85ec4feb11
From-SVN: r256169
672 lines
19 KiB
C
672 lines
19 KiB
C
/* Utilities for ipa analysis.
|
|
Copyright (C) 2005-2018 Free Software Foundation, Inc.
|
|
Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "predict.h"
|
|
#include "alloc-pool.h"
|
|
#include "cgraph.h"
|
|
#include "lto-streamer.h"
|
|
#include "dumpfile.h"
|
|
#include "splay-tree.h"
|
|
#include "ipa-utils.h"
|
|
#include "symbol-summary.h"
|
|
#include "tree-vrp.h"
|
|
#include "ipa-prop.h"
|
|
#include "ipa-fnsummary.h"
|
|
|
|
/* Debugging function for postorder and inorder code. NOTE is a string
|
|
that is printed before the nodes are printed. ORDER is an array of
|
|
cgraph_nodes that has COUNT useful nodes in it. */
|
|
|
|
void
|
|
ipa_print_order (FILE* out,
|
|
const char * note,
|
|
struct cgraph_node** order,
|
|
int count)
|
|
{
|
|
int i;
|
|
fprintf (out, "\n\n ordered call graph: %s\n", note);
|
|
|
|
for (i = count - 1; i >= 0; i--)
|
|
order[i]->dump (out);
|
|
fprintf (out, "\n");
|
|
fflush (out);
|
|
}
|
|
|
|
|
|
struct searchc_env {
|
|
struct cgraph_node **stack;
|
|
struct cgraph_node **result;
|
|
int stack_size;
|
|
int order_pos;
|
|
splay_tree nodes_marked_new;
|
|
bool reduce;
|
|
bool allow_overwritable;
|
|
int count;
|
|
};
|
|
|
|
/* This is an implementation of Tarjan's strongly connected region
|
|
finder as reprinted in Aho Hopcraft and Ullman's The Design and
|
|
Analysis of Computer Programs (1975) pages 192-193. This version
|
|
has been customized for cgraph_nodes. The env parameter is because
|
|
it is recursive and there are no nested functions here. This
|
|
function should only be called from itself or
|
|
ipa_reduced_postorder. ENV is a stack env and would be
|
|
unnecessary if C had nested functions. V is the node to start
|
|
searching from. */
|
|
|
|
static void
|
|
searchc (struct searchc_env* env, struct cgraph_node *v,
|
|
bool (*ignore_edge) (struct cgraph_edge *))
|
|
{
|
|
struct cgraph_edge *edge;
|
|
struct ipa_dfs_info *v_info = (struct ipa_dfs_info *) v->aux;
|
|
|
|
/* mark node as old */
|
|
v_info->new_node = false;
|
|
splay_tree_remove (env->nodes_marked_new, v->uid);
|
|
|
|
v_info->dfn_number = env->count;
|
|
v_info->low_link = env->count;
|
|
env->count++;
|
|
env->stack[(env->stack_size)++] = v;
|
|
v_info->on_stack = true;
|
|
|
|
for (edge = v->callees; edge; edge = edge->next_callee)
|
|
{
|
|
struct ipa_dfs_info * w_info;
|
|
enum availability avail;
|
|
struct cgraph_node *w = edge->callee->ultimate_alias_target (&avail);
|
|
|
|
if (!w || (ignore_edge && ignore_edge (edge)))
|
|
continue;
|
|
|
|
if (w->aux
|
|
&& (avail > AVAIL_INTERPOSABLE
|
|
|| (env->allow_overwritable && avail == AVAIL_INTERPOSABLE)))
|
|
{
|
|
w_info = (struct ipa_dfs_info *) w->aux;
|
|
if (w_info->new_node)
|
|
{
|
|
searchc (env, w, ignore_edge);
|
|
v_info->low_link =
|
|
(v_info->low_link < w_info->low_link) ?
|
|
v_info->low_link : w_info->low_link;
|
|
}
|
|
else
|
|
if ((w_info->dfn_number < v_info->dfn_number)
|
|
&& (w_info->on_stack))
|
|
v_info->low_link =
|
|
(w_info->dfn_number < v_info->low_link) ?
