gcc/gcc/timevar.c
David Malcolm 2162235ef6 Move global state in timevar.c to a new "timer" class
gcc/ChangeLog:
	* timevar.c (timevar_enable): Delete in favor of...
	(g_timer): New global.
	(struct timevar_def): Move to timevar.h inside class timer.
	(struct timevar_stack_def): Likewise.
	(timevars): Delete global in favor of field "m_timevars" within
	class timer in timevar.h
	(stack): Likewise, in favor of field "m_stack".
	(unused_stack_instances): Likewise, in favor of field
	"m_unused_stack_instances".
	(start_time): Likewise, in favor of field "m_start_time".
	(get_time): Eliminate check for timevar_enable.
	(timer::timer): New function, built from part of timevar_init.
	(timevar_init): Rewrite idempotency test from using
	"timevar_enable" bool to using dynamic allocation of "g_timer".
	Move rest of implementation into timer's constructor.
	(timevar_push_1): Rename to...
	(timer::push): ...this, adding "m_" prefixes to variables that
	are now fields of timer.
	(timevar_pop_1): Likewise, rename to...
	(timer::pop): ...this, and add "m_" prefixes.
	(timevar_start): Replace test for "timevar_enable" with one for
	"g_timer", and move bulk of implementation to...
	(timer::start): ...here, adding "m_" prefixes.
	(timevar_stop): Likewise, from here...
	(timer::stop): ...to here.
	(timevar_cond_start): Likewise, from here...
	(timer::cond_start): ...to here.
	(timevar_cond_stop): Likewise, from here...
	(timer::cond_stop): ...to here.
	(validate_phases): Rename to...
	(timer::validate_phases): ...this, and add "m_" prefixes.  Make
	locals "total" and "tv" const.
	(timevar_print): Rename to...
	(timer::print): ...this, and add "m_" prefixes.  Make locals
	"total" and "tv" const.  Eliminate test for timevar_enable.
	* timevar.h (timevar_enable): Eliminate.
	(g_timer): New declaration.
	(timevar_push_1): Eliminate.
	(timevar_pop_1): Eliminate.
	(timevar_print): Eliminate.
	(class timer): New class.
	(timevar_push): Rewrite to use g_timer.
	(timevar_pop): Likewise.
	* toplev.c (toplev::~toplev): Likewise.

From-SVN: r223092
2015-05-12 17:29:32 +00:00

594 lines
16 KiB
C

/* Timing variables for measuring compiler performance.
Copyright (C) 2000-2015 Free Software Foundation, Inc.
Contributed by Alex Samuel <samuel@codesourcery.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "timevar.h"
#ifndef HAVE_CLOCK_T
typedef int clock_t;
#endif
#ifndef HAVE_STRUCT_TMS
struct tms
{
clock_t tms_utime;
clock_t tms_stime;
clock_t tms_cutime;
clock_t tms_cstime;
};
#endif
#ifndef RUSAGE_SELF
# define RUSAGE_SELF 0
#endif
/* Calculation of scale factor to convert ticks to microseconds.
