71f9a9d15e
2004-03-24 Dhruv Matani <dhruvbird@gmx.net> * include/ext/bitmap_allocator.h: (_Bit_scan_forward) -> Made this function call __builtin_ctz instead of the while loop. (allocate) -> If condition has __builtin_expect. (deallocate) -> Ditto. Renamed a few left-over variables and typedefs according to the C++STYLE mentioned in the documentation. Protected calls to __gthread* by __gthread_active_p(), whose value is cached in the local variable __threads_active. From-SVN: r79924
860 lines
27 KiB
C++
860 lines
27 KiB
C++
// Bitmapped Allocator. -*- C++ -*-
|
|
|
|
// Copyright (C) 2004 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
|
|
|
|
#if !defined _BITMAP_ALLOCATOR_H
|
|
#define _BITMAP_ALLOCATOR_H 1
|
|
|
|
#include <cstddef>
|
|
//For std::size_t, and ptrdiff_t.
|
|
#include <utility>
|
|
//For std::pair.
|
|
#include <algorithm>
|
|
//std::find_if, and std::lower_bound.
|
|
#include <vector>
|
|
//For the free list of exponentially growing memory blocks. At max,
|
|
//size of the vector should be not more than the number of bits in an
|
|
//integer or an unsigned integer.
|
|
#include <functional>
|
|
//For greater_equal, and less_equal.
|
|
#include <new>
|
|
//For operator new.
|
|
#include <bits/gthr.h>
|
|
//For __gthread_mutex_t, __gthread_mutex_lock and __gthread_mutex_unlock.
|
|
#include <ext/new_allocator.h>
|
|
//For __gnu_cxx::new_allocator for std::vector.
|
|
|
|
#include <cassert>
|
|
#define NDEBUG
|
|
|
|
//#define CHECK_FOR_ERRORS
|
|
//#define __CPU_HAS_BACKWARD_BRANCH_PREDICTION
|
|
|
|
namespace __gnu_cxx
|
|
{
|
|
namespace {
|
|
#if defined __GTHREADS
|
|
bool const __threads_enabled = __gthread_active_p();
|
|
#endif
|
|
|
|
}
|
|
|
|
#if defined __GTHREADS
|
|
class _Mutex {
|
|
__gthread_mutex_t _M_mut;
|
|
//Prevent Copying and assignment.
|
|
_Mutex (_Mutex const&);
|
|
_Mutex& operator= (_Mutex const&);
|
|
public:
|
|
_Mutex ()
|
|
{
|
|
if (__threads_enabled)
|
|
{
|
|
#if !defined __GTHREAD_MUTEX_INIT
|
|
__GTHREAD_MUTEX_INIT_FUNCTION(&_M_mut);
|
|
#else
|
|
__gthread_mutex_t __mtemp = __GTHREAD_MUTEX_INIT;
|
|
_M_mut = __mtemp;
|
|
#endif
|
|
}
|
|
}
|
|
~_Mutex ()
|
|
{
|
|
//Gthreads does not define a Mutex Destruction Function.
|
|
}
|
|
__gthread_mutex_t *_M_get() { return &_M_mut; }
|
|
};
|
|
|
|
class _Lock {
|
|
_Mutex* _M_pmt;
|
|
bool _M_locked;
|
|
//Prevent Copying and assignment.
|
|
_Lock (_Lock const&);
|
|
_Lock& operator= (_Lock const&);
|
|
public:
|
|
_Lock(_Mutex* __mptr)
|
|
: _M_pmt(__mptr), _M_locked(false)
|
|
{ this->_M_lock(); }
|
|
void _M_lock()
|
|
{
|
|
if (__threads_enabled)
|
|
{
|
|
_M_locked = true;
|
|
__gthread_mutex_lock(_M_pmt->_M_get());
|
|
}
|
|
}
|
|
void _M_unlock()
|
|
{
|
|
if (__threads_enabled)
|
|
{
|
|
if (__builtin_expect(_M_locked, true))
|
|
{
|
|
__gthread_mutex_unlock(_M_pmt->_M_get());
|
|
_M_locked = false;
|
|
}
|
|
}
|
|
}
|
|
~_Lock() { this->_M_unlock(); }
|
|
};
|
|
#endif
|
|
|
|
|
|
|
|
namespace __aux_balloc {
|
|
static const unsigned int _Bits_Per_Byte = 8;
|
|
static const unsigned int _Bits_Per_Block = sizeof(unsigned int) * _Bits_Per_Byte;
|
|
|
|
template <typename _Addr_Pair_t>
|
|
inline size_t __balloc_num_blocks (_Addr_Pair_t __ap)
|
|
{
|
|
return (__ap.second - __ap.first) + 1;
|
|
}
|
|
|
|
template <typename _Addr_Pair_t>
|
|
inline size_t __balloc_num_bit_maps (_Addr_Pair_t __ap)
|
|
{
|
|
return __balloc_num_blocks(__ap) / _Bits_Per_Block;
|
|
}
|
|
|
|
//T should be a pointer type.
