42d9f14bab
These headers were missed in the previous commit for this bug. There are also several "" includes in the profile mode headers, but because they're deprecated I'm not fixing them. * include/backward/hash_map: Use <> for includes not "". * include/backward/hash_set: Likewise. * include/backward/strstream: Likewise. * include/tr1/bessel_function.tcc: Likewise. * include/tr1/exp_integral.tcc: Likewise. * include/tr1/legendre_function.tcc: Likewise. * include/tr1/modified_bessel_func.tcc: Likewise. * include/tr1/riemann_zeta.tcc: Likewise. From-SVN: r269835
305 lines
10 KiB
C++
305 lines
10 KiB
C++
// Special functions -*- C++ -*-
|
|
|
|
// Copyright (C) 2006-2019 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 3, or (at your option)
|
|
// any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// Under Section 7 of GPL version 3, you are granted additional
|
|
// permissions described in the GCC Runtime Library Exception, version
|
|
// 3.1, as published by the Free Software Foundation.
|
|
|
|
// You should have received a copy of the GNU General Public License and
|
|
// a copy of the GCC Runtime Library Exception along with this program;
|
|
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
// <http://www.gnu.org/licenses/>.
|
|
|
|
/** @file tr1/legendre_function.tcc
|
|
* This is an internal header file, included by other library headers.
|
|
* Do not attempt to use it directly. @headername{tr1/cmath}
|
|
*/
|
|
|
|
//
|
|
// ISO C++ 14882 TR1: 5.2 Special functions
|
|
//
|
|
|
|
// Written by Edward Smith-Rowland based on:
|
|
// (1) Handbook of Mathematical Functions,
|
|
// ed. Milton Abramowitz and Irene A. Stegun,
|
|
// Dover Publications,
|
|
// Section 8, pp. 331-341
|
|
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
|
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
|
|
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
|
|
// 2nd ed, pp. 252-254
|
|
|
|
#ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
|
|
#define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1
|
|
|
|
#include <tr1/special_function_util.h>
|
|
|
|
namespace std _GLIBCXX_VISIBILITY(default)
|
|
{
|
|
_GLIBCXX_BEGIN_NAMESPACE_VERSION
|
|
|
|
#if _GLIBCXX_USE_STD_SPEC_FUNCS
|
|
# define _GLIBCXX_MATH_NS ::std
|
|
#elif defined(_GLIBCXX_TR1_CMATH)
|
|
namespace tr1
|
|
{
|
|
# define _GLIBCXX_MATH_NS ::std::tr1
|
|
#else
|
|
# error do not include this header directly, use <cmath> or <tr1/cmath>
|
|
#endif
|
|
// [5.2] Special functions
|
|
|
|
// Implementation-space details.
|
|
namespace __detail
|
|
{
|
|
/**
|
|
* @brief Return the Legendre polynomial by recursion on degree
|
|
* @f$ l @f$.
|
|
*
|
|
* The Legendre function of @f$ l @f$ and @f$ x @f$,
|
|
* @f$ P_l(x) @f$, is defined by:
|
|
* @f[
|
|
* P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
|
|
* @f]
|
|
*
|
|
* @param l The degree of the Legendre polynomial. @f$l >= 0@f$.
|
|
* @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__poly_legendre_p(unsigned int __l, _Tp __x)
|
|
{
|
|
|
|
if (__isnan(__x))
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
|
else if (__x == +_Tp(1))
|
|
return +_Tp(1);
|
|
else if (__x == -_Tp(1))
|
|
return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));
|
|
else
|
|
{
|
|
_Tp __p_lm2 = _Tp(1);
|
|
if (__l == 0)
|
|
return __p_lm2;
|
|
|
|
_Tp __p_lm1 = __x;
|
|
if (__l == 1)
|
|
return __p_lm1;
|
|
|
|
_Tp __p_l = 0;
|
|
for (unsigned int __ll = 2; __ll <= __l; ++__ll)
|
|
{
|
|
// This arrangement is supposed to be better for roundoff
|
|
// protection, Arfken, 2nd Ed, Eq 12.17a.
|
|
__p_l = _Tp(2) * __x * __p_lm1 - __p_lm2
|
|
- (__x * __p_lm1 - __p_lm2) / _Tp(__ll);
|
|
__p_lm2 = __p_lm1;
|
|
__p_lm1 = __p_l;
|
|
}
|
|
|
|
return __p_l;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the associated Legendre function by recursion
|
|
* on @f$ l @f$.
|
|
*
|
|
* The associated Legendre function is derived from the Legendre function
|
|
* @f$ P_l(x) @f$ by the Rodrigues formula:
|
|
* @f[
|
|
* P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
|
|
* @f]
|
|
* @note @f$ P_l^m(x) = 0 @f$ if @f$ m > l @f$.
|
|
*
|
|
* @param l The degree of the associated Legendre function.
|
|
* @f$ l >= 0 @f$.
|
|
* @param m The order of the associated Legendre function.
|
|
* @param x The argument of the associated Legendre function.
|
|
* @f$ |x| <= 1 @f$.
|
|
* @param phase The phase of the associated Legendre function.
|
|
* Use -1 for the Condon-Shortley phase convention.