|
|
w_info->dfn_number : v_info->low_link;
|
|
}
|
|
}
|
|
|
|
|
|
if (v_info->low_link == v_info->dfn_number)
|
|
{
|
|
struct cgraph_node *last = NULL;
|
|
struct cgraph_node *x;
|
|
struct ipa_dfs_info *x_info;
|
|
do {
|
|
x = env->stack[--(env->stack_size)];
|
|
x_info = (struct ipa_dfs_info *) x->aux;
|
|
x_info->on_stack = false;
|
|
x_info->scc_no = v_info->dfn_number;
|
|
|
|
if (env->reduce)
|
|
{
|
|
x_info->next_cycle = last;
|
|
last = x;
|
|
}
|
|
else
|
|
env->result[env->order_pos++] = x;
|
|
}
|
|
while (v != x);
|
|
if (env->reduce)
|
|
env->result[env->order_pos++] = v;
|
|
}
|
|
}
|
|
|
|
/* Topsort the call graph by caller relation. Put the result in ORDER.
|
|
|
|
The REDUCE flag is true if you want the cycles reduced to single nodes.
|
|
You can use ipa_get_nodes_in_cycle to obtain a vector containing all real
|
|
call graph nodes in a reduced node.
|
|
|
|
Set ALLOW_OVERWRITABLE if nodes with such availability should be included.
|
|
IGNORE_EDGE, if non-NULL is a hook that may make some edges insignificant
|
|
for the topological sort. */
|
|
|
|
int
|
|
ipa_reduced_postorder (struct cgraph_node **order,
|
|
bool reduce, bool allow_overwritable,
|
|
bool (*ignore_edge) (struct cgraph_edge *))
|
|
{
|
|
struct cgraph_node *node;
|
|
struct searchc_env env;
|
|
splay_tree_node result;
|
|
env.stack = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
|
|
env.stack_size = 0;
|
|
env.result = order;
|
|
env.order_pos = 0;
|
|
env.nodes_marked_new = splay_tree_new (splay_tree_compare_ints, 0, 0);
|
|
env.count = 1;
|
|
env.reduce = reduce;
|
|
env.allow_overwritable = allow_overwritable;
|
|
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
|
{
|
|
enum availability avail = node->get_availability ();
|
|
|
|
if (avail > AVAIL_INTERPOSABLE
|
|
|| (allow_overwritable
|
|
&& (avail == AVAIL_INTERPOSABLE)))
|
|
{
|
|
/* Reuse the info if it is already there. */
|
|
struct ipa_dfs_info *info = (struct ipa_dfs_info *) node->aux;
|
|
if (!info)
|
|
info = XCNEW (struct ipa_dfs_info);
|
|
info->new_node = true;
|
|
info->on_stack = false;
|
|
info->next_cycle = NULL;
|
|
node->aux = info;
|
|
|
|
splay_tree_insert (env.nodes_marked_new,
|
|
(splay_tree_key)node->uid,
|
|
(splay_tree_value)node);
|
|
}
|
|
else
|
|
node->aux = NULL;
|
|
}
|
|
result = splay_tree_min (env.nodes_marked_new);
|
|
while (result)
|
|
{
|
|
node = (struct cgraph_node *)result->value;
|
|
searchc (&env, node, ignore_edge);
|
|
result = splay_tree_min (env.nodes_marked_new);
|
|
}
|
|
splay_tree_delete (env.nodes_marked_new);
|
|
free (env.stack);
|
|
|
|
return env.order_pos;
|
|
}
|
|
|
|
/* Deallocate all ipa_dfs_info structures pointed to by the aux pointer of call
|
|
graph nodes. */
|
|
|
|
void
|
|
ipa_free_postorder_info (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
|
{
|
|
/* Get rid of the aux information. */
|
|
if (node->aux)
|
|
{
|
|
free (node->aux);
|
|
node->aux = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Get the set of nodes for the cycle in the reduced call graph starting
|
|
from NODE. */
|
|
|
|
vec<cgraph_node *>
|
|
ipa_get_nodes_in_cycle (struct cgraph_node *node)
|
|
{
|
|
vec<cgraph_node *> v = vNULL;
|
|
struct ipa_dfs_info *node_dfs_info;
|
|
while (node)
|
|
{
|
|
v.safe_push (node);
|
|
node_dfs_info = (struct ipa_dfs_info *) node->aux;
|
|
node = node_dfs_info->next_cycle;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/* Return true iff the CS is an edge within a strongly connected component as
|
|
computed by ipa_reduced_postorder. */
|
|
|
|
bool
|
|
ipa_edge_within_scc (struct cgraph_edge *cs)
|
|
{
|
|
struct ipa_dfs_info *caller_dfs = (struct ipa_dfs_info *) cs->caller->aux;
|
|
struct ipa_dfs_info *callee_dfs;
|
|
struct cgraph_node *callee = cs->callee->function_symbol ();
|
|
|
|
callee_dfs = (struct ipa_dfs_info *) callee->aux;
|
|
return (caller_dfs
|
|
&& callee_dfs
|
|
&& caller_dfs->scc_no == callee_dfs->scc_no);
|
|
}
|
|
|
|
struct postorder_stack
|
|
{
|
|
struct cgraph_node *node;
|
|
struct cgraph_edge *edge;
|
|
int ref;
|
|
};
|
|
|
|
/* Fill array order with all nodes with output flag set in the reverse
|
|
topological order. Return the number of elements in the array.