|
|
template <typename _Tp>
|
|
class _Inclusive_between : public std::unary_function<typename std::pair<_Tp, _Tp>, bool> {
|
|
typedef _Tp pointer;
|
|
pointer _M_ptr_value;
|
|
typedef typename std::pair<_Tp, _Tp> _Block_pair;
|
|
|
|
public:
|
|
_Inclusive_between (pointer __ptr) : _M_ptr_value(__ptr) { }
|
|
bool operator () (_Block_pair __bp) const throw ()
|
|
{
|
|
if (std::less_equal<pointer> ()(_M_ptr_value, __bp.second) &&
|
|
std::greater_equal<pointer> ()(_M_ptr_value, __bp.first))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
};
|
|
|
|
//Used to pass a Functor to functions by reference.
|
|
template <typename _Functor>
|
|
class _Functor_Ref :
|
|
public std::unary_function<typename _Functor::argument_type, typename _Functor::result_type> {
|
|
_Functor& _M_fref;
|
|
|
|
public:
|
|
typedef typename _Functor::argument_type argument_type;
|
|
typedef typename _Functor::result_type result_type;
|
|
|
|
_Functor_Ref (_Functor& __fref) : _M_fref(__fref) { }
|
|
result_type operator() (argument_type __arg) { return _M_fref (__arg); }
|
|
};
|
|
|
|
|
|
//T should be a pointer type, and A is the Allocator for the vector.
|
|
template <typename _Tp, typename _Alloc>
|
|
class _Ffit_finder
|
|
: public std::unary_function<typename std::pair<_Tp, _Tp>, bool> {
|
|
typedef typename std::vector<std::pair<_Tp, _Tp>, _Alloc> _BPVector;
|
|
typedef typename _BPVector::difference_type _Counter_type;
|
|
typedef typename std::pair<_Tp, _Tp> _Block_pair;
|
|
|
|
unsigned int *_M_pbitmap;
|
|
unsigned int _M_data_offset;
|
|
|
|
public:
|
|
_Ffit_finder ()
|
|
: _M_pbitmap (0), _M_data_offset (0)
|
|
{ }
|
|
|
|
bool operator() (_Block_pair __bp) throw()
|
|
{
|
|
//Set the _rover to the last unsigned integer, which is the
|
|
//bitmap to the first free block. Thus, the bitmaps are in exact
|
|
//reverse order of the actual memory layout. So, we count down
|
|
//the bimaps, which is the same as moving up the memory.
|
|
|
|
//If the used count stored at the start of the Bit Map headers
|
|
//is equal to the number of Objects that the current Block can
|
|
//store, then there is definitely no space for another single
|
|
//object, so just return false.
|
|
_Counter_type __diff = __gnu_cxx::__aux_balloc::__balloc_num_bit_maps (__bp);
|
|
|
|
assert (*(reinterpret_cast<unsigned int*>(__bp.first) - (__diff + 1)) <=
|
|
__gnu_cxx::__aux_balloc::__balloc_num_blocks (__bp));
|
|
|
|
if (*(reinterpret_cast<unsigned int*>(__bp.first) - (__diff + 1)) ==
|
|
__gnu_cxx::__aux_balloc::__balloc_num_blocks (__bp))
|
|
return false;
|
|
|
|
unsigned int *__rover = reinterpret_cast<unsigned int*>(__bp.first) - 1;
|
|
for (_Counter_type __i = 0; __i < __diff; ++__i)
|
|
{
|
|
_M_data_offset = __i;
|
|
if (*__rover)
|
|
{
|
|
_M_pbitmap = __rover;
|
|
return true;
|
|
}
|
|
--__rover;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned int *_M_get () { return _M_pbitmap; }
|
|
unsigned int _M_offset () { return _M_data_offset * _Bits_Per_Block; }
|
|
};
|
|
|
|
//T should be a pointer type.
