85ec4feb11
From-SVN: r256169
439 lines
12 KiB
C
439 lines
12 KiB
C
/* Copyright (C) 2008-2018 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <spu_mfcio.h>
|
|
#include <spu_internals.h>
|
|
#include <spu_intrinsics.h>
|
|
#include <spu_cache.h>
|
|
|
|
extern unsigned long long __ea_local_store;
|
|
extern char __cache_tag_array_size;
|
|
|
|
#define LINE_SIZE 128
|
|
#define TAG_MASK (LINE_SIZE - 1)
|
|
|
|
#define WAYS 4
|
|
#define SET_MASK ((int) &__cache_tag_array_size - LINE_SIZE)
|
|
|
|
#define CACHE_LINES ((int) &__cache_tag_array_size / \
|
|
sizeof (struct __cache_tag_array) * WAYS)
|
|
|
|
struct __cache_tag_array
|
|
{
|
|
unsigned int tag_lo[WAYS];
|
|
unsigned int tag_hi[WAYS];
|
|
void *base[WAYS];
|
|
int reserved[WAYS];
|
|
vector unsigned short dirty_bits[WAYS];
|
|
};
|
|
|
|
extern struct __cache_tag_array __cache_tag_array[];
|
|
extern char __cache[];
|
|
|
|
/* In order to make the code seem a little cleaner, and to avoid having
|
|
64/32 bit ifdefs all over the place, we use macros. */
|
|
|
|
#ifdef __EA64__
|
|
typedef unsigned long long addr;
|
|
|
|
#define CHECK_TAG(_entry, _way, _tag) \
|
|
((_entry)->tag_lo[(_way)] == ((_tag) & 0xFFFFFFFF) \
|
|
&& (_entry)->tag_hi[(_way)] == ((_tag) >> 32))
|
|
|
|
#define GET_TAG(_entry, _way) \
|
|
((unsigned long long)(_entry)->tag_hi[(_way)] << 32 \
|
|
| (unsigned long long)(_entry)->tag_lo[(_way)])
|
|
|
|
#define SET_TAG(_entry, _way, _tag) \
|
|
(_entry)->tag_lo[(_way)] = (_tag) & 0xFFFFFFFF; \
|
|
(_entry)->tag_hi[(_way)] = (_tag) >> 32
|
|
|
|
#else /*__EA32__*/
|
|
typedef unsigned long addr;
|
|
|
|
#define CHECK_TAG(_entry, _way, _tag) \
|
|
((_entry)->tag_lo[(_way)] == (_tag))
|
|
|
|
#define GET_TAG(_entry, _way) \
|
|
((_entry)->tag_lo[(_way)])
|
|
|
|
#define SET_TAG(_entry, _way, _tag) \
|
|
(_entry)->tag_lo[(_way)] = (_tag)
|
|
|
|
#endif
|
|
|
|
/* In GET_ENTRY, we cast away the high 32 bits,
|
|
as the tag is only in the low 32. */
|
|
|
|
#define GET_ENTRY(_addr) \
|
|
((struct __cache_tag_array *) \
|
|
si_to_uint (si_a (si_and (si_from_uint ((unsigned int) (addr) (_addr)), \
|
|
si_from_uint (SET_MASK)), \
|
|
si_from_uint ((unsigned int) __cache_tag_array))))
|
|
|
|
#define GET_CACHE_LINE(_addr, _way) \
|
|
((void *) (__cache + ((_addr) & SET_MASK) * WAYS) + ((_way) * LINE_SIZE));
|
|
|
|
#define CHECK_DIRTY(_vec) (si_to_uint (si_orx ((qword) (_vec))))
|
|
#define SET_EMPTY(_entry, _way) ((_entry)->tag_lo[(_way)] = 1)
|
|
#define CHECK_EMPTY(_entry, _way) ((_entry)->tag_lo[(_way)] == 1)
|
|
|
|
#define LS_FLAG 0x80000000
|
|
#define SET_IS_LS(_entry, _way) ((_entry)->reserved[(_way)] |= LS_FLAG)
|
|
#define CHECK_IS_LS(_entry, _way) ((_entry)->reserved[(_way)] & LS_FLAG)
|
|
#define GET_LRU(_entry, _way) ((_entry)->reserved[(_way)] & ~LS_FLAG)
|
|
|
|
static int dma_tag = 32;
|
|
|
|
static void
|
|
__cache_evict_entry (struct __cache_tag_array *entry, int way)
|
|
{
|
|
addr tag = GET_TAG (entry, way);
|
|
|
|
if (CHECK_DIRTY (entry->dirty_bits[way]) && !CHECK_IS_LS (entry, way))
