c2047754c3
Compiler changes: * Change map assignment to use mapassign and assign value directly. * Change string iteration to use decoderune, faster for ASCII strings. * Change makeslice to take int, and use makeslice64 for larger values. * Add new noverflow field to hmap struct used for maps. Unresolved problems, to be fixed later: * Commented out test in go/types/sizes_test.go that doesn't compile. * Commented out reflect.TestStructOf test for padding after zero-sized field. Reviewed-on: https://go-review.googlesource.com/35231 gotools/: Updates for Go 1.8rc1. * Makefile.am (go_cmd_go_files): Add bug.go. (s-zdefaultcc): Write defaultPkgConfig. * Makefile.in: Rebuild. From-SVN: r244456
1203 lines
36 KiB
Go
1203 lines
36 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
// This file contains the implementation of Go's map type.
|
|
//
|
|
// A map is just a hash table. The data is arranged
|
|
// into an array of buckets. Each bucket contains up to
|
|
// 8 key/value pairs. The low-order bits of the hash are
|
|
// used to select a bucket. Each bucket contains a few
|
|
// high-order bits of each hash to distinguish the entries
|
|
// within a single bucket.
|
|
//
|
|
// If more than 8 keys hash to a bucket, we chain on
|
|
// extra buckets.
|
|
//
|
|
// When the hashtable grows, we allocate a new array
|
|
// of buckets twice as big. Buckets are incrementally
|
|
// copied from the old bucket array to the new bucket array.
|
|
//
|
|
// Map iterators walk through the array of buckets and
|
|
// return the keys in walk order (bucket #, then overflow
|
|
// chain order, then bucket index). To maintain iteration
|
|
// semantics, we never move keys within their bucket (if
|
|
// we did, keys might be returned 0 or 2 times). When
|
|
// growing the table, iterators remain iterating through the
|
|
// old table and must check the new table if the bucket
|
|
// they are iterating through has been moved ("evacuated")
|
|
// to the new table.
|
|
|
|
// Picking loadFactor: too large and we have lots of overflow
|
|
// buckets, too small and we waste a lot of space. I wrote
|
|
// a simple program to check some stats for different loads:
|
|
// (64-bit, 8 byte keys and values)
|
|
// loadFactor %overflow bytes/entry hitprobe missprobe
|
|
// 4.00 2.13 20.77 3.00 4.00
|
|
// 4.50 4.05 17.30 3.25 4.50
|
|
// 5.00 6.85 14.77 3.50 5.00
|
|
// 5.50 10.55 12.94 3.75 5.50
|
|
// 6.00 15.27 11.67 4.00 6.00
|
|
// 6.50 20.90 10.79 4.25 6.50
|
|
// 7.00 27.14 10.15 4.50 7.00
|
|
// 7.50 34.03 9.73 4.75 7.50
|
|
// 8.00 41.10 9.40 5.00 8.00
|
|
//
|
|
// %overflow = percentage of buckets which have an overflow bucket
|
|
// bytes/entry = overhead bytes used per key/value pair
|
|
// hitprobe = # of entries to check when looking up a present key
|
|
// missprobe = # of entries to check when looking up an absent key
|
|
//
|
|
// Keep in mind this data is for maximally loaded tables, i.e. just
|
|
// before the table grows. Typical tables will be somewhat less loaded.
|
|
|
|
import (
|
|
"runtime/internal/atomic"
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
// For gccgo, use go:linkname to rename compiler-called functions to
|
|
// themselves, so that the compiler will export them.
|
|
//
|
|
//go:linkname makemap runtime.makemap
|
|
//go:linkname mapaccess1 runtime.mapaccess1
|
|
//go:linkname mapaccess2 runtime.mapaccess2
|
|
//go:linkname mapaccess1_fat runtime.mapaccess1_fat
|
|
//go:linkname mapaccess2_fat runtime.mapaccess2_fat
|
|
//go:linkname mapassign runtime.mapassign
|
|
//go:linkname mapdelete runtime.mapdelete
|
|
//go:linkname mapiterinit runtime.mapiterinit
|
|
//go:linkname mapiternext runtime.mapiternext
|
|
|
|
const (
|
|
// Maximum number of key/value pairs a bucket can hold.