|
|
template <typename _Tp, typename _Alloc>
|
|
class _Bit_map_counter {
|
|
|
|
typedef typename std::vector<std::pair<_Tp, _Tp>, _Alloc> _BPVector;
|
|
typedef typename _BPVector::size_type _Index_type;
|
|
typedef _Tp pointer;
|
|
|
|
_BPVector& _M_vbp;
|
|
unsigned int *_M_curr_bmap;
|
|
unsigned int *_M_last_bmap_in_block;
|
|
_Index_type _M_curr_index;
|
|
|
|
public:
|
|
//Use the 2nd parameter with care. Make sure that such an entry
|
|
//exists in the vector before passing that particular index to
|
|
//this ctor.
|
|
_Bit_map_counter (_BPVector& Rvbp, int __index = -1)
|
|
: _M_vbp(Rvbp)
|
|
{
|
|
this->_M_reset(__index);
|
|
}
|
|
|
|
void _M_reset (int __index = -1) throw()
|
|
{
|
|
if (__index == -1)
|
|
{
|
|
_M_curr_bmap = 0;
|
|
_M_curr_index = (_Index_type)-1;
|
|
return;
|
|
}
|
|
|
|
_M_curr_index = __index;
|
|
_M_curr_bmap = reinterpret_cast<unsigned int*>(_M_vbp[_M_curr_index].first) - 1;
|
|
|
|
assert (__index <= (int)_M_vbp.size() - 1);
|
|
|
|
_M_last_bmap_in_block = _M_curr_bmap -
|
|
((_M_vbp[_M_curr_index].second - _M_vbp[_M_curr_index].first + 1) / _Bits_Per_Block - 1);
|
|
}
|
|
|
|
//Dangerous Function! Use with extreme care. Pass to this
|
|
//function ONLY those values that are known to be correct,
|
|
//otherwise this will mess up big time.
|
|
void _M_set_internal_bit_map (unsigned int *__new_internal_marker) throw()
|
|
{
|
|
_M_curr_bmap = __new_internal_marker;
|
|
}
|
|
|
|
bool _M_finished () const throw()
|
|
{
|
|
return (_M_curr_bmap == 0);
|
|
}
|
|
|
|
_Bit_map_counter& operator++ () throw()
|
|
{
|
|
if (_M_curr_bmap == _M_last_bmap_in_block)
|
|
{
|
|
if (++_M_curr_index == _M_vbp.size())
|
|
{
|
|
_M_curr_bmap = 0;
|
|
}
|
|
else
|
|
{
|
|
this->_M_reset (_M_curr_index);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
--_M_curr_bmap;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
unsigned int *_M_get ()
|
|
{
|
|
return _M_curr_bmap;
|
|
}
|
|
|
|
pointer _M_base () { return _M_vbp[_M_curr_index].first; }
|
|
unsigned int _M_offset ()
|
|
{
|
|
return _Bits_Per_Block * ((reinterpret_cast<unsigned int*>(this->_M_base()) - _M_curr_bmap) - 1);
|
|
}
|
|
|
|
unsigned int _M_where () { return _M_curr_index; }
|
|
};
|
|
}
|
|
|
|
//Generic Version of the bsf instruction.
