20bbd3cd53
* Makefile.in: Rebuilt. * Makefile.am (gctest_LDADD): Added THREADLIB. (TESTS): New macro. * configure: Rebuilt. * configure.in (INCLUDES): New subst. From-SVN: r30332
815 lines
26 KiB
C
815 lines
26 KiB
C
/*
|
|
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
|
|
*
|
|
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
|
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
|
*
|
|
* Permission is hereby granted to use or copy this program
|
|
* for any purpose, provided the above notices are retained on all copies.
|
|
* Permission to modify the code and to distribute modified code is granted,
|
|
* provided the above notices are retained, and a notice that the code was
|
|
* modified is included with the above copyright notice.
|
|
*
|
|
*/
|
|
/* Boehm, July 31, 1995 5:02 pm PDT */
|
|
|
|
|
|
/*
|
|
* Some simple primitives for allocation with explicit type information.
|
|
* Simple objects are allocated such that they contain a GC_descr at the
|
|
* end (in the last allocated word). This descriptor may be a procedure
|
|
* which then examines an extended descriptor passed as its environment.
|
|
*
|
|
* Arrays are treated as simple objects if they have sufficiently simple
|
|
* structure. Otherwise they are allocated from an array kind that supplies
|
|
* a special mark procedure. These arrays contain a pointer to a
|
|
* complex_descriptor as their last word.
|
|
* This is done because the environment field is too small, and the collector
|
|
* must trace the complex_descriptor.
|
|
*
|
|
* Note that descriptors inside objects may appear cleared, if we encounter a
|
|
* false refrence to an object on a free list. In the GC_descr case, this
|
|
* is OK, since a 0 descriptor corresponds to examining no fields.
|
|
* In the complex_descriptor case, we explicitly check for that case.
|
|
*
|
|
* MAJOR PARTS OF THIS CODE HAVE NOT BEEN TESTED AT ALL and are not testable,
|
|
* since they are not accessible through the current interface.
|
|
*/
|
|
|
|
#include "gc_priv.h"
|
|
#include "gc_mark.h"
|
|
#include "gc_typed.h"
|
|
|
|
# ifdef ADD_BYTE_AT_END
|
|
# define EXTRA_BYTES (sizeof(word) - 1)
|
|
# else
|
|
# define EXTRA_BYTES (sizeof(word))
|
|
# endif
|
|
|
|
GC_bool GC_explicit_typing_initialized = FALSE;
|
|
|
|
int GC_explicit_kind; /* Object kind for objects with indirect */
|
|
/* (possibly extended) descriptors. */
|
|
|
|
int GC_array_kind; /* Object kind for objects with complex */
|
|
/* descriptors and GC_array_mark_proc. */
|
|
|
|
/* Extended descriptors. GC_typed_mark_proc understands these. */
|
|
/* These are used for simple objects that are larger than what */
|
|
/* can be described by a BITMAP_BITS sized bitmap. */
|
|
typedef struct {
|
|
word ed_bitmap; /* lsb corresponds to first word. */
|
|
GC_bool ed_continued; /* next entry is continuation. */
|
|
} ext_descr;
|
|
|
|
/* Array descriptors. GC_array_mark_proc understands these. */
|
|
/* We may eventually need to add provisions for headers and */
|
|
/* trailers. Hence we provide for tree structured descriptors, */
|
|
/* though we don't really use them currently. */
|
|
typedef union ComplexDescriptor {
|
|
struct LeafDescriptor { /* Describes simple array */
|
|
word ld_tag;
|
|
# define LEAF_TAG 1
|
|