|
|
bucketCntBits = 3
|
|
bucketCnt = 1 << bucketCntBits
|
|
|
|
// Maximum average load of a bucket that triggers growth.
|
|
loadFactor = 6.5
|
|
|
|
// Maximum key or value size to keep inline (instead of mallocing per element).
|
|
// Must fit in a uint8.
|
|
// Fast versions cannot handle big values - the cutoff size for
|
|
// fast versions in ../../cmd/internal/gc/walk.go must be at most this value.
|
|
maxKeySize = 128
|
|
maxValueSize = 128
|
|
|
|
// data offset should be the size of the bmap struct, but needs to be
|
|
// aligned correctly. For amd64p32 this means 64-bit alignment
|
|
// even though pointers are 32 bit.
|
|
dataOffset = unsafe.Offsetof(struct {
|
|
b bmap
|
|
v int64
|
|
}{}.v)
|
|
|
|
// Possible tophash values. We reserve a few possibilities for special marks.
|
|
// Each bucket (including its overflow buckets, if any) will have either all or none of its
|
|
// entries in the evacuated* states (except during the evacuate() method, which only happens
|
|
// during map writes and thus no one else can observe the map during that time).
|
|
empty = 0 // cell is empty
|
|
evacuatedEmpty = 1 // cell is empty, bucket is evacuated.
|
|
evacuatedX = 2 // key/value is valid. Entry has been evacuated to first half of larger table.
|
|
evacuatedY = 3 // same as above, but evacuated to second half of larger table.
|
|
minTopHash = 4 // minimum tophash for a normal filled cell.
|
|
|
|
// flags
|
|
iterator = 1 // there may be an iterator using buckets
|
|
oldIterator = 2 // there may be an iterator using oldbuckets
|
|
hashWriting = 4 // a goroutine is writing to the map
|
|
sameSizeGrow = 8 // the current map growth is to a new map of the same size
|
|
|
|
// sentinel bucket ID for iterator checks
|
|
noCheck = 1<<(8*sys.PtrSize) - 1
|
|
)
|
|
|
|
// A header for a Go map.
|
|
type hmap struct {
|
|
// Note: the format of the Hmap is encoded in ../../cmd/internal/gc/reflect.go and
|
|
// ../reflect/type.go. Don't change this structure without also changing that code!
|
|
count int // # live cells == size of map. Must be first (used by len() builtin)
|
|
flags uint8
|
|
B uint8 // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
|
|
noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
|
|
hash0 uint32 // hash seed
|
|
|
|
buckets unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
|
|
oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
|
|
nevacuate uintptr // progress counter for evacuation (buckets less than this have been evacuated)
|
|
|
|
// If both key and value do not contain pointers and are inline, then we mark bucket
|
|
// type as containing no pointers. This avoids scanning such maps.
|
|
// However, bmap.overflow is a pointer. In order to keep overflow buckets
|
|
// alive, we store pointers to all overflow buckets in hmap.overflow.
|
|
// Overflow is used only if key and value do not contain pointers.
|
|
// overflow[0] contains overflow buckets for hmap.buckets.
|
|
// overflow[1] contains overflow buckets for hmap.oldbuckets.
|
|
// The first indirection allows us to reduce static size of hmap.
|
|
// The second indirection allows to store a pointer to the slice in hiter.
|
|
overflow *[2]*[]*bmap
|
|
}
|
|
|
|
// A bucket for a Go map.
|
|
type bmap struct {
|
|
// tophash generally contains the top byte of the hash value
|
|
// for each key in this bucket. If tophash[0] < minTopHash,
|
|
// tophash[0] is a bucket evacuation state instead.
|
|
tophash [bucketCnt]uint8
|
|
// Followed by bucketCnt keys and then bucketCnt values.
|
|
// NOTE: packing all the keys together and then all the values together makes the
|
|
// code a bit more complicated than alternating key/value/key/value/... but it allows
|
|
// us to eliminate padding which would be needed for, e.g., map[int64]int8.
|
|
// Followed by an overflow pointer.
|
|
}
|
|
|
|
// A hash iteration structure.
|
|
// If you modify hiter, also change cmd/internal/gc/reflect.go to indicate
|
|
// the layout of this structure.
|
|
type hiter struct {
|
|
key unsafe.Pointer // Must be in first position. Write nil to indicate iteration end (see cmd/internal/gc/range.go).