|
|
typedef unsigned int _Bit_map_type;
|
|
static inline unsigned int _Bit_scan_forward (register _Bit_map_type __num)
|
|
{
|
|
return static_cast<unsigned int>(__builtin_ctz(__num));
|
|
}
|
|
|
|
struct _OOM_handler {
|
|
static std::new_handler _S_old_handler;
|
|
static bool _S_handled_oom;
|
|
typedef void (*_FL_clear_proc)(void);
|
|
static _FL_clear_proc _S_oom_fcp;
|
|
|
|
_OOM_handler (_FL_clear_proc __fcp)
|
|
{
|
|
_S_oom_fcp = __fcp;
|
|
_S_old_handler = std::set_new_handler (_S_handle_oom_proc);
|
|
_S_handled_oom = false;
|
|
}
|
|
|
|
static void _S_handle_oom_proc()
|
|
{
|
|
_S_oom_fcp();
|
|
std::set_new_handler (_S_old_handler);
|
|
_S_handled_oom = true;
|
|
}
|
|
|
|
~_OOM_handler ()
|
|
{
|
|
if (!_S_handled_oom)
|
|
std::set_new_handler (_S_old_handler);
|
|
}
|
|
};
|
|
|
|
std::new_handler _OOM_handler::_S_old_handler;
|
|
bool _OOM_handler::_S_handled_oom = false;
|
|
_OOM_handler::_FL_clear_proc _OOM_handler::_S_oom_fcp = 0;
|
|
|
|
|
|
class _BA_free_list_store {
|
|
struct _LT_pointer_compare {
|
|
template <typename _Tp>
|
|
bool operator() (_Tp* __pt, _Tp const& __crt) const throw()
|
|
{
|
|
return *__pt < __crt;
|
|
}
|
|
};
|
|
|
|
#if defined __GTHREADS
|
|
static _Mutex _S_bfl_mutex;
|
|
#endif
|
|
static std::vector<unsigned int*> _S_free_list;
|
|
typedef std::vector<unsigned int*>::iterator _FLIter;
|
|
|
|
static void _S_validate_free_list(unsigned int *__addr) throw()
|
|
{
|
|
const unsigned int __max_size = 64;
|
|
if (_S_free_list.size() >= __max_size)
|
|
{
|
|
//Ok, the threshold value has been reached.
|
|
//We determine which block to remove from the list of free
|
|
//blocks.
|
|
if (*__addr >= *_S_free_list.back())
|
|
{
|
|
//Ok, the new block is greater than or equal to the last
|
|
//block in the list of free blocks. We just free the new
|
|
//block.
|
|
operator delete((void*)__addr);
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
//Deallocate the last block in the list of free lists, and
|
|
//insert the new one in it's correct position.
|
|
operator delete((void*)_S_free_list.back());
|
|
_S_free_list.pop_back();
|
|
}
|
|
}
|
|
|
|
//Just add the block to the list of free lists
|
|
//unconditionally.
|
|
_FLIter __temp = std::lower_bound(_S_free_list.begin(), _S_free_list.end(),
|
|
*__addr, _LT_pointer_compare ());
|
|
//We may insert the new free list before _temp;
|
|
_S_free_list.insert(__temp, __addr);
|
|
}
|
|
|
|
static bool _S_should_i_give(unsigned int __block_size, unsigned int __required_size) throw()
|
|
{
|
|
const unsigned int __max_wastage_percentage = 36;
|
|
if (__block_size >= __required_size &&
|
|
(((__block_size - __required_size) * 100 / __block_size) < __max_wastage_percentage))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
typedef _BA_free_list_store _BFL_type;
|
|
|
|
static inline void _S_insert_free_list(unsigned int *__addr) throw()
|
|
{
|
|
#if defined __GTHREADS
|
|
_Lock __bfl_lock(&_S_bfl_mutex);
|
|
#endif
|
|
//Call _S_validate_free_list to decide what should be done with this
|
|
//particular free list.
|
|
_S_validate_free_list(--__addr);
|
|
}
|
|
|
|
static unsigned int *_S_get_free_list(unsigned int __sz) throw (std::bad_alloc)
|
|
{
|
|
#if defined __GTHREADS
|
|
_Lock __bfl_lock(&_S_bfl_mutex);
|
|
#endif
|
|
_FLIter __temp = std::lower_bound(_S_free_list.begin(), _S_free_list.end(),
|
|
__sz, _LT_pointer_compare());
|
|
if (__temp == _S_free_list.end() || !_S_should_i_give (**__temp, __sz))
|
|
{
|
|
//We hold the lock because the OOM_Handler is a stateless
|
|
//entity.
|
|
_OOM_handler __set_handler(_BFL_type::_S_clear);
|
|
unsigned int *__ret_val = reinterpret_cast<unsigned int*>
|
|
(operator new (__sz + sizeof(unsigned int)));
|
|
*__ret_val = __sz;
|
|
return ++__ret_val;
|
|
}
|
|
else
|
|
{
|
|
unsigned int* __ret_val = *__temp;
|
|
_S_free_list.erase (__temp);
|
|
return ++__ret_val;
|
|
}
|
|
}
|
|
|
|
//This function just clears the internal Free List, and gives back
|
|
//all the memory to the OS.