word ld_size; /* bytes per element */
|
|
/* multiple of ALIGNMENT */
|
|
word ld_nelements; /* Number of elements. */
|
|
GC_descr ld_descriptor; /* A simple length, bitmap, */
|
|
/* or procedure descriptor. */
|
|
} ld;
|
|
struct ComplexArrayDescriptor {
|
|
word ad_tag;
|
|
# define ARRAY_TAG 2
|
|
word ad_nelements;
|
|
union ComplexDescriptor * ad_element_descr;
|
|
} ad;
|
|
struct SequenceDescriptor {
|
|
word sd_tag;
|
|
# define SEQUENCE_TAG 3
|
|
union ComplexDescriptor * sd_first;
|
|
union ComplexDescriptor * sd_second;
|
|
} sd;
|
|
} complex_descriptor;
|
|
#define TAG ld.ld_tag
|
|
|
|
ext_descr * GC_ext_descriptors; /* Points to array of extended */
|
|
/* descriptors. */
|
|
|
|
word GC_ed_size = 0; /* Current size of above arrays. */
|
|
# define ED_INITIAL_SIZE 100;
|
|
|
|
word GC_avail_descr = 0; /* Next available slot. */
|
|
|
|
int GC_typed_mark_proc_index; /* Indices of my mark */
|
|
int GC_array_mark_proc_index; /* procedures. */
|
|
|
|
/* Add a multiword bitmap to GC_ext_descriptors arrays. Return */
|
|
/* starting index. */
|
|
/* Returns -1 on failure. */
|
|
/* Caller does not hold allocation lock. */
|
|
signed_word GC_add_ext_descriptor(bm, nbits)
|
|
GC_bitmap bm;
|
|
word nbits;
|
|
{
|
|
register size_t nwords = divWORDSZ(nbits + WORDSZ-1);
|
|
register signed_word result;
|
|
register word i;
|
|
register word last_part;
|
|
register int extra_bits;
|
|
DCL_LOCK_STATE;
|
|
|
|
DISABLE_SIGNALS();
|
|
LOCK();
|
|
while (GC_avail_descr + nwords >= GC_ed_size) {
|
|
ext_descr * new;
|
|
size_t new_size;
|
|
word ed_size = GC_ed_size;
|
|
|
|
UNLOCK();
|
|
ENABLE_SIGNALS();
|
|
if (ed_size == 0) {
|
|
new_size = ED_INITIAL_SIZE;
|
|
} else {
|
|
new_size = 2 * ed_size;
|
|
if (new_size > MAX_ENV) return(-1);
|
|
}
|
|
new = (ext_descr *) GC_malloc_atomic(new_size * sizeof(ext_descr));
|
|
if (new == 0) return(-1);
|
|
DISABLE_SIGNALS();
|
|
LOCK();
|
|
if (ed_size == GC_ed_size) {
|
|
if (GC_avail_descr != 0) {
|
|
BCOPY(GC_ext_descriptors, new,
|
|
GC_avail_descr * sizeof(ext_descr));
|
|
}
|
|
GC_ed_size = new_size;
|
|
GC_ext_descriptors = new;
|
|
} /* else another thread already resized it in the meantime */
|
|
}
|
|
result = GC_avail_descr;
|
|
for (i = 0; i < nwords-1; i++) {
|
|
GC_ext_descriptors[result + i].ed_bitmap = bm[i];
|
|
GC_ext_descriptors[result + i].ed_continued = TRUE;
|
|
}
|
|
last_part = bm[i];
|
|
/* Clear irrelevant bits. */
|
|
extra_bits = nwords * WORDSZ - nbits;
|
|
last_part <<= extra_bits;
|
|
last_part >>= extra_bits;
|
|
GC_ext_descriptors[result + i].ed_bitmap = last_part;
|
|
GC_ext_descriptors[result + i].ed_continued = FALSE;
|
|
GC_avail_descr += nwords;
|
|
UNLOCK();
|
|
ENABLE_SIGNALS();
|
|
return(result);
|
|
}
|
|
|
|
/* Table of bitmap descriptors for n word long all pointer objects. */
|
|
GC_descr GC_bm_table[WORDSZ/2];
|
|
|
|
/* Return a descriptor for the concatenation of 2 nwords long objects, */
|
|
/* each of which is described by descriptor. */
|
|
/* The result is known to be short enough to fit into a bitmap */
|
|
/* descriptor. */
|
|
/* Descriptor is a DS_LENGTH or DS_BITMAP descriptor. */
|
|
GC_descr GC_double_descr(descriptor, nwords)
|
|
register GC_descr descriptor;
|
|
register word nwords;
|
|
{
|
|
if (descriptor && DS_TAGS == DS_LENGTH) {