We mustn't use CLOCKS_PER_SEC except with clock(). */
#if HAVE_SYSCONF && defined _SC_CLK_TCK
# define TICKS_PER_SECOND sysconf (_SC_CLK_TCK) /* POSIX 1003.1-1996 */
#else
# ifdef CLK_TCK
# define TICKS_PER_SECOND CLK_TCK /* POSIX 1003.1-1988; obsolescent */
# else
# ifdef HZ
# define TICKS_PER_SECOND HZ /* traditional UNIX */
# else
# define TICKS_PER_SECOND 100 /* often the correct value */
# endif
# endif
#endif
/* Prefer times to getrusage to clock (each gives successively less
information). */
#ifdef HAVE_TIMES
# if defined HAVE_DECL_TIMES && !HAVE_DECL_TIMES
extern clock_t times (struct tms *);
# endif
# define USE_TIMES
# define HAVE_USER_TIME
# define HAVE_SYS_TIME
# define HAVE_WALL_TIME
#else
#ifdef HAVE_GETRUSAGE
# if defined HAVE_DECL_GETRUSAGE && !HAVE_DECL_GETRUSAGE
extern int getrusage (int, struct rusage *);
# endif
# define USE_GETRUSAGE
# define HAVE_USER_TIME
# define HAVE_SYS_TIME
#else
#ifdef HAVE_CLOCK
# if defined HAVE_DECL_CLOCK && !HAVE_DECL_CLOCK
extern clock_t clock (void);
# endif
# define USE_CLOCK
# define HAVE_USER_TIME
#endif
#endif
#endif
/* libc is very likely to have snuck a call to sysconf() into one of
the underlying constants, and that can be very slow, so we have to
precompute them. Whose wonderful idea was it to make all those
_constants_ variable at run time, anyway? */
#ifdef USE_TIMES
static double ticks_to_msec;
#define TICKS_TO_MSEC (1 / (double)TICKS_PER_SECOND)
#endif
#ifdef USE_CLOCK
static double clocks_to_msec;
#define CLOCKS_TO_MSEC (1 / (double)CLOCKS_PER_SEC)
#endif
/* Non-NULL if timevars should be used. In GCC, this happens with
the -ftime-report flag. */
timer *g_timer;
/* Total amount of memory allocated by garbage collector. */
size_t timevar_ggc_mem_total;
/* The amount of memory that will cause us to report the timevar even
if the time spent is not significant. */
#define GGC_MEM_BOUND (1 << 20)
/* See timevar.h for an explanation of timing variables. */
static void get_time (struct timevar_time_def *);
static void timevar_accumulate (struct timevar_time_def *,
struct timevar_time_def *,
struct timevar_time_def *);
/* Fill the current times into TIME. The definition of this function
also defines any or all of the HAVE_USER_TIME, HAVE_SYS_TIME, and
HAVE_WALL_TIME macros. */
static void
get_time (struct timevar_time_def *now)
{
now->user = 0;
now->sys = 0;
now->wall = 0;
now->ggc_mem = timevar_ggc_mem_total;
{
#ifdef USE_TIMES
struct tms tms;
now->wall = times (&tms) * ticks_to_msec;
now->user = tms.tms_utime * ticks_to_msec;
now->sys = tms.tms_stime * ticks_to_msec;
#endif
#ifdef USE_GETRUSAGE
struct rusage rusage;
getrusage (RUSAGE_SELF, &rusage);
now->user = rusage.ru_utime.tv_sec + rusage.ru_utime.tv_usec * 1e-6;
now->sys = rusage.ru_stime.tv_sec + rusage.ru_stime.tv_usec * 1e-6;
#endif
#ifdef USE_CLOCK
now->user = clock () * clocks_to_msec;
#endif
}
}
/* Add the difference between STOP_TIME and START_TIME to TIMER. */
static void
timevar_accumulate (struct timevar_time_def *timer,
struct timevar_time_def *start_time,
struct timevar_time_def *stop_time)
{
timer->user += stop_time->user - start_time->user;
timer->sys += stop_time->sys - start_time->sys;
timer->wall += stop_time->wall - start_time->wall;
timer->ggc_mem += stop_time->ggc_mem - start_time->ggc_mem;
}
/* Class timer's constructor. */
timer::timer () :
m_stack (NULL),
m_unused_stack_instances (NULL),
m_start_time ()
{
/* Zero all elapsed times. */
memset (m_timevars, 0, sizeof (m_timevars));
/* Initialize the names of timing variables. */
#define DEFTIMEVAR(identifier__, name__) \
m_timevars[identifier__].name = name__;
#include "timevar.def"
#undef DEFTIMEVAR
/* Initialize configuration-specific state.