|
|
static void _S_clear()
|
|
{
|
|
#if defined __GTHREADS
|
|
_Lock __bfl_lock(&_S_bfl_mutex);
|
|
#endif
|
|
_FLIter __iter = _S_free_list.begin();
|
|
while (__iter != _S_free_list.end())
|
|
{
|
|
operator delete((void*)*__iter);
|
|
++__iter;
|
|
}
|
|
_S_free_list.clear();
|
|
}
|
|
|
|
};
|
|
|
|
#if defined __GTHREADS
|
|
_Mutex _BA_free_list_store::_S_bfl_mutex;
|
|
#endif
|
|
std::vector<unsigned int*> _BA_free_list_store::_S_free_list;
|
|
|
|
template <typename _Tp> class bitmap_allocator;
|
|
// specialize for void:
|
|
template <> class bitmap_allocator<void> {
|
|
public:
|
|
typedef void* pointer;
|
|
typedef const void* const_pointer;
|
|
// reference-to-void members are impossible.
|
|
typedef void value_type;
|
|
template <typename _Tp1> struct rebind { typedef bitmap_allocator<_Tp1> other; };
|
|
};
|
|
|
|
template <typename _Tp> class bitmap_allocator : private _BA_free_list_store {
|
|
public:
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef _Tp* pointer;
|
|
typedef const _Tp* const_pointer;
|
|
typedef _Tp& reference;
|
|
typedef const _Tp& const_reference;
|
|
typedef _Tp value_type;
|
|
template <typename _Tp1> struct rebind { typedef bitmap_allocator<_Tp1> other; };
|
|
|
|
private:
|
|
static const unsigned int _Bits_Per_Byte = 8;
|
|
static const unsigned int _Bits_Per_Block = sizeof(unsigned int) * _Bits_Per_Byte;
|
|
|
|
static inline void _S_bit_allocate(unsigned int *__pbmap, unsigned int __pos) throw()
|
|
{
|
|
unsigned int __mask = 1 << __pos;
|
|
__mask = ~__mask;
|
|
*__pbmap &= __mask;
|
|
}
|
|
|
|
static inline void _S_bit_free(unsigned int *__pbmap, unsigned int __pos) throw()
|
|
{
|
|
unsigned int __mask = 1 << __pos;
|
|
*__pbmap |= __mask;
|
|
}
|
|
|
|
static inline void *_S_memory_get(size_t __sz) throw (std::bad_alloc)
|
|
{
|
|
return operator new(__sz);
|
|
}
|
|
|
|
static inline void _S_memory_put(void *__vptr) throw ()
|
|
{
|
|
operator delete(__vptr);
|
|
}
|
|
|
|
typedef typename std::pair<pointer, pointer> _Block_pair;
|
|
typedef typename __gnu_cxx::new_allocator<_Block_pair> _BPVec_allocator_type;
|
|
typedef typename std::vector<_Block_pair, _BPVec_allocator_type> _BPVector;
|
|
|
|
|
|
#if defined CHECK_FOR_ERRORS
|
|
//Complexity: O(lg(N)). Where, N is the number of block of size
|
|
//sizeof(value_type).
|
|
static void _S_check_for_free_blocks() throw()
|
|
{
|
|
typedef typename __gnu_cxx::__aux_balloc::_Ffit_finder<pointer, _BPVec_allocator_type> _FFF;
|
|
_FFF __fff;
|
|
typedef typename _BPVector::iterator _BPiter;
|
|
_BPiter __bpi = std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(),
|
|
__gnu_cxx::__aux_balloc::_Functor_Ref<_FFF>(__fff));
|
|
assert(__bpi == _S_mem_blocks.end());
|
|
}
|
|
#endif
|
|
|
|
|
|
//Complexity: O(1), but internally depends upon the complexity of
|
|
//the function _BA_free_list_store::_S_get_free_list. The part
|
|
//where the bitmap headers are written is of worst case complexity:
|
|
//O(X),where X is the number of blocks of size sizeof(value_type)
|
|
//within the newly acquired block. Having a tight bound.