|
|
descriptor = GC_bm_table[BYTES_TO_WORDS((word)descriptor)];
|
|
};
|
|
descriptor |= (descriptor & ~DS_TAGS) >> nwords;
|
|
return(descriptor);
|
|
}
|
|
|
|
complex_descriptor * GC_make_sequence_descriptor();
|
|
|
|
/* Build a descriptor for an array with nelements elements, */
|
|
/* each of which can be described by a simple descriptor. */
|
|
/* We try to optimize some common cases. */
|
|
/* If the result is COMPLEX, then a complex_descr* is returned */
|
|
/* in *complex_d. */
|
|
/* If the result is LEAF, then we built a LeafDescriptor in */
|
|
/* the structure pointed to by leaf. */
|
|
/* The tag in the leaf structure is not set. */
|
|
/* If the result is SIMPLE, then a GC_descr */
|
|
/* is returned in *simple_d. */
|
|
/* If the result is NO_MEM, then */
|
|
/* we failed to allocate the descriptor. */
|
|
/* The implementation knows that DS_LENGTH is 0. */
|
|
/* *leaf, *complex_d, and *simple_d may be used as temporaries */
|
|
/* during the construction. */
|
|
# define COMPLEX 2
|
|
# define LEAF 1
|
|
# define SIMPLE 0
|
|
# define NO_MEM (-1)
|
|
int GC_make_array_descriptor(nelements, size, descriptor,
|
|
simple_d, complex_d, leaf)
|
|
word size;
|
|
word nelements;
|
|
GC_descr descriptor;
|
|
GC_descr *simple_d;
|
|
complex_descriptor **complex_d;
|
|
struct LeafDescriptor * leaf;
|
|
{
|
|
# define OPT_THRESHOLD 50
|
|
/* For larger arrays, we try to combine descriptors of adjacent */
|
|
/* descriptors to speed up marking, and to reduce the amount */
|
|
/* of space needed on the mark stack. */
|
|
if ((descriptor & DS_TAGS) == DS_LENGTH) {
|
|
if ((word)descriptor == size) {
|
|
*simple_d = nelements * descriptor;
|
|
return(SIMPLE);
|
|
} else if ((word)descriptor == 0) {
|
|
*simple_d = (GC_descr)0;
|
|
return(SIMPLE);
|
|
}
|
|
}
|
|
if (nelements <= OPT_THRESHOLD) {
|
|
if (nelements <= 1) {
|
|
if (nelements == 1) {
|
|
*simple_d = descriptor;
|
|
return(SIMPLE);
|
|
} else {
|
|
*simple_d = (GC_descr)0;
|
|
return(SIMPLE);
|
|
}
|
|
}
|
|
} else if (size <= BITMAP_BITS/2
|
|
&& (descriptor & DS_TAGS) != DS_PROC
|
|
&& (size & (sizeof(word)-1)) == 0) {
|
|
int result =
|
|
GC_make_array_descriptor(nelements/2, 2*size,
|
|
GC_double_descr(descriptor,
|
|
BYTES_TO_WORDS(size)),
|
|
simple_d, complex_d, leaf);
|
|
if ((nelements & 1) == 0) {
|
|
return(result);
|
|
} else {
|
|
struct LeafDescriptor * one_element =
|
|
(struct LeafDescriptor *)
|
|
GC_malloc_atomic(sizeof(struct LeafDescriptor));
|
|
|
|
if (result == NO_MEM || one_element == 0) return(NO_MEM);
|
|
one_element -> ld_tag = LEAF_TAG;
|
|
one_element -> ld_size = size;
|
|
one_element -> ld_nelements = 1;
|
|
one_element -> ld_descriptor = descriptor;
|
|
switch(result) {
|
|
case SIMPLE:
|
|
{
|
|
struct LeafDescriptor * beginning =
|
|
(struct LeafDescriptor *)
|
|
GC_malloc_atomic(sizeof(struct LeafDescriptor));
|
|
if (beginning == 0) return(NO_MEM);
|
|
beginning -> ld_tag = LEAF_TAG;
|
|
beginning -> ld_size = size;
|
|
beginning -> ld_nelements = 1;
|
|
beginning -> ld_descriptor = *simple_d;
|
|
*complex_d = GC_make_sequence_descriptor(
|
|
(complex_descriptor *)beginning,
|
|
(complex_descriptor *)one_element);
|
|
break;
|
|
}
|
|
case LEAF:
|
|
{
|
|
struct LeafDescriptor * beginning =
|
|
(struct LeafDescriptor *)
