(1)
case x < Underflow:
return 0
}
// argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
// computed as r = hi - lo for extra precision.
var k int
switch {
case x > 0:
k = int(x + 0.5)
case x < 0:
k = int(x - 0.5)
}
t := x - float64(k)
hi := t * Ln2Hi
lo := -t * Ln2Lo
// compute
return exp(hi, lo, k)
}
// exp returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.
func exp(hi, lo float64, k int) float64 {
const (
P1 = 1.66666666666666019037e-01 /* 0x3FC55555; 0x5555553E */
P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */
P3 = 6.61375632143793436117e-05 /* 0x3F11566A; 0xAF25DE2C */
P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08 /* 0x3E663769; 0x72BEA4D0 */
)
r := hi - lo
t := r * r
c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))
y := 1 - ((lo - (r*c)/(2-c)) - hi)
// TODO(rsc): make sure Ldexp can handle boundary k
return Ldexp(y, k)
}