|
|
static void _S_refill_pool() throw (std::bad_alloc)
|
|
{
|
|
#if defined CHECK_FOR_ERRORS
|
|
_S_check_for_free_blocks();
|
|
#endif
|
|
|
|
const unsigned int __num_bit_maps = _S_block_size / _Bits_Per_Block;
|
|
const unsigned int __size_to_allocate = sizeof(unsigned int) +
|
|
_S_block_size * sizeof(value_type) + __num_bit_maps*sizeof(unsigned int);
|
|
|
|
unsigned int *__temp =
|
|
reinterpret_cast<unsigned int*>(_BA_free_list_store::_S_get_free_list(__size_to_allocate));
|
|
*__temp = 0;
|
|
++__temp;
|
|
|
|
//The Header information goes at the Beginning of the Block.
|
|
_Block_pair __bp = std::make_pair(reinterpret_cast<pointer>(__temp + __num_bit_maps),
|
|
reinterpret_cast<pointer>(__temp + __num_bit_maps)
|
|
+ _S_block_size - 1);
|
|
|
|
//Fill the Vector with this information.
|
|
_S_mem_blocks.push_back(__bp);
|
|
|
|
unsigned int __bit_mask = 0; //0 Indicates all Allocated.
|
|
__bit_mask = ~__bit_mask; //1 Indicates all Free.
|
|
|
|
for (unsigned int __i = 0; __i < __num_bit_maps; ++__i)
|
|
__temp[__i] = __bit_mask;
|
|
|
|
//On some implementations, operator new might throw bad_alloc, or
|
|
//malloc might fail if the size passed is too large, therefore, we
|
|
//limit the size passed to malloc or operator new.
|
|
_S_block_size *= 2;
|
|
}
|
|
|
|
static _BPVector _S_mem_blocks;
|
|
static unsigned int _S_block_size;
|
|
static __gnu_cxx::__aux_balloc::_Bit_map_counter<pointer, _BPVec_allocator_type> _S_last_request;
|
|
static typename _BPVector::size_type _S_last_dealloc_index;
|
|
#if defined __GTHREADS
|
|
static _Mutex _S_mut;
|
|
#endif
|
|
|
|
//Complexity: Worst case complexity is O(N), but that is hardly ever
|
|
//hit. if and when this particular case is encountered, the next few
|
|
//cases are guaranteed to have a worst case complexity of O(1)!
|
|
//That's why this function performs very well on the average. you
|
|
//can consider this function to be having a complexity refrred to
|
|
//commonly as: Amortized Constant time.
|
|
static pointer _S_allocate_single_object()
|
|
{
|
|
#if defined __GTHREADS
|
|
_Lock __bit_lock(&_S_mut);
|
|
#endif
|
|
|
|
//The algorithm is something like this: The last_requst variable
|
|
//points to the last accessed Bit Map. When such a condition
|
|
//occurs, we try to find a free block in the current bitmap, or
|
|
//succeeding bitmaps until the last bitmap is reached. If no free
|
|
//block turns up, we resort to First Fit method.
|
|
|
|
//WARNING: Do not re-order the condition in the while statement
|
|
//below, because it relies on C++'s short-circuit
|
|
//evaluation. The return from _S_last_request->_M_get() will NOT
|
|
//be dereferenceable if _S_last_request->_M_finished() returns
|
|
//true. This would inevitibly lead to a NULL pointer dereference
|
|
//if tinkered with.
|
|
while (_S_last_request._M_finished() == false && (*(_S_last_request._M_get()) == 0))
|
|
{
|
|
_S_last_request.operator++();
|
|
}
|
|
|
|
if (__builtin_expect(_S_last_request._M_finished() == true, false))
|
|
{
|
|
//Fall Back to First Fit algorithm.
|
|
typedef typename __gnu_cxx::__aux_balloc::_Ffit_finder<pointer, _BPVec_allocator_type> _FFF;
|
|
_FFF __fff;
|
|
typedef typename _BPVector::iterator _BPiter;
|
|
_BPiter __bpi = std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(),
|
|
__gnu_cxx::__aux_balloc::_Functor_Ref<_FFF>(__fff));
|
|
|
|
if (__bpi != _S_mem_blocks.end())
|
|
{
|
|
//Search was successful. Ok, now mark the first bit from
|
|
//the right as 0, meaning Allocated. This bit is obtained
|
|
//by calling _M_get() on __fff.
|
|
unsigned int __nz_bit = _Bit_scan_forward(*__fff._M_get());
|
|
_S_bit_allocate(__fff._M_get(), __nz_bit);
|
|
|
|
_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
|
|
|
|
//Now, get the address of the bit we marked as allocated.