|
|
GC_malloc_atomic(sizeof(struct LeafDescriptor));
|
|
if (beginning == 0) return(NO_MEM);
|
|
beginning -> ld_tag = LEAF_TAG;
|
|
beginning -> ld_size = leaf -> ld_size;
|
|
beginning -> ld_nelements = leaf -> ld_nelements;
|
|
beginning -> ld_descriptor = leaf -> ld_descriptor;
|
|
*complex_d = GC_make_sequence_descriptor(
|
|
(complex_descriptor *)beginning,
|
|
(complex_descriptor *)one_element);
|
|
break;
|
|
}
|
|
case COMPLEX:
|
|
*complex_d = GC_make_sequence_descriptor(
|
|
*complex_d,
|
|
(complex_descriptor *)one_element);
|
|
break;
|
|
}
|
|
return(COMPLEX);
|
|
}
|
|
}
|
|
{
|
|
leaf -> ld_size = size;
|
|
leaf -> ld_nelements = nelements;
|
|
leaf -> ld_descriptor = descriptor;
|
|
return(LEAF);
|
|
}
|
|
}
|
|
|
|
complex_descriptor * GC_make_sequence_descriptor(first, second)
|
|
complex_descriptor * first;
|
|
complex_descriptor * second;
|
|
{
|
|
struct SequenceDescriptor * result =
|
|
(struct SequenceDescriptor *)
|
|
GC_malloc(sizeof(struct SequenceDescriptor));
|
|
/* Can't result in overly conservative marking, since tags are */
|
|
/* very small integers. Probably faster than maintaining type */
|
|
/* info. */
|
|
if (result != 0) {
|
|
result -> sd_tag = SEQUENCE_TAG;
|
|
result -> sd_first = first;
|
|
result -> sd_second = second;
|
|
}
|
|
return((complex_descriptor *)result);
|
|
}
|
|
|
|
#ifdef UNDEFINED
|
|
complex_descriptor * GC_make_complex_array_descriptor(nelements, descr)
|
|
word nelements;
|
|
complex_descriptor * descr;
|
|
{
|
|
struct ComplexArrayDescriptor * result =
|
|
(struct ComplexArrayDescriptor *)
|
|
GC_malloc(sizeof(struct ComplexArrayDescriptor));
|
|
|
|
if (result != 0) {
|
|
result -> ad_tag = ARRAY_TAG;
|
|
result -> ad_nelements = nelements;
|
|
result -> ad_element_descr = descr;
|
|
}
|
|
return((complex_descriptor *)result);
|
|
}
|
|
#endif
|
|
|
|
ptr_t * GC_eobjfreelist;
|
|
|
|
ptr_t * GC_arobjfreelist;
|
|
|
|
mse * GC_typed_mark_proc();
|
|
|
|
mse * GC_array_mark_proc();
|
|
|
|
GC_descr GC_generic_array_descr;
|
|
|
|
/* Caller does not hold allocation lock. */
|
|
void GC_init_explicit_typing()
|
|
{
|
|
register int i;
|
|
DCL_LOCK_STATE;
|
|
|
|
|
|
# ifdef PRINTSTATS
|
|
if (sizeof(struct LeafDescriptor) % sizeof(word) != 0)
|
|
ABORT("Bad leaf descriptor size");
|
|
# endif
|
|
DISABLE_SIGNALS();
|
|
LOCK();
|
|
if (GC_explicit_typing_initialized) {
|
|
UNLOCK();
|
|
ENABLE_SIGNALS();
|
|
return;
|
|
}
|
|
GC_explicit_typing_initialized = TRUE;
|
|
/* Set up object kind with simple indirect descriptor. */
|
|
GC_eobjfreelist = (ptr_t *)
|
|
GC_generic_malloc_inner((MAXOBJSZ+1)*sizeof(ptr_t), PTRFREE);
|
|
if (GC_eobjfreelist == 0) ABORT("Couldn't allocate GC_eobjfreelist");
|
|
BZERO(GC_eobjfreelist, (MAXOBJSZ+1)*sizeof(ptr_t));
|
|
GC_explicit_kind = GC_n_kinds++;
|
|
GC_obj_kinds[GC_explicit_kind].ok_freelist = GC_eobjfreelist;
|
|
GC_obj_kinds[GC_explicit_kind].ok_reclaim_list = 0;
|
|
GC_obj_kinds[GC_explicit_kind].ok_descriptor =
|
|
(((word)WORDS_TO_BYTES(-1)) | DS_PER_OBJECT);
|
|
GC_obj_kinds[GC_explicit_kind].ok_relocate_descr = TRUE;
|
|
GC_obj_kinds[GC_explicit_kind].ok_init = TRUE;
|
|
/* Descriptors are in the last word of the object. */
|
|
GC_typed_mark_proc_index = GC_n_mark_procs;
|
|
GC_mark_procs[GC_typed_mark_proc_index] = GC_typed_mark_proc;