Ideally this would be one-time initialization. */
#ifdef USE_TIMES
ticks_to_msec = TICKS_TO_MSEC;
#endif
#ifdef USE_CLOCK
clocks_to_msec = CLOCKS_TO_MSEC;
#endif
}
/* Initialize timing variables. */
void
timevar_init (void)
{
if (g_timer)
return;
g_timer = new timer ();
}
/* Push TIMEVAR onto the timing stack. No further elapsed time is
attributed to the previous topmost timing variable on the stack;
subsequent elapsed time is attributed to TIMEVAR, until it is
popped or another element is pushed on top.
TIMEVAR cannot be running as a standalone timer. */
void
timer::push (timevar_id_t timevar)
{
struct timevar_def *tv = &m_timevars[timevar];
struct timevar_stack_def *context;
struct timevar_time_def now;
/* Mark this timing variable as used. */
tv->used = 1;
/* Can't push a standalone timer. */
gcc_assert (!tv->standalone);
/* What time is it? */
get_time (&now);
/* If the stack isn't empty, attribute the current elapsed time to
the old topmost element. */
if (m_stack)
timevar_accumulate (&m_stack->timevar->elapsed, &m_start_time, &now);
/* Reset the start time; from now on, time is attributed to
TIMEVAR. */
m_start_time = now;
/* See if we have a previously-allocated stack instance. If so,
take it off the list. If not, malloc a new one. */
if (m_unused_stack_instances != NULL)
{
context = m_unused_stack_instances;
m_unused_stack_instances = m_unused_stack_instances->next;
}
else
context = XNEW (struct timevar_stack_def);
/* Fill it in and put it on the stack. */
context->timevar = tv;
context->next = m_stack;
m_stack = context;
}
/* Pop the topmost timing variable element off the timing stack. The
popped variable must be TIMEVAR. Elapsed time since the that
element was pushed on, or since it was last exposed on top of the
stack when the element above it was popped off, is credited to that
timing variable. */
void
timer::pop (timevar_id_t timevar)
{
struct timevar_time_def now;
struct timevar_stack_def *popped = m_stack;
gcc_assert (&m_timevars[timevar] == m_stack->timevar);
/* What time is it? */
get_time (&now);
/* Attribute the elapsed time to the element we're popping. */
timevar_accumulate (&popped->timevar->elapsed, &m_start_time, &now);
/* Reset the start time; from now on, time is attributed to the
element just exposed on the stack. */
m_start_time = now;
/* Take the item off the stack. */
m_stack = m_stack->next;
/* Don't delete the stack element; instead, add it to the list of
unused elements for later use. */
popped->next = m_unused_stack_instances;
m_unused_stack_instances = popped;
}
/* Start timing TIMEVAR independently of the timing stack. Elapsed
time until timevar_stop is called for the same timing variable is
attributed to TIMEVAR. */
void
timevar_start (timevar_id_t timevar)
{
if (!g_timer)
return;
g_timer->start (timevar);
}
/* See timevar_start above. */
void
timer::start (timevar_id_t timevar)
{
struct timevar_def *tv = &m_timevars[timevar];
/* Mark this timing variable as used. */
tv->used = 1;
/* Don't allow the same timing variable to be started more than
once. */
gcc_assert (!tv->standalone);
tv->standalone = 1;
get_time (&tv->start_time);
}
/* Stop timing TIMEVAR. Time elapsed since timevar_start was called
is attributed to it. */
void
timevar_stop (timevar_id_t timevar)
{
if (!g_timer)
return;
g_timer->stop (timevar);
}
/* See timevar_stop above. */
void
timer::stop (timevar_id_t timevar)
{
struct timevar_def *tv = &m_timevars[timevar];
struct timevar_time_def now;
/* TIMEVAR must have been started via timevar_start. */
gcc_assert (tv->standalone);
tv->standalone = 0; /* Enable a restart. */
get_time (&now);
timevar_accumulate (&tv->elapsed, &tv->start_time, &now);
}
/* Conditionally start timing TIMEVAR independently of the timing stack.
If the timer is already running, leave it running and return true.
Otherwise, start the timer and return false.