|
|
{
|
|
#ifdef NONATOMIC
|
|
/* Non-atomic writes. */
|
|
unsigned int oldmask, mach_stat;
|
|
char *line = ((void *) 0);
|
|
|
|
/* Enter critical section. */
|
|
mach_stat = spu_readch (SPU_RdMachStat);
|
|
spu_idisable ();
|
|
|
|
/* Issue DMA request. */
|
|
line = GET_CACHE_LINE (entry->tag_lo[way], way);
|
|
mfc_put (line, tag, LINE_SIZE, dma_tag, 0, 0);
|
|
|
|
/* Wait for DMA completion. */
|
|
oldmask = mfc_read_tag_mask ();
|
|
mfc_write_tag_mask (1 << dma_tag);
|
|
mfc_read_tag_status_all ();
|
|
mfc_write_tag_mask (oldmask);
|
|
|
|
/* Leave critical section. */
|
|
if (__builtin_expect (mach_stat & 1, 0))
|
|
spu_ienable ();
|
|
#else
|
|
/* Allocate a buffer large enough that we know it has 128 bytes
|
|
that are 128 byte aligned (for DMA). */
|
|
|
|
char buffer[LINE_SIZE + 127];
|
|
qword *buf_ptr = (qword *) (((unsigned int) (buffer) + 127) & ~127);
|
|
qword *line = GET_CACHE_LINE (entry->tag_lo[way], way);
|
|
qword bits;
|
|
unsigned int mach_stat;
|
|
|
|
/* Enter critical section. */
|
|
mach_stat = spu_readch (SPU_RdMachStat);
|
|
spu_idisable ();
|
|
|
|
do
|
|
{
|
|
/* We atomically read the current memory into a buffer
|
|
modify the dirty bytes in the buffer, and write it
|
|
back. If writeback fails, loop and try again. */
|
|
|
|
mfc_getllar (buf_ptr, tag, 0, 0);
|
|
mfc_read_atomic_status ();
|
|
|
|
/* The method we're using to write 16 dirty bytes into
|
|
the buffer at a time uses fsmb which in turn uses
|
|
the least significant 16 bits of word 0, so we
|
|
load the bits and rotate so that the first bit of
|
|
the bitmap is in the first bit that fsmb will use. */
|
|
|
|
bits = (qword) entry->dirty_bits[way];
|
|
bits = si_rotqbyi (bits, -2);
|
|
|
|
/* Si_fsmb creates the mask of dirty bytes.
|
|
Use selb to nab the appropriate bits. */
|
|
buf_ptr[0] = si_selb (buf_ptr[0], line[0], si_fsmb (bits));
|
|
|
|
/* Rotate to next 16 byte section of cache. */
|
|
bits = si_rotqbyi (bits, 2);
|
|
|
|
buf_ptr[1] = si_selb (buf_ptr[1], line[1], si_fsmb (bits));
|
|
bits = si_rotqbyi (bits, 2);
|
|
buf_ptr[2] = si_selb (buf_ptr[2], line[2], si_fsmb (bits));
|
|
bits = si_rotqbyi (bits, 2);
|
|
buf_ptr[3] = si_selb (buf_ptr[3], line[3], si_fsmb (bits));
|
|
bits = si_rotqbyi (bits, 2);
|
|
buf_ptr[4] = si_selb (buf_ptr[4], line[4], si_fsmb (bits));
|
|
bits = si_rotqbyi (bits, 2);
|
|
buf_ptr[5] = si_selb (buf_ptr[5], line[5], si_fsmb (bits));
|
|
bits = si_rotqbyi (bits, 2);
|
|
buf_ptr[6] = si_selb (buf_ptr[6], line[6], si_fsmb (bits));
|
|
bits = si_rotqbyi (bits, 2);
|
|
buf_ptr[7] = si_selb (buf_ptr[7], line[7], si_fsmb (bits));
|
|
bits = si_rotqbyi (bits, 2);
|
|
|
|
mfc_putllc (buf_ptr, tag, 0, 0);
|
|
}
|
|
while (mfc_read_atomic_status ());
|
|
|
|
/* Leave critical section. */
|
|
if (__builtin_expect (mach_stat & 1, 0))
|
|
spu_ienable ();
|
|
#endif
|
|
}
|
|
|
|
/* In any case, marking the lo tag with 1 which denotes empty. */
|
|
SET_EMPTY (entry, way);
|
|
entry->dirty_bits[way] = (vector unsigned short) si_from_uint (0);