|
|
GC_n_mark_procs++;
|
|
/* Moving this up breaks DEC AXP compiler. */
|
|
/* Set up object kind with array descriptor. */
|
|
GC_arobjfreelist = (ptr_t *)
|
|
GC_generic_malloc_inner((MAXOBJSZ+1)*sizeof(ptr_t), PTRFREE);
|
|
if (GC_arobjfreelist == 0) ABORT("Couldn't allocate GC_arobjfreelist");
|
|
BZERO(GC_arobjfreelist, (MAXOBJSZ+1)*sizeof(ptr_t));
|
|
if (GC_n_mark_procs >= MAX_MARK_PROCS)
|
|
ABORT("No slot for array mark proc");
|
|
GC_array_mark_proc_index = GC_n_mark_procs++;
|
|
if (GC_n_kinds >= MAXOBJKINDS)
|
|
ABORT("No kind available for array objects");
|
|
GC_array_kind = GC_n_kinds++;
|
|
GC_obj_kinds[GC_array_kind].ok_freelist = GC_arobjfreelist;
|
|
GC_obj_kinds[GC_array_kind].ok_reclaim_list = 0;
|
|
GC_obj_kinds[GC_array_kind].ok_descriptor =
|
|
MAKE_PROC(GC_array_mark_proc_index, 0);;
|
|
GC_obj_kinds[GC_array_kind].ok_relocate_descr = FALSE;
|
|
GC_obj_kinds[GC_array_kind].ok_init = TRUE;
|
|
/* Descriptors are in the last word of the object. */
|
|
GC_mark_procs[GC_array_mark_proc_index] = GC_array_mark_proc;
|
|
for (i = 0; i < WORDSZ/2; i++) {
|
|
GC_descr d = (((word)(-1)) >> (WORDSZ - i)) << (WORDSZ - i);
|
|
d |= DS_BITMAP;
|
|
GC_bm_table[i] = d;
|
|
}
|
|
GC_generic_array_descr = MAKE_PROC(GC_array_mark_proc_index, 0);
|
|
UNLOCK();
|
|
ENABLE_SIGNALS();
|
|
}
|
|
|
|
mse * GC_typed_mark_proc(addr, mark_stack_ptr, mark_stack_limit, env)
|
|
register word * addr;
|
|
register mse * mark_stack_ptr;
|
|
mse * mark_stack_limit;
|
|
word env;
|
|
{
|
|
register word bm = GC_ext_descriptors[env].ed_bitmap;
|
|
register word * current_p = addr;
|
|
register word current;
|
|
register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
|
|
register ptr_t least_ha = GC_least_plausible_heap_addr;
|
|
|
|
for (; bm != 0; bm >>= 1, current_p++) {
|
|
if (bm & 1) {
|
|
current = *current_p;
|
|
if ((ptr_t)current >= least_ha && (ptr_t)current <= greatest_ha) {
|
|
PUSH_CONTENTS(current, mark_stack_ptr,
|
|
mark_stack_limit, current_p, exit1);
|
|
}
|
|
}
|
|
}
|
|
if (GC_ext_descriptors[env].ed_continued) {
|
|
/* Push an entry with the rest of the descriptor back onto the */
|
|
/* stack. Thus we never do too much work at once. Note that */
|
|
/* we also can't overflow the mark stack unless we actually */
|
|
/* mark something. */
|
|
mark_stack_ptr++;
|
|
if (mark_stack_ptr >= mark_stack_limit) {
|
|
mark_stack_ptr = GC_signal_mark_stack_overflow(mark_stack_ptr);
|
|
}
|
|
mark_stack_ptr -> mse_start = addr + WORDSZ;
|
|
mark_stack_ptr -> mse_descr =
|
|
MAKE_PROC(GC_typed_mark_proc_index, env+1);
|
|
}
|
|
return(mark_stack_ptr);
|
|
}
|
|
|
|
/* Return the size of the object described by d. It would be faster to */
|
|
/* store this directly, or to compute it as part of */
|
|
/* GC_push_complex_descriptor, but hopefully it doesn't matter. */
|
|
word GC_descr_obj_size(d)
|
|
register complex_descriptor *d;
|
|
{
|
|
switch(d -> TAG) {
|
|
case LEAF_TAG:
|
|
return(d -> ld.ld_nelements * d -> ld.ld_size);
|
|
case ARRAY_TAG:
|
|
return(d -> ad.ad_nelements
|
|
* GC_descr_obj_size(d -> ad.ad_element_descr));
|
|
case SEQUENCE_TAG:
|
|
return(GC_descr_obj_size(d -> sd.sd_first)
|
|
+ GC_descr_obj_size(d -> sd.sd_second));
|
|
default:
|
|
ABORT("Bad complex descriptor");