|
|
FIXME: While walking, consider aliases, too. */
|
|
|
|
int
|
|
ipa_reverse_postorder (struct cgraph_node **order)
|
|
{
|
|
struct cgraph_node *node, *node2;
|
|
int stack_size = 0;
|
|
int order_pos = 0;
|
|
struct cgraph_edge *edge;
|
|
int pass;
|
|
struct ipa_ref *ref = NULL;
|
|
|
|
struct postorder_stack *stack =
|
|
XCNEWVEC (struct postorder_stack, symtab->cgraph_count);
|
|
|
|
/* We have to deal with cycles nicely, so use a depth first traversal
|
|
output algorithm. Ignore the fact that some functions won't need
|
|
to be output and put them into order as well, so we get dependencies
|
|
right through inline functions. */
|
|
FOR_EACH_FUNCTION (node)
|
|
node->aux = NULL;
|
|
for (pass = 0; pass < 2; pass++)
|
|
FOR_EACH_FUNCTION (node)
|
|
if (!node->aux
|
|
&& (pass
|
|
|| (!node->address_taken
|
|
&& !node->global.inlined_to
|
|
&& !node->alias && !node->thunk.thunk_p
|
|
&& !node->only_called_directly_p ())))
|
|
{
|
|
stack_size = 0;
|
|
stack[stack_size].node = node;
|
|
stack[stack_size].edge = node->callers;
|
|
stack[stack_size].ref = 0;
|
|
node->aux = (void *)(size_t)1;
|
|
while (stack_size >= 0)
|
|
{
|
|
while (true)
|
|
{
|
|
node2 = NULL;
|
|
while (stack[stack_size].edge && !node2)
|
|
{
|
|
edge = stack[stack_size].edge;
|
|
node2 = edge->caller;
|
|
stack[stack_size].edge = edge->next_caller;
|
|
/* Break possible cycles involving always-inline
|
|
functions by ignoring edges from always-inline
|
|
functions to non-always-inline functions. */
|
|
if (DECL_DISREGARD_INLINE_LIMITS (edge->caller->decl)
|
|
&& !DECL_DISREGARD_INLINE_LIMITS
|
|
(edge->callee->function_symbol ()->decl))
|
|
node2 = NULL;
|
|
}
|
|
for (; stack[stack_size].node->iterate_referring (
|
|
stack[stack_size].ref,
|
|
ref) && !node2;
|
|
stack[stack_size].ref++)
|
|
{
|
|
if (ref->use == IPA_REF_ALIAS)
|
|
node2 = dyn_cast <cgraph_node *> (ref->referring);
|
|
}
|
|
if (!node2)
|
|
break;
|
|
if (!node2->aux)
|
|
{
|
|
stack[++stack_size].node = node2;
|
|
stack[stack_size].edge = node2->callers;
|
|
stack[stack_size].ref = 0;
|
|
node2->aux = (void *)(size_t)1;
|
|
}
|
|
}
|
|
order[order_pos++] = stack[stack_size--].node;
|
|
}
|
|
}
|
|
free (stack);
|
|
FOR_EACH_FUNCTION (node)
|
|
node->aux = NULL;
|
|
return order_pos;
|
|
}
|
|
|
|
|
|
|
|
/* Given a memory reference T, will return the variable at the bottom
|
|
of the access. Unlike get_base_address, this will recurse through
|
|
INDIRECT_REFS. */
|
|
|
|
tree
|
|
get_base_var (tree t)
|
|
{
|
|
while (!SSA_VAR_P (t)
|
|
&& (!CONSTANT_CLASS_P (t))
|
|
&& TREE_CODE (t) != LABEL_DECL
|
|
&& TREE_CODE (t) != FUNCTION_DECL
|
|
&& TREE_CODE (t) != CONST_DECL
|
|
&& TREE_CODE (t) != CONSTRUCTOR)
|
|
{
|
|
t = TREE_OPERAND (t, 0);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
|
|
/* SRC and DST are going to be merged. Take SRC's profile and merge it into
|
|
DST so it is not going to be lost. Possibly destroy SRC's body on the way