|
|
}
|
|
|
|
void
|
|
__cache_evict (__ea void *ea)
|
|
{
|
|
addr tag = (addr) ea & ~TAG_MASK;
|
|
struct __cache_tag_array *entry = GET_ENTRY (ea);
|
|
int i = 0;
|
|
|
|
/* Cycles through all the possible ways an address could be at
|
|
and evicts the way if found. */
|
|
|
|
for (i = 0; i < WAYS; i++)
|
|
if (CHECK_TAG (entry, i, tag))
|
|
__cache_evict_entry (entry, i);
|
|
}
|
|
|
|
static void *
|
|
__cache_fill (int way, addr tag)
|
|
{
|
|
unsigned int oldmask, mach_stat;
|
|
char *line = ((void *) 0);
|
|
|
|
/* Reserve our DMA tag. */
|
|
if (dma_tag == 32)
|
|
dma_tag = mfc_tag_reserve ();
|
|
|
|
/* Enter critical section. */
|
|
mach_stat = spu_readch (SPU_RdMachStat);
|
|
spu_idisable ();
|
|
|
|
/* Issue DMA request. */
|
|
line = GET_CACHE_LINE (tag, way);
|
|
mfc_get (line, tag, LINE_SIZE, dma_tag, 0, 0);
|
|
|
|
/* Wait for DMA completion. */
|
|
oldmask = mfc_read_tag_mask ();
|
|
mfc_write_tag_mask (1 << dma_tag);
|
|
mfc_read_tag_status_all ();
|
|
mfc_write_tag_mask (oldmask);
|
|
|
|
/* Leave critical section. */
|
|
if (__builtin_expect (mach_stat & 1, 0))
|
|
spu_ienable ();
|
|
|
|
return (void *) line;
|
|
}
|
|
|
|
static void
|
|
__cache_miss (__ea void *ea, struct __cache_tag_array *entry, int way)
|
|
{
|
|
|
|
addr tag = (addr) ea & ~TAG_MASK;
|
|
unsigned int lru = 0;
|
|
int i = 0;
|
|
int idx = 0;
|
|
|
|
/* If way > 4, then there are no empty slots, so we must evict
|
|
the least recently used entry. */
|
|
if (way >= 4)
|
|
{
|
|
for (i = 0; i < WAYS; i++)
|
|
{
|
|
if (GET_LRU (entry, i) > lru)
|
|
{
|
|
lru = GET_LRU (entry, i);
|
|
idx = i;
|
|
}
|
|
}
|
|
__cache_evict_entry (entry, idx);
|
|
way = idx;
|
|
}
|
|
|
|
/* Set the empty entry's tag and fill it's cache line. */
|
|
|
|
SET_TAG (entry, way, tag);
|
|
entry->reserved[way] = 0;
|
|
|
|
/* Check if the address is just an effective address within the
|
|
SPU's local store. */
|
|
|
|
/* Because the LS is not 256k aligned, we can't do a nice and mask
|
|
here to compare, so we must check the whole range. */
|
|
|
|
if ((addr) ea >= (addr) __ea_local_store
|
|
&& (addr) ea < (addr) (__ea_local_store + 0x40000))
|
|
{
|
|
SET_IS_LS (entry, way);
|
|
entry->base[way] =
|
|
(void *) ((unsigned int) ((addr) ea -
|
|
(addr) __ea_local_store) & ~0x7f);
|
|
}
|
|
else
|
|
{
|
|
entry->base[way] = __cache_fill (way, tag);
|
|
}
|
|
}
|
|
|
|
void *
|
|
__cache_fetch_dirty (__ea void *ea, int n_bytes_dirty)
|
|
{
|
|
#ifdef __EA64__
|
|
unsigned int tag_hi;
|
|
qword etag_hi;
|
|
#endif
|
|
unsigned int tag_lo;
|
|
struct __cache_tag_array *entry;
|
|
|
|
qword etag_lo;
|
|
qword equal;
|
|
qword bit_mask;
|
|
qword way;
|
|
|
|
/* This first chunk, we merely fill the pointer and tag. */
|
|
|
|
entry = GET_ENTRY (ea);
|
|
|
|
#ifndef __EA64__
|
|
tag_lo =
|
|
si_to_uint (si_andc
|
|
(si_shufb
|
|
(si_from_uint ((addr) ea), si_from_uint (0),
|
|
si_from_uint (0x00010203)), si_from_uint (TAG_MASK)));
|
|
#else
|
|
tag_lo =
|
|
si_to_uint (si_andc