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x,
|
|
_Tp __phase = _Tp(+1))
|
|
{
|
|
|
|
if (__m > __l)
|
|
return _Tp(0);
|
|
else if (__isnan(__x))
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
|
else if (__m == 0)
|
|
return __poly_legendre_p(__l, __x);
|
|
else
|
|
{
|
|
_Tp __p_mm = _Tp(1);
|
|
if (__m > 0)
|
|
{
|
|
// Two square roots seem more accurate more of the time
|
|
// than just one.
|
|
_Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);
|
|
_Tp __fact = _Tp(1);
|
|
for (unsigned int __i = 1; __i <= __m; ++__i)
|
|
{
|
|
__p_mm *= __phase * __fact * __root;
|
|
__fact += _Tp(2);
|
|
}
|
|
}
|
|
if (__l == __m)
|
|
return __p_mm;
|
|
|
|
_Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;
|
|
if (__l == __m + 1)
|
|
return __p_mp1m;
|
|
|
|
_Tp __p_lm2m = __p_mm;
|
|
_Tp __P_lm1m = __p_mp1m;
|
|
_Tp __p_lm = _Tp(0);
|
|
for (unsigned int __j = __m + 2; __j <= __l; ++__j)
|
|
{
|
|
__p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m
|
|
- _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);
|
|
__p_lm2m = __P_lm1m;
|
|
__P_lm1m = __p_lm;
|
|
}
|
|
|
|
return __p_lm;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the spherical associated Legendre function.
|
|
*
|
|
* The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,
|
|
* and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where
|
|
* @f[
|
|
* Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}
|
|
* \frac{(l-m)!}{(l+m)!}]
|
|
* P_l^m(\cos\theta) \exp^{im\phi}
|
|
* @f]
|
|
* is the spherical harmonic function and @f$ P_l^m(x) @f$ is the
|
|
* associated Legendre function.
|
|
*
|
|
* This function differs from the associated Legendre function by
|
|
* argument (@f$x = \cos(\theta)@f$) and by a normalization factor
|
|
* but this factor is rather large for large @f$ l @f$ and @f$ m @f$
|
|
* and so this function is stable for larger differences of @f$ l @f$
|
|
* and @f$ m @f$.
|
|
* @note Unlike the case for __assoc_legendre_p the Condon-Shortley
|
|
* phase factor @f$ (-1)^m @f$ is present here.
|
|
* @note @f$ Y_l^m(\theta) = 0 @f$ if @f$ m > l @f$.
|
|
*
|
|
* @param l The degree of the spherical associated Legendre function.
|
|
* @f$ l >= 0 @f$.
|
|
* @param m The order of the spherical associated Legendre function.
|
|
* @param theta The radian angle argument of the spherical associated
|
|
* Legendre function.
|
|
*/
|
|
template <typename _Tp>
|
|
_Tp
|
|
__sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
|
|
{
|
|
if (__isnan(__theta))
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
|
|
|
const _Tp __x = std::cos(__theta);
|
|
|
|
if (__m > __l)
|
|
return _Tp(0);
|
|
else if (__m == 0)
|
|
{
|
|
_Tp __P = __poly_legendre_p(__l, __x);
|
|
_Tp __fact = std::sqrt(_Tp(2 * __l + 1)
|
|
/ (_Tp(4) * __numeric_constants<_Tp>::__pi()));
|
|
__P *= __fact;
|
|
return __P;
|
|
}
|
|
else if (__x == _Tp(1) || __x == -_Tp(1))
|
|
{
|
|
// m > 0 here
|
|
return _Tp(0);
|
|
}
|
|
else
|
|
{
|
|
// m > 0 and |x| < 1 here
|
|
|
|
// Starting value for recursion.
|
|
// Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )
|
|
// (-1)^m (1-x^2)^(m/2) / pi^(1/4)
|
|
const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));
|
|
const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
|
const _Tp __lncirc = _GLIBCXX_MATH_NS::log1p(-__x * __x);
|
|
#else
|
|
const _Tp __lncirc = std::log(_Tp(1) - __x * __x);
|
|
#endif
|
|
// Gamma(m+1/2) / Gamma(m)
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
|
const _Tp __lnpoch = _GLIBCXX_MATH_NS::lgamma(_Tp(__m + _Tp(0.5L)))
|
|
- _GLIBCXX_MATH_NS::lgamma(_Tp(__m));
|
|
#else
|
|
const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))
|
|
- __log_gamma(_Tp(__m));
|
|
#endif
|
|
const _Tp __lnpre_val =
|
|
-_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
|
|
+ _Tp(0.5L) * (__lnpoch + __m * __lncirc);
|
|
const _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
|
|
/ (_Tp(4) * __numeric_constants<_Tp>::__pi()));
|
|
_Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
|
|
_Tp __y_mp1m = __y_mp1m_factor * __y_mm;
|
|
|
|
if (__l == __m)
|
|
return __y_mm;
|
|
else if (__l == __m + 1)
|
|
return __y_mp1m;
|
|
else
|
|
{
|
|
_Tp __y_lm = _Tp(0);
|
|
|
|
// Compute Y_l^m, l > m+1, upward recursion on l.
|
|
for (int __ll = __m + 2; __ll <= __l; ++__ll)
|
|
{
|
|
const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);
|
|
const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);
|
|
const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)
|
|
* _Tp(2 * __ll - 1));
|
|
const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)
|
|
/ _Tp(2 * __ll - 3));
|
|
__y_lm = (__x * __y_mp1m * __fact1
|
|
- (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);
|
|
__y_mm = __y_mp1m;
|
|
__y_mp1m = __y_lm;
|
|
}
|
|
|
|
return __y_lm;
|
|
}
|
|
}
|
|
}
|
|
} // namespace __detail
|
|
#undef _GLIBCXX_MATH_NS
|
|
#if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
|
|
} // namespace tr1
|
|
#endif
|
|
|
|
_GLIBCXX_END_NAMESPACE_VERSION
|
|
}
|
|
|
|
#endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
|