|
|
/*NOTREACHED*/ return 0; /*NOTREACHED*/
|
|
}
|
|
}
|
|
|
|
/* Push descriptors for the object at addr with complex descriptor d */
|
|
/* onto the mark stack. Return 0 if the mark stack overflowed. */
|
|
mse * GC_push_complex_descriptor(addr, d, msp, msl)
|
|
word * addr;
|
|
register complex_descriptor *d;
|
|
register mse * msp;
|
|
mse * msl;
|
|
{
|
|
register ptr_t current = (ptr_t) addr;
|
|
register word nelements;
|
|
register word sz;
|
|
register word i;
|
|
|
|
switch(d -> TAG) {
|
|
case LEAF_TAG:
|
|
{
|
|
register GC_descr descr = d -> ld.ld_descriptor;
|
|
|
|
nelements = d -> ld.ld_nelements;
|
|
if (msl - msp <= (ptrdiff_t)nelements) return(0);
|
|
sz = d -> ld.ld_size;
|
|
for (i = 0; i < nelements; i++) {
|
|
msp++;
|
|
msp -> mse_start = (word *)current;
|
|
msp -> mse_descr = descr;
|
|
current += sz;
|
|
}
|
|
return(msp);
|
|
}
|
|
case ARRAY_TAG:
|
|
{
|
|
register complex_descriptor *descr = d -> ad.ad_element_descr;
|
|
|
|
nelements = d -> ad.ad_nelements;
|
|
sz = GC_descr_obj_size(descr);
|
|
for (i = 0; i < nelements; i++) {
|
|
msp = GC_push_complex_descriptor((word *)current, descr,
|
|
msp, msl);
|
|
if (msp == 0) return(0);
|
|
current += sz;
|
|
}
|
|
return(msp);
|
|
}
|
|
case SEQUENCE_TAG:
|
|
{
|
|
sz = GC_descr_obj_size(d -> sd.sd_first);
|
|
msp = GC_push_complex_descriptor((word *)current, d -> sd.sd_first,
|
|
msp, msl);
|
|
if (msp == 0) return(0);
|
|
current += sz;
|
|
msp = GC_push_complex_descriptor((word *)current, d -> sd.sd_second,
|
|
msp, msl);
|
|
return(msp);
|
|
}
|
|
default:
|
|
ABORT("Bad complex descriptor");
|
|
/*NOTREACHED*/ return 0; /*NOTREACHED*/
|
|
}
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
mse * GC_array_mark_proc(addr, mark_stack_ptr, mark_stack_limit, env)
|
|
register word * addr;
|
|
register mse * mark_stack_ptr;
|
|
mse * mark_stack_limit;
|
|
word env;
|
|
{
|
|
register hdr * hhdr = HDR(addr);
|
|
register word sz = hhdr -> hb_sz;
|
|
register complex_descriptor * descr = (complex_descriptor *)(addr[sz-1]);
|
|
mse * orig_mark_stack_ptr = mark_stack_ptr;
|
|
mse * new_mark_stack_ptr;
|
|
|
|
if (descr == 0) {
|
|
/* Found a reference to a free list entry. Ignore it. */
|
|
return(orig_mark_stack_ptr);
|
|
}
|
|
/* In use counts were already updated when array descriptor was */
|
|
/* pushed. Here we only replace it by subobject descriptors, so */
|
|
/* no update is necessary. */
|
|
new_mark_stack_ptr = GC_push_complex_descriptor(addr, descr,
|
|
mark_stack_ptr,
|
|
mark_stack_limit-1);
|
|
if (new_mark_stack_ptr == 0) {
|
|
/* Doesn't fit. Conservatively push the whole array as a unit */
|
|
/* and request a mark stack expansion. */
|
|
/* This cannot cause a mark stack overflow, since it replaces */
|
|
/* the original array entry. */
|
|
GC_mark_stack_too_small = TRUE;
|
|
new_mark_stack_ptr = orig_mark_stack_ptr + 1;
|
|
new_mark_stack_ptr -> mse_start = addr;
|
|
new_mark_stack_ptr -> mse_descr = WORDS_TO_BYTES(sz) | DS_LENGTH;
|
|
} else {
|
|
/* Push descriptor itself */
|
|
new_mark_stack_ptr++;
|
|
new_mark_stack_ptr -> mse_start = addr + sz - 1;
|
|
new_mark_stack_ptr -> mse_descr = sizeof(word) | DS_LENGTH;
|
|
}
|
|
return(new_mark_stack_ptr);
|
|
}
|
|
|
|
#if defined(__STDC__) || defined(__cplusplus)
|
|