Elapsed time until the corresponding timevar_cond_stop
is called for the same timing variable is attributed to TIMEVAR. */
bool
timevar_cond_start (timevar_id_t timevar)
{
if (!g_timer)
return false;
return g_timer->cond_start (timevar);
}
/* See timevar_cond_start above. */
bool
timer::cond_start (timevar_id_t timevar)
{
struct timevar_def *tv = &m_timevars[timevar];
/* Mark this timing variable as used. */
tv->used = 1;
if (tv->standalone)
return true; /* The timevar is already running. */
/* Don't allow the same timing variable
to be unconditionally started more than once. */
tv->standalone = 1;
get_time (&tv->start_time);
return false; /* The timevar was not already running. */
}
/* Conditionally stop timing TIMEVAR. The RUNNING parameter must come
from the return value of a dynamically matching timevar_cond_start.
If the timer had already been RUNNING, do nothing. Otherwise, time
elapsed since timevar_cond_start was called is attributed to it. */
void
timevar_cond_stop (timevar_id_t timevar, bool running)
{
if (!g_timer || running)
return;
g_timer->cond_stop (timevar);
}
/* See timevar_cond_stop above. */
void
timer::cond_stop (timevar_id_t timevar)
{
struct timevar_def *tv;
struct timevar_time_def now;
tv = &m_timevars[timevar];
/* TIMEVAR must have been started via timevar_cond_start. */
gcc_assert (tv->standalone);
tv->standalone = 0; /* Enable a restart. */
get_time (&now);
timevar_accumulate (&tv->elapsed, &tv->start_time, &now);
}
/* Validate that phase times are consistent. */
void
timer::validate_phases (FILE *fp) const
{
unsigned int /* timevar_id_t */ id;
const timevar_time_def *total = &m_timevars[TV_TOTAL].elapsed;
double phase_user = 0.0;
double phase_sys = 0.0;
double phase_wall = 0.0;
size_t phase_ggc_mem = 0;
static char phase_prefix[] = "phase ";
const double tolerance = 1.000001; /* One part in a million. */
for (id = 0; id < (unsigned int) TIMEVAR_LAST; ++id)
{
const timevar_def *tv = &m_timevars[(timevar_id_t) id];
/* Don't evaluate timing variables that were never used. */
if (!tv->used)
continue;
if (strncmp (tv->name, phase_prefix, sizeof phase_prefix - 1) == 0)
{
phase_user += tv->elapsed.user;
phase_sys += tv->elapsed.sys;
phase_wall += tv->elapsed.wall;
phase_ggc_mem += tv->elapsed.ggc_mem;
}
}
if (phase_user > total->user * tolerance
|| phase_sys > total->sys * tolerance
|| phase_wall > total->wall * tolerance
|| phase_ggc_mem > total->ggc_mem * tolerance)
{
fprintf (fp, "Timing error: total of phase timers exceeds total time.\n");
if (phase_user > total->user)
fprintf (fp, "user %24.18e > %24.18e\n", phase_user, total->user);
if (phase_sys > total->sys)
fprintf (fp, "sys %24.18e > %24.18e\n", phase_sys, total->sys);
if (phase_wall > total->wall)
fprintf (fp, "wall %24.18e > %24.18e\n", phase_wall, total->wall);
if (phase_ggc_mem > total->ggc_mem)
fprintf (fp, "ggc_mem %24lu > %24lu\n", (unsigned long)phase_ggc_mem,
(unsigned long)total->ggc_mem);
gcc_unreachable ();
}
}
/* Summarize timing variables to FP. The timing variable TV_TOTAL has
a special meaning -- it's considered to be the total elapsed time,
for normalizing the others, and is displayed last. */
void
timer::print (FILE *fp)
{
/* Only print stuff if we have some sort of time information. */