|
|
unless PRESERVE_BODY is set. */
|
|
|
|
void
|
|
ipa_merge_profiles (struct cgraph_node *dst,
|
|
struct cgraph_node *src,
|
|
bool preserve_body)
|
|
{
|
|
tree oldsrcdecl = src->decl;
|
|
struct function *srccfun, *dstcfun;
|
|
bool match = true;
|
|
|
|
if (!src->definition
|
|
|| !dst->definition)
|
|
return;
|
|
if (src->frequency < dst->frequency)
|
|
src->frequency = dst->frequency;
|
|
|
|
/* Time profiles are merged. */
|
|
if (dst->tp_first_run > src->tp_first_run && src->tp_first_run)
|
|
dst->tp_first_run = src->tp_first_run;
|
|
|
|
if (src->profile_id && !dst->profile_id)
|
|
dst->profile_id = src->profile_id;
|
|
|
|
/* FIXME when we merge in unknown profile, we ought to set counts as
|
|
unsafe. */
|
|
if (!src->count.initialized_p ()
|
|
|| !(src->count.ipa () == src->count))
|
|
return;
|
|
if (symtab->dump_file)
|
|
{
|
|
fprintf (symtab->dump_file, "Merging profiles of %s to %s\n",
|
|
src->dump_name (), dst->dump_name ());
|
|
}
|
|
if (dst->count.initialized_p () && dst->count.ipa () == dst->count)
|
|
dst->count += src->count.ipa ();
|
|
else
|
|
dst->count = src->count.ipa ();
|
|
|
|
/* This is ugly. We need to get both function bodies into memory.
|
|
If declaration is merged, we need to duplicate it to be able
|
|
to load body that is being replaced. This makes symbol table
|
|
temporarily inconsistent. */
|
|
if (src->decl == dst->decl)
|
|
{
|
|
struct lto_in_decl_state temp;
|
|
struct lto_in_decl_state *state;
|
|
|
|
/* We are going to move the decl, we want to remove its file decl data.
|
|
and link these with the new decl. */
|
|
temp.fn_decl = src->decl;
|
|
lto_in_decl_state **slot
|
|
= src->lto_file_data->function_decl_states->find_slot (&temp,
|
|
NO_INSERT);
|
|
state = *slot;
|
|
src->lto_file_data->function_decl_states->clear_slot (slot);
|
|
gcc_assert (state);
|
|
|
|
/* Duplicate the decl and be sure it does not link into body of DST. */
|
|
src->decl = copy_node (src->decl);
|
|
DECL_STRUCT_FUNCTION (src->decl) = NULL;
|
|
DECL_ARGUMENTS (src->decl) = NULL;
|
|
DECL_INITIAL (src->decl) = NULL;
|
|
DECL_RESULT (src->decl) = NULL;
|
|
|
|
/* Associate the decl state with new declaration, so LTO streamer
|
|
can look it up. */
|
|
state->fn_decl = src->decl;
|
|
slot
|
|
= src->lto_file_data->function_decl_states->find_slot (state, INSERT);
|
|
gcc_assert (!*slot);
|
|
*slot = state;
|
|
}
|
|
src->get_untransformed_body ();
|
|
dst->get_untransformed_body ();
|
|
srccfun = DECL_STRUCT_FUNCTION (src->decl);
|
|
dstcfun = DECL_STRUCT_FUNCTION (dst->decl);
|
|
if (n_basic_blocks_for_fn (srccfun)
|
|
!= n_basic_blocks_for_fn (dstcfun))
|
|
{
|
|
if (symtab->dump_file)
|
|
fprintf (symtab->dump_file,
|
|
"Giving up; number of basic block mismatch.\n");
|
|
match = false;
|
|
}
|
|
else if (last_basic_block_for_fn (srccfun)
|
|
!= last_basic_block_for_fn (dstcfun))
|
|
{
|
|