|
|
(si_shufb
|
|
(si_from_ullong ((addr) ea), si_from_uint (0),
|
|
si_from_uint (0x04050607)), si_from_uint (TAG_MASK)));
|
|
|
|
tag_hi =
|
|
si_to_uint (si_shufb
|
|
(si_from_ullong ((addr) ea), si_from_uint (0),
|
|
si_from_uint (0x00010203)));
|
|
#endif
|
|
|
|
/* Increment LRU in reserved bytes. */
|
|
si_stqd (si_ai (si_lqd (si_from_ptr (entry), 48), 1),
|
|
si_from_ptr (entry), 48);
|
|
|
|
missreturn:
|
|
/* Check if the entry's lo_tag is equal to the address' lo_tag. */
|
|
etag_lo = si_lqd (si_from_ptr (entry), 0);
|
|
equal = si_ceq (etag_lo, si_from_uint (tag_lo));
|
|
#ifdef __EA64__
|
|
/* And the high tag too. */
|
|
etag_hi = si_lqd (si_from_ptr (entry), 16);
|
|
equal = si_and (equal, (si_ceq (etag_hi, si_from_uint (tag_hi))));
|
|
#endif
|
|
|
|
if ((si_to_uint (si_orx (equal)) == 0))
|
|
goto misshandler;
|
|
|
|
if (n_bytes_dirty)
|
|
{
|
|
/* way = 0x40,0x50,0x60,0x70 for each way, which is also the
|
|
offset of the appropriate dirty bits. */
|
|
way = si_shli (si_clz (si_gbb (equal)), 2);
|
|
|
|
/* To create the bit_mask, we set it to all 1s (uint -1), then we
|
|
shift it over (128 - n_bytes_dirty) times. */
|
|
|
|
bit_mask = si_from_uint (-1);
|
|
|
|
bit_mask =
|
|
si_shlqby (bit_mask, si_from_uint ((LINE_SIZE - n_bytes_dirty) / 8));
|
|
|
|
bit_mask =
|
|
si_shlqbi (bit_mask, si_from_uint ((LINE_SIZE - n_bytes_dirty) % 8));
|
|
|
|
/* Rotate it around to the correct offset. */
|
|
bit_mask =
|
|
si_rotqby (bit_mask,
|
|
si_from_uint (-1 * ((addr) ea & TAG_MASK) / 8));
|
|
|
|
bit_mask =
|
|
si_rotqbi (bit_mask,
|
|
si_from_uint (-1 * ((addr) ea & TAG_MASK) % 8));
|
|
|
|
/* Update the dirty bits. */
|
|
si_stqx (si_or (si_lqx (si_from_ptr (entry), way), bit_mask),
|
|
si_from_ptr (entry), way);
|
|
};
|
|
|
|
/* We've definitely found the right entry, set LRU (reserved) to 0
|
|
maintaining the LS flag (MSB). */
|
|
|
|
si_stqd (si_andc
|
|
(si_lqd (si_from_ptr (entry), 48),
|
|
si_and (equal, si_from_uint (~(LS_FLAG)))),
|
|
si_from_ptr (entry), 48);
|
|
|
|
return (void *)
|
|
si_to_uint (si_a
|
|
(si_orx
|
|
(si_and (si_lqd (si_from_ptr (entry), 32), equal)),
|
|
si_from_uint (((unsigned int) (addr) ea) & TAG_MASK)));
|
|
|
|
misshandler:
|
|
equal = si_ceqi (etag_lo, 1);
|
|
__cache_miss (ea, entry, (si_to_uint (si_clz (si_gbb (equal))) - 16) >> 2);
|
|
goto missreturn;
|
|
}
|
|
|
|
void *
|
|
__cache_fetch (__ea void *ea)
|
|
{
|
|
return __cache_fetch_dirty (ea, 0);
|
|
}
|
|
|
|
void
|
|
__cache_touch (__ea void *ea __attribute__ ((unused)))
|
|
{
|
|
/* NO-OP for now. */
|
|
}
|
|
|
|
void __cache_flush (void) __attribute__ ((destructor));
|
|
void
|
|
__cache_flush (void)
|
|
{
|
|
struct __cache_tag_array *entry = __cache_tag_array;
|
|
unsigned int i;
|
|
int j;
|
|
|
|
/* Cycle through each cache entry and evict all used ways. */
|
|
|
|
for (i = 0; i < CACHE_LINES / WAYS; i++)
|
|
{
|
|
for (j = 0; j < WAYS; j++)
|
|
if (!CHECK_EMPTY (entry, j))
|
|
__cache_evict_entry (entry, j);
|
|
|
|
entry++;
|
|
}
|
|
}
|