|
|
pointer __ret_val = __bpi->first + __fff._M_offset() + __nz_bit;
|
|
unsigned int *__puse_count = reinterpret_cast<unsigned int*>(__bpi->first) -
|
|
(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(*__bpi) + 1);
|
|
++(*__puse_count);
|
|
return __ret_val;
|
|
}
|
|
else
|
|
{
|
|
//Search was unsuccessful. We Add more memory to the pool
|
|
//by calling _S_refill_pool().
|
|
_S_refill_pool();
|
|
|
|
//_M_Reset the _S_last_request structure to the first free
|
|
//block's bit map.
|
|
_S_last_request._M_reset(_S_mem_blocks.size() - 1);
|
|
|
|
//Now, mark that bit as allocated.
|
|
}
|
|
}
|
|
//_S_last_request holds a pointer to a valid bit map, that points
|
|
//to a free block in memory.
|
|
unsigned int __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
|
|
_S_bit_allocate(_S_last_request._M_get(), __nz_bit);
|
|
|
|
pointer __ret_val = _S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit;
|
|
|
|
unsigned int *__puse_count = reinterpret_cast<unsigned int*>
|
|
(_S_mem_blocks[_S_last_request._M_where()].first) -
|
|
(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
|
|
++(*__puse_count);
|
|
return __ret_val;
|
|
}
|
|
|
|
//Complexity: O(lg(N)), but the worst case is hit quite often! I
|
|
//need to do something about this. I'll be able to work on it, only
|
|
//when I have some solid figures from a few real apps.
|
|
static void _S_deallocate_single_object(pointer __p) throw()
|
|
{
|
|
#if defined __GTHREADS
|
|
_Lock __bit_lock(&_S_mut);
|
|
#endif
|
|
|
|
typedef typename _BPVector::iterator _Iterator;
|
|
typedef typename _BPVector::difference_type _Difference_type;
|
|
|
|
_Difference_type __diff;
|
|
int __displacement;
|
|
|
|
assert(_S_last_dealloc_index >= 0);
|
|
|
|
if (__gnu_cxx::__aux_balloc::_Inclusive_between<pointer>(__p)(_S_mem_blocks[_S_last_dealloc_index]))
|
|
{
|
|
assert(_S_last_dealloc_index <= _S_mem_blocks.size() - 1);
|
|
|
|
//Initial Assumption was correct!
|
|
__diff = _S_last_dealloc_index;
|
|
__displacement = __p - _S_mem_blocks[__diff].first;
|
|
}
|
|
else
|
|
{
|
|
_Iterator _iter = (std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(),
|
|
__gnu_cxx::__aux_balloc::_Inclusive_between<pointer>(__p)));
|
|
assert(_iter != _S_mem_blocks.end());
|
|
|
|
__diff = _iter - _S_mem_blocks.begin();
|
|
__displacement = __p - _S_mem_blocks[__diff].first;
|
|
_S_last_dealloc_index = __diff;
|
|
}
|
|
|
|
//Get the position of the iterator that has been found.
|
|
const unsigned int __rotate = __displacement % _Bits_Per_Block;
|
|
unsigned int *__bit_mapC = reinterpret_cast<unsigned int*>(_S_mem_blocks[__diff].first) - 1;
|
|
__bit_mapC -= (__displacement / _Bits_Per_Block);
|
|
|
|
_S_bit_free(__bit_mapC, __rotate);
|
|
unsigned int *__puse_count = reinterpret_cast<unsigned int*>
|
|
(_S_mem_blocks[__diff].first) -
|
|
(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(_S_mem_blocks[__diff]) + 1);
|
|
|
|
assert(*__puse_count != 0);
|
|
|
|
--(*__puse_count);
|
|
|
|
if (__builtin_expect(*__puse_count == 0, false))
|
|
{
|
|
_S_block_size /= 2;
|
|
|
|
//We may safely remove this block.
|
|
_Block_pair __bp = _S_mem_blocks[__diff];
|
|
_S_insert_free_list(__puse_count);
|
|
_S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
|
|
|
|
//We reset the _S_last_request variable to reflect the erased
|
|
//block. We do this to protect future requests after the last
|
|
//block has been removed from a particular memory Chunk,
|
|
//which in turn has been returned to the free list, and
|
|
//hence had been erased from the vector, so the size of the
|
|
//vector gets reduced by 1.