if (symtab->dump_file)
|
|
fprintf (symtab->dump_file,
|
|
"Giving up; last block mismatch.\n");
|
|
match = false;
|
|
}
|
|
else
|
|
{
|
|
basic_block srcbb, dstbb;
|
|
|
|
FOR_ALL_BB_FN (srcbb, srccfun)
|
|
{
|
|
unsigned int i;
|
|
|
|
dstbb = BASIC_BLOCK_FOR_FN (dstcfun, srcbb->index);
|
|
if (dstbb == NULL)
|
|
{
|
|
if (symtab->dump_file)
|
|
fprintf (symtab->dump_file,
|
|
"No matching block for bb %i.\n",
|
|
srcbb->index);
|
|
match = false;
|
|
break;
|
|
}
|
|
if (EDGE_COUNT (srcbb->succs) != EDGE_COUNT (dstbb->succs))
|
|
{
|
|
if (symtab->dump_file)
|
|
fprintf (symtab->dump_file,
|
|
"Edge count mistmatch for bb %i.\n",
|
|
srcbb->index);
|
|
match = false;
|
|
break;
|
|
}
|
|
for (i = 0; i < EDGE_COUNT (srcbb->succs); i++)
|
|
{
|
|
edge srce = EDGE_SUCC (srcbb, i);
|
|
edge dste = EDGE_SUCC (dstbb, i);
|
|
if (srce->dest->index != dste->dest->index)
|
|
{
|
|
if (symtab->dump_file)
|
|
fprintf (symtab->dump_file,
|
|
"Succ edge mistmatch for bb %i.\n",
|
|
srce->dest->index);
|
|
match = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (match)
|
|
{
|
|
struct cgraph_edge *e, *e2;
|
|
basic_block srcbb, dstbb;
|
|
|
|
/* TODO: merge also statement histograms. */
|
|
FOR_ALL_BB_FN (srcbb, srccfun)
|
|
{
|
|
unsigned int i;
|
|
|
|
dstbb = BASIC_BLOCK_FOR_FN (dstcfun, srcbb->index);
|
|
|
|
/* Either sum the profiles if both are IPA and not global0, or
|
|
pick more informative one (that is nonzero IPA if other is
|
|
uninitialized, guessed or global0). */
|
|
if (!dstbb->count.ipa ().initialized_p ()
|
|
|| (dstbb->count.ipa () == profile_count::zero ()
|
|
&& (srcbb->count.ipa ().initialized_p ()
|
|
&& !(srcbb->count.ipa () == profile_count::zero ()))))
|
|
{
|
|
dstbb->count = srcbb->count;
|
|
for (i = 0; i < EDGE_COUNT (srcbb->succs); i++)
|
|
{
|
|
edge srce = EDGE_SUCC (srcbb, i);
|
|
edge dste = EDGE_SUCC (dstbb, i);
|
|
if (srce->probability.initialized_p ())
|
|
dste->probability = srce->probability;
|
|
}
|
|
}
|
|
else if (srcbb->count.ipa ().initialized_p ()
|
|
&& !(srcbb->count.ipa () == profile_count::zero ()))
|
|
{
|
|
for (i = 0; i < EDGE_COUNT (srcbb->succs); i++)
|
|
{
|
|
edge srce = EDGE_SUCC (srcbb, i);
|
|
edge dste = EDGE_SUCC (dstbb, i);
|
|
dste->probability =
|
|
dste->probability * dstbb->count.probability_in (dstbb->count + srcbb->count)
|
|
+ srce->probability * srcbb->count.probability_in (dstbb->count + srcbb->count);
|
|
}
|
|
dstbb->count += srcbb->count;
|
|
}
|
|
}
|
|
push_cfun (dstcfun);
|
|
update_max_bb_count ();
|
|
compute_function_frequency ();
|
|
pop_cfun ();
|
|
for (e = dst->callees; e; e = e->next_callee)
|
|
{
|
|
if (e->speculative)
|
|
continue;
|
|
e->count = gimple_bb (e->call_stmt)->count;
|
|
}
|
|
for (e = dst->indirect_calls, e2 = src->indirect_calls; e;
|
|
e2 = (e2 ? e2->next_callee : NULL), e = e->next_callee)
|
|
{
|
|
profile_count count = gimple_bb (e->call_stmt)->count;
|
|