|
|
value unsafe.Pointer // Must be in second position (see cmd/internal/gc/range.go).
|
|
t *maptype
|
|
h *hmap
|
|
buckets unsafe.Pointer // bucket ptr at hash_iter initialization time
|
|
bptr *bmap // current bucket
|
|
overflow [2]*[]*bmap // keeps overflow buckets alive
|
|
startBucket uintptr // bucket iteration started at
|
|
offset uint8 // intra-bucket offset to start from during iteration (should be big enough to hold bucketCnt-1)
|
|
wrapped bool // already wrapped around from end of bucket array to beginning
|
|
B uint8
|
|
i uint8
|
|
bucket uintptr
|
|
checkBucket uintptr
|
|
}
|
|
|
|
func evacuated(b *bmap) bool {
|
|
h := b.tophash[0]
|
|
return h > empty && h < minTopHash
|
|
}
|
|
|
|
func (b *bmap) overflow(t *maptype) *bmap {
|
|
return *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize))
|
|
}
|
|
|
|
// incrnoverflow increments h.noverflow.
|
|
// noverflow counts the number of overflow buckets.
|
|
// This is used to trigger same-size map growth.
|
|
// See also tooManyOverflowBuckets.
|
|
// To keep hmap small, noverflow is a uint16.
|
|
// When there are few buckets, noverflow is an exact count.
|
|
// When there are many buckets, noverflow is an approximate count.
|
|
func (h *hmap) incrnoverflow() {
|
|
// We trigger same-size map growth if there are
|
|
// as many overflow buckets as buckets.
|
|
// We need to be able to count to 1<<h.B.
|
|
if h.B < 16 {
|
|
h.noverflow++
|
|
return
|
|
}
|
|
// Increment with probability 1/(1<<(h.B-15)).
|
|
// When we reach 1<<15 - 1, we will have approximately
|
|
// as many overflow buckets as buckets.
|
|
mask := uint32(1)<<(h.B-15) - 1
|
|
// Example: if h.B == 18, then mask == 7,
|
|
// and fastrand & 7 == 0 with probability 1/8.
|
|
if fastrand()&mask == 0 {
|
|
h.noverflow++
|
|
}
|
|
}
|
|
|
|
func (h *hmap) setoverflow(t *maptype, b, ovf *bmap) {
|
|
h.incrnoverflow()
|
|
if t.bucket.kind&kindNoPointers != 0 {
|
|
h.createOverflow()
|
|
*h.overflow[0] = append(*h.overflow[0], ovf)
|
|
}
|
|
*(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize)) = ovf
|
|
}
|
|
|
|
func (h *hmap) createOverflow() {
|
|
if h.overflow == nil {
|
|
h.overflow = new([2]*[]*bmap)
|
|
}
|
|
if h.overflow[0] == nil {
|
|
h.overflow[0] = new([]*bmap)
|
|
}
|
|
}
|
|
|
|
// makemap implements a Go map creation make(map[k]v, hint)
|
|
// If the compiler has determined that the map or the first bucket
|
|
// can be created on the stack, h and/or bucket may be non-nil.
|
|
// If h != nil, the map can be created directly in h.
|
|
// If bucket != nil, bucket can be used as the first bucket.
|
|
func makemap(t *maptype, hint int64, h *hmap, bucket unsafe.Pointer) *hmap {
|
|
if sz := unsafe.Sizeof(hmap{}); sz > 48 || sz != t.hmap.size {
|
|
println("runtime: sizeof(hmap) =", sz, ", t.hmap.size =", t.hmap.size)
|
|
throw("bad hmap size")
|
|
}
|
|
|
|
if hint < 0 || int64(int32(hint)) != hint {
|
|
panic(plainError("makemap: size out of range"))
|
|
// TODO: make hint an int, then none of this nonsense
|
|
}
|
|
|
|
if !ismapkey(t.key) {
|
|
throw("runtime.makemap: unsupported map key type")
|
|
}
|
|
|
|
// check compiler's and reflect's math
|
|
if t.key.size > maxKeySize && (!t.indirectkey || t.keysize != uint8(sys.PtrSize)) ||
|
|
t.key.size <= maxKeySize && (t.indirectkey || t.keysize != uint8(t.key.size)) {
|
|
throw("key size wrong")
|
|
}
|
|
if t.elem.size > maxValueSize && (!t.indirectvalue || t.valuesize != uint8(sys.PtrSize)) ||
|
|
t.elem.size <= maxValueSize && (t.indirectvalue || t.valuesize != uint8(t.elem.size)) {
|
|
throw("value size wrong")
|
|
}
|
|
|
|
// invariants we depend on. We should probably check these at compile time
|
|
// somewhere, but for now we'll do it here.