#if defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME) || defined (HAVE_WALL_TIME)
unsigned int /* timevar_id_t */ id;
const timevar_time_def *total = &m_timevars[TV_TOTAL].elapsed;
struct timevar_time_def now;
/* Update timing information in case we're calling this from GDB. */
if (fp == 0)
fp = stderr;
/* What time is it? */
get_time (&now);
/* If the stack isn't empty, attribute the current elapsed time to
the old topmost element. */
if (m_stack)
timevar_accumulate (&m_stack->timevar->elapsed, &m_start_time, &now);
/* Reset the start time; from now on, time is attributed to
TIMEVAR. */
m_start_time = now;
fputs ("\nExecution times (seconds)\n", fp);
for (id = 0; id < (unsigned int) TIMEVAR_LAST; ++id)
{
const timevar_def *tv = &m_timevars[(timevar_id_t) id];
const double tiny = 5e-3;
/* Don't print the total execution time here; that goes at the
end. */
if ((timevar_id_t) id == TV_TOTAL)
continue;
/* Don't print timing variables that were never used. */
if (!tv->used)
continue;
/* Don't print timing variables if we're going to get a row of
zeroes. */
if (tv->elapsed.user < tiny
&& tv->elapsed.sys < tiny
&& tv->elapsed.wall < tiny
&& tv->elapsed.ggc_mem < GGC_MEM_BOUND)
continue;
/* The timing variable name. */
fprintf (fp, " %-24s:", tv->name);
#ifdef HAVE_USER_TIME
/* Print user-mode time for this process. */
fprintf (fp, "%7.2f (%2.0f%%) usr",
tv->elapsed.user,
(total->user == 0 ? 0 : tv->elapsed.user / total->user) * 100);
#endif /* HAVE_USER_TIME */
#ifdef HAVE_SYS_TIME
/* Print system-mode time for this process. */
fprintf (fp, "%7.2f (%2.0f%%) sys",
tv->elapsed.sys,
(total->sys == 0 ? 0 : tv->elapsed.sys / total->sys) * 100);
#endif /* HAVE_SYS_TIME */
#ifdef HAVE_WALL_TIME
/* Print wall clock time elapsed. */
fprintf (fp, "%7.2f (%2.0f%%) wall",
tv->elapsed.wall,
(total->wall == 0 ? 0 : tv->elapsed.wall / total->wall) * 100);
#endif /* HAVE_WALL_TIME */
/* Print the amount of ggc memory allocated. */
fprintf (fp, "%8u kB (%2.0f%%) ggc",
(unsigned) (tv->elapsed.ggc_mem >> 10),
(total->ggc_mem == 0
? 0
: (float) tv->elapsed.ggc_mem / total->ggc_mem) * 100);
putc ('\n', fp);
}
/* Print total time. */
fputs (" TOTAL :", fp);
#ifdef HAVE_USER_TIME
fprintf (fp, "%7.2f ", total->user);
#endif
#ifdef HAVE_SYS_TIME
fprintf (fp, "%7.2f ", total->sys);
#endif
#ifdef HAVE_WALL_TIME
fprintf (fp, "%7.2f ", total->wall);
#endif
fprintf (fp, "%8u kB\n", (unsigned) (total->ggc_mem >> 10));
#ifdef ENABLE_CHECKING
fprintf (fp, "Extra diagnostic checks enabled; compiler may run slowly.\n");
fprintf (fp, "Configure with --enable-checking=release to disable checks.\n");
#endif
#ifndef ENABLE_ASSERT_CHECKING
fprintf (fp, "Internal checks disabled; compiler is not suited for release.\n");
fprintf (fp, "Configure with --enable-checking=release to enable checks.\n");
#endif
#endif /* defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME)
|| defined (HAVE_WALL_TIME) */
validate_phases (fp);
}
/* Prints a message to stderr stating that time elapsed in STR is
TOTAL (given in microseconds). */
void
print_time (const char *str, long total)
{
long all_time = get_run_time ();
fprintf (stderr,
"time in %s: %ld.%06ld (%ld%%)\n",
str, total / 1000000, total % 1000000,
all_time == 0 ? 0
: (long) (((100.0 * (double) total) / (double) all_time) + .5));
}