|
|
if ((_Difference_type)_S_last_request._M_where() >= __diff--)
|
|
{
|
|
_S_last_request._M_reset(__diff);
|
|
// assert(__diff >= 0);
|
|
}
|
|
|
|
//If the Index into the vector of the region of memory that
|
|
//might hold the next address that will be passed to
|
|
//deallocated may have been invalidated due to the above
|
|
//erase procedure being called on the vector, hence we try
|
|
//to restore this invariant too.
|
|
if (_S_last_dealloc_index >= _S_mem_blocks.size())
|
|
{
|
|
_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
|
|
assert(_S_last_dealloc_index >= 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
bitmap_allocator() throw()
|
|
{ }
|
|
|
|
bitmap_allocator(const bitmap_allocator&) { }
|
|
|
|
template <typename _Tp1> bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
|
|
{ }
|
|
|
|
~bitmap_allocator() throw()
|
|
{ }
|
|
|
|
//Complexity: O(1), but internally the complexity depends upon the
|
|
//complexity of the function(s) _S_allocate_single_object and
|
|
//_S_memory_get.
|
|
pointer allocate(size_type __n)
|
|
{
|
|
if (__builtin_expect(__n == 1, true))
|
|
return _S_allocate_single_object();
|
|
else
|
|
return reinterpret_cast<pointer>(_S_memory_get(__n * sizeof(value_type)));
|
|
}
|
|
|
|
//Complexity: Worst case complexity is O(N) where N is the number of
|
|
//blocks of size sizeof(value_type) within the free lists that the
|
|
//allocator holds. However, this worst case is hit only when the
|
|
//user supplies a bogus argument to hint. If the hint argument is
|
|
//sensible, then the complexity drops to O(lg(N)), and in extreme
|
|
//cases, even drops to as low as O(1). So, if the user supplied
|
|
//argument is good, then this function performs very well.
|
|
pointer allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
|
|
{
|
|
return allocate(__n);
|
|
}
|
|
|
|
void deallocate(pointer __p, size_type __n) throw()
|
|
{
|
|
if (__builtin_expect(__n == 1, true))
|
|
_S_deallocate_single_object(__p);
|
|
else
|
|
_S_memory_put(__p);
|
|
}
|
|
|
|
pointer address(reference r) const { return &r; }
|
|
const_pointer address(const_reference r) const { return &r; }
|
|
|
|
size_type max_size(void) const throw() { return (size_type()-1)/sizeof(value_type); }
|
|
|
|
void construct (pointer p, const_reference __data)
|
|
{
|
|
::new(p) value_type(__data);
|
|
}
|
|
|
|
void destroy (pointer p)
|
|
{
|
|
p->~value_type();
|
|
}
|
|
|
|
};
|
|
|
|
template <typename _Tp>
|
|
typename bitmap_allocator<_Tp>::_BPVector bitmap_allocator<_Tp>::_S_mem_blocks;
|
|
|
|
template <typename _Tp>
|
|
unsigned int bitmap_allocator<_Tp>::_S_block_size = bitmap_allocator<_Tp>::_Bits_Per_Block;
|
|
|
|
template <typename _Tp>
|
|
typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type
|
|
bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
|
|
|
|
template <typename _Tp>
|
|
__gnu_cxx::__aux_balloc::_Bit_map_counter
|
|
<typename bitmap_allocator<_Tp>::pointer, typename bitmap_allocator<_Tp>::_BPVec_allocator_type>
|
|
bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
|
|
|
|
#if defined __GTHREADS
|
|
template <typename _Tp>
|
|
__gnu_cxx::_Mutex
|
|
bitmap_allocator<_Tp>::_S_mut;
|
|
#endif
|
|
|
|
template <typename _Tp1, typename _Tp2>
|
|
bool operator== (const bitmap_allocator<_Tp1>&, const bitmap_allocator<_Tp2>&) throw()
|
|
{
|
|
return true;
|
|
}
|
|
|
|
template <typename _Tp1, typename _Tp2>
|
|
bool operator!= (const bitmap_allocator<_Tp1>&, const bitmap_allocator<_Tp2>&) throw()
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
#endif //_BITMAP_ALLOCATOR_H
|