|
|
if t.key.align > bucketCnt {
|
|
throw("key align too big")
|
|
}
|
|
if t.elem.align > bucketCnt {
|
|
throw("value align too big")
|
|
}
|
|
if t.key.size%uintptr(t.key.align) != 0 {
|
|
throw("key size not a multiple of key align")
|
|
}
|
|
if t.elem.size%uintptr(t.elem.align) != 0 {
|
|
throw("value size not a multiple of value align")
|
|
}
|
|
if bucketCnt < 8 {
|
|
throw("bucketsize too small for proper alignment")
|
|
}
|
|
if dataOffset%uintptr(t.key.align) != 0 {
|
|
throw("need padding in bucket (key)")
|
|
}
|
|
if dataOffset%uintptr(t.elem.align) != 0 {
|
|
throw("need padding in bucket (value)")
|
|
}
|
|
|
|
// find size parameter which will hold the requested # of elements
|
|
B := uint8(0)
|
|
for ; overLoadFactor(hint, B); B++ {
|
|
}
|
|
|
|
// allocate initial hash table
|
|
// if B == 0, the buckets field is allocated lazily later (in mapassign)
|
|
// If hint is large zeroing this memory could take a while.
|
|
buckets := bucket
|
|
if B != 0 {
|
|
buckets = newarray(t.bucket, 1<<B)
|
|
}
|
|
|
|
// initialize Hmap
|
|
if h == nil {
|
|
h = (*hmap)(newobject(t.hmap))
|
|
}
|
|
h.count = 0
|
|
h.B = B
|
|
h.flags = 0
|
|
h.hash0 = fastrand()
|
|
h.buckets = buckets
|
|
h.oldbuckets = nil
|
|
h.nevacuate = 0
|
|
h.noverflow = 0
|
|
|
|
return h
|
|
}
|
|
|
|
// mapaccess1 returns a pointer to h[key]. Never returns nil, instead
|
|
// it will return a reference to the zero object for the value type if
|
|
// the key is not in the map.
|
|
// NOTE: The returned pointer may keep the whole map live, so don't
|
|
// hold onto it for very long.
|
|
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
|
|
if raceenabled && h != nil {
|
|
callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
|
|
pc := funcPC(mapaccess1)
|
|
racereadpc(unsafe.Pointer(h), callerpc, pc)
|
|
raceReadObjectPC(t.key, key, callerpc, pc)
|
|
}
|
|
if msanenabled && h != nil {
|
|
msanread(key, t.key.size)
|
|
}
|
|
if h == nil || h.count == 0 {
|
|
return unsafe.Pointer(&zeroVal[0])
|
|
}
|
|
if h.flags&hashWriting != 0 {
|
|
throw("concurrent map read and map write")
|
|
}
|
|
hashfn := t.key.hashfn
|
|
equalfn := t.key.equalfn
|
|
hash := hashfn(key, uintptr(h.hash0))
|
|
m := uintptr(1)<<h.B - 1
|
|
b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
|
|
if c := h.oldbuckets; c != nil {
|
|
if !h.sameSizeGrow() {
|
|
// There used to be half as many buckets; mask down one more power of two.
|
|
m >>= 1
|
|
}
|
|
oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))
|
|
if !evacuated(oldb) {
|
|
b = oldb
|
|
}
|
|
}
|
|
top := uint8(hash >> (sys.PtrSize*8 - 8))
|
|
if top < minTopHash {
|
|
top += minTopHash
|
|
}
|
|
for {
|
|
for i := uintptr(0); i < bucketCnt; i++ {
|
|
if b.tophash[i] != top {
|
|
continue
|
|
}
|
|
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
|
|
if t.indirectkey {
|
|
k = *((*unsafe.Pointer)(k))
|
|
}
|
|
if equalfn(key, k) {
|
|
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
|
|
if t.indirectvalue {
|
|