GC_descr GC_make_descriptor(GC_bitmap bm, size_t len)
|
|
#else
|
|
GC_descr GC_make_descriptor(bm, len)
|
|
GC_bitmap bm;
|
|
size_t len;
|
|
#endif
|
|
{
|
|
register signed_word last_set_bit = len - 1;
|
|
register word result;
|
|
register int i;
|
|
# define HIGH_BIT (((word)1) << (WORDSZ - 1))
|
|
|
|
if (!GC_explicit_typing_initialized) GC_init_explicit_typing();
|
|
while (last_set_bit >= 0 && !GC_get_bit(bm, last_set_bit)) last_set_bit --;
|
|
if (last_set_bit < 0) return(0 /* no pointers */);
|
|
# if ALIGNMENT == CPP_WORDSZ/8
|
|
{
|
|
register GC_bool all_bits_set = TRUE;
|
|
for (i = 0; i < last_set_bit; i++) {
|
|
if (!GC_get_bit(bm, i)) {
|
|
all_bits_set = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
if (all_bits_set) {
|
|
/* An initial section contains all pointers. Use length descriptor. */
|
|
return(WORDS_TO_BYTES(last_set_bit+1) | DS_LENGTH);
|
|
}
|
|
}
|
|
# endif
|
|
if (last_set_bit < BITMAP_BITS) {
|
|
/* Hopefully the common case. */
|
|
/* Build bitmap descriptor (with bits reversed) */
|
|
result = HIGH_BIT;
|
|
for (i = last_set_bit - 1; i >= 0; i--) {
|
|
result >>= 1;
|
|
if (GC_get_bit(bm, i)) result |= HIGH_BIT;
|
|
}
|
|
result |= DS_BITMAP;
|
|
return(result);
|
|
} else {
|
|
signed_word index;
|
|
|
|
index = GC_add_ext_descriptor(bm, (word)last_set_bit+1);
|
|
if (index == -1) return(WORDS_TO_BYTES(last_set_bit+1) | DS_LENGTH);
|
|
/* Out of memory: use conservative */
|
|
/* approximation. */
|
|
result = MAKE_PROC(GC_typed_mark_proc_index, (word)index);
|
|
return(result);
|
|
}
|
|
}
|
|
|
|
ptr_t GC_clear_stack();
|
|
|
|
#define GENERAL_MALLOC(lb,k) \
|
|
(GC_PTR)GC_clear_stack(GC_generic_malloc((word)lb, k))
|
|
|
|
#define GENERAL_MALLOC_IOP(lb,k) \
|
|
(GC_PTR)GC_clear_stack(GC_generic_malloc_ignore_off_page(lb, k))
|
|
|
|
#if defined(__STDC__) || defined(__cplusplus)
|
|
void * GC_malloc_explicitly_typed(size_t lb, GC_descr d)
|
|
#else
|
|
char * GC_malloc_explicitly_typed(lb, d)
|
|
size_t lb;
|
|
GC_descr d;
|
|
#endif
|
|
{
|
|
register ptr_t op;
|
|
register ptr_t * opp;
|
|
register word lw;
|
|
DCL_LOCK_STATE;
|
|
|
|
lb += EXTRA_BYTES;
|
|
if( SMALL_OBJ(lb) ) {
|
|
# ifdef MERGE_SIZES
|
|
lw = GC_size_map[lb];
|
|
# else
|
|
lw = ALIGNED_WORDS(lb);
|
|
# endif
|
|
opp = &(GC_eobjfreelist[lw]);
|
|
FASTLOCK();
|
|
if( !FASTLOCK_SUCCEEDED() || (op = *opp) == 0 ) {
|
|
FASTUNLOCK();
|
|
op = (ptr_t)GENERAL_MALLOC((word)lb, GC_explicit_kind);
|
|
if (0 == op) return(0);
|
|
# ifdef MERGE_SIZES
|
|
lw = GC_size_map[lb]; /* May have been uninitialized. */
|
|
# endif
|
|
} else {
|
|
*opp = obj_link(op);
|
|
GC_words_allocd += lw;
|
|
FASTUNLOCK();
|
|
}
|
|
} else {
|
|
op = (ptr_t)GENERAL_MALLOC((word)lb, GC_explicit_kind);
|
|
if (op != NULL)
|
|
lw = BYTES_TO_WORDS(GC_size(op));
|
|
}
|
|
if (op != NULL)
|
|
((word *)op)[lw - 1] = d;
|
|
return((GC_PTR) op);
|
|
}
|
|
|
|
#if defined(__STDC__) || defined(__cplusplus)
|
|
void * GC_malloc_explicitly_typed_ignore_off_page(size_t lb, GC_descr d)
|
|
#else
|
|
char * GC_malloc_explicitly_typed_ignore_off_page(lb, d)
|
|
size_t lb;
|
|
GC_descr d;
|
|
#endif
|
|
{
|
|
register ptr_t op;
|
|
register ptr_t * opp;
|
|
register word lw;
|
|
DCL_LOCK_STATE;
|
|
|
|
lb += EXTRA_BYTES;
|
|
if( SMALL_OBJ(lb) ) {
|
|