/* When call is speculative, we need to re-distribute probabilities
|
|
the same way as they was. This is not really correct because
|
|
in the other copy the speculation may differ; but probably it
|
|
is not really worth the effort. */
|
|
if (e->speculative)
|
|
{
|
|
cgraph_edge *direct, *indirect;
|
|
cgraph_edge *direct2 = NULL, *indirect2 = NULL;
|
|
ipa_ref *ref;
|
|
|
|
e->speculative_call_info (direct, indirect, ref);
|
|
gcc_assert (e == indirect);
|
|
if (e2 && e2->speculative)
|
|
e2->speculative_call_info (direct2, indirect2, ref);
|
|
if (indirect->count > profile_count::zero ()
|
|
|| direct->count > profile_count::zero ())
|
|
{
|
|
/* We should mismatch earlier if there is no matching
|
|
indirect edge. */
|
|
if (!e2)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Mismatch in merging indirect edges\n");
|
|
}
|
|
else if (!e2->speculative)
|
|
indirect->count += e2->count;
|
|
else if (e2->speculative)
|
|
{
|
|
if (DECL_ASSEMBLER_NAME (direct2->callee->decl)
|
|
!= DECL_ASSEMBLER_NAME (direct->callee->decl))
|
|
{
|
|
if (direct2->count >= direct->count)
|
|
{
|
|
direct->redirect_callee (direct2->callee);
|
|
indirect->count += indirect2->count
|
|
+ direct->count;
|
|
direct->count = direct2->count;
|
|
}
|
|
else
|
|
indirect->count += indirect2->count + direct2->count;
|
|
}
|
|
else
|
|
{
|
|
direct->count += direct2->count;
|
|
indirect->count += indirect2->count;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
/* At the moment we should have only profile feedback based
|
|
speculations when merging. */
|
|
gcc_unreachable ();
|
|
}
|
|
else if (e2 && e2->speculative)
|
|
{
|
|
cgraph_edge *direct, *indirect;
|
|
ipa_ref *ref;
|
|
|
|
e2->speculative_call_info (direct, indirect, ref);
|
|
e->count = count;
|
|
e->make_speculative (direct->callee, direct->count);
|
|
}
|
|
else
|
|
e->count = count;
|
|
}
|
|
if (!preserve_body)
|
|
src->release_body ();
|
|
ipa_update_overall_fn_summary (dst);
|
|
}
|
|
/* TODO: if there is no match, we can scale up. */
|
|
src->decl = oldsrcdecl;
|
|
}
|
|
|
|
/* Return true if call to DEST is known to be self-recusive call withing FUNC. */
|
|
|
|
bool
|
|
recursive_call_p (tree func, tree dest)
|
|
{
|
|
struct cgraph_node *dest_node = cgraph_node::get_create (dest);
|
|
struct cgraph_node *cnode = cgraph_node::get_create (func);
|
|
ipa_ref *alias;
|
|
enum availability avail;
|
|
|
|
gcc_assert (!cnode->alias);
|
|
if (cnode != dest_node->ultimate_alias_target (&avail))
|
|
return false;
|
|
if (avail >= AVAIL_AVAILABLE)
|
|
return true;
|
|
if (!dest_node->semantically_equivalent_p (cnode))
|
|
return false;
|
|
/* If there is only one way to call the fuction or we know all of them
|
|
are semantically equivalent, we still can consider call recursive. */
|
|
FOR_EACH_ALIAS (cnode, alias)
|
|
if (!dest_node->semantically_equivalent_p (alias->referring))
|
|
return false;
|
|
return true;
|
|
}
|