# ifdef MERGE_SIZES
|
|
lw = GC_size_map[lb];
|
|
# else
|
|
lw = ALIGNED_WORDS(lb);
|
|
# endif
|
|
opp = &(GC_eobjfreelist[lw]);
|
|
FASTLOCK();
|
|
if( !FASTLOCK_SUCCEEDED() || (op = *opp) == 0 ) {
|
|
FASTUNLOCK();
|
|
op = (ptr_t)GENERAL_MALLOC_IOP(lb, GC_explicit_kind);
|
|
# ifdef MERGE_SIZES
|
|
lw = GC_size_map[lb]; /* May have been uninitialized. */
|
|
# endif
|
|
} else {
|
|
*opp = obj_link(op);
|
|
GC_words_allocd += lw;
|
|
FASTUNLOCK();
|
|
}
|
|
} else {
|
|
op = (ptr_t)GENERAL_MALLOC_IOP(lb, GC_explicit_kind);
|
|
if (op != NULL)
|
|
lw = BYTES_TO_WORDS(GC_size(op));
|
|
}
|
|
if (op != NULL)
|
|
((word *)op)[lw - 1] = d;
|
|
return((GC_PTR) op);
|
|
}
|
|
|
|
#if defined(__STDC__) || defined(__cplusplus)
|
|
void * GC_calloc_explicitly_typed(size_t n,
|
|
size_t lb,
|
|
GC_descr d)
|
|
#else
|
|
char * GC_calloc_explicitly_typed(n, lb, d)
|
|
size_t n;
|
|
size_t lb;
|
|
GC_descr d;
|
|
#endif
|
|
{
|
|
register ptr_t op;
|
|
register ptr_t * opp;
|
|
register word lw;
|
|
GC_descr simple_descr;
|
|
complex_descriptor *complex_descr;
|
|
register int descr_type;
|
|
struct LeafDescriptor leaf;
|
|
DCL_LOCK_STATE;
|
|
|
|
descr_type = GC_make_array_descriptor((word)n, (word)lb, d,
|
|
&simple_descr, &complex_descr, &leaf);
|
|
switch(descr_type) {
|
|
case NO_MEM: return(0);
|
|
case SIMPLE: return(GC_malloc_explicitly_typed(n*lb, simple_descr));
|
|
case LEAF:
|
|
lb *= n;
|
|
lb += sizeof(struct LeafDescriptor) + EXTRA_BYTES;
|
|
break;
|
|
case COMPLEX:
|
|
lb *= n;
|
|
lb += EXTRA_BYTES;
|
|
break;
|
|
}
|
|
if( SMALL_OBJ(lb) ) {
|
|
# ifdef MERGE_SIZES
|
|
lw = GC_size_map[lb];
|
|
# else
|
|
lw = ALIGNED_WORDS(lb);
|
|
# endif
|
|
opp = &(GC_arobjfreelist[lw]);
|
|
FASTLOCK();
|
|
if( !FASTLOCK_SUCCEEDED() || (op = *opp) == 0 ) {
|
|
FASTUNLOCK();
|
|
op = (ptr_t)GENERAL_MALLOC((word)lb, GC_array_kind);
|
|
if (0 == op) return(0);
|
|
# ifdef MERGE_SIZES
|
|
lw = GC_size_map[lb]; /* May have been uninitialized. */
|
|
# endif
|
|
} else {
|
|
*opp = obj_link(op);
|
|
GC_words_allocd += lw;
|
|
FASTUNLOCK();
|
|
}
|
|
} else {
|
|
op = (ptr_t)GENERAL_MALLOC((word)lb, GC_array_kind);
|
|
if (0 == op) return(0);
|
|
lw = BYTES_TO_WORDS(GC_size(op));
|
|
}
|
|
if (descr_type == LEAF) {
|
|
/* Set up the descriptor inside the object itself. */
|
|
VOLATILE struct LeafDescriptor * lp =
|
|
(struct LeafDescriptor *)
|
|
((word *)op
|
|
+ lw - (BYTES_TO_WORDS(sizeof(struct LeafDescriptor)) + 1));
|
|
|
|
lp -> ld_tag = LEAF_TAG;
|
|
lp -> ld_size = leaf.ld_size;
|
|
lp -> ld_nelements = leaf.ld_nelements;
|
|
lp -> ld_descriptor = leaf.ld_descriptor;
|
|
((VOLATILE word *)op)[lw - 1] = (word)lp;
|
|
} else {
|
|
extern unsigned GC_finalization_failures;
|
|
unsigned ff = GC_finalization_failures;
|
|
|
|
((word *)op)[lw - 1] = (word)complex_descr;
|
|
/* Make sure the descriptor is cleared once there is any danger */
|
|
/* it may have been collected. */
|
|
(void)
|
|
GC_general_register_disappearing_link((GC_PTR *)
|
|
((word *)op+lw-1),
|
|
(GC_PTR) op);
|
|
if (ff != GC_finalization_failures) {
|
|
/* Couldn't register it due to lack of memory. Punt. */
|
|
/* This will probably fail too, but gives the recovery code */
|
|
/* a chance. */
|
|
return(GC_malloc(n*lb));
|
|
}
|
|
}
|
|
return((GC_PTR) op);
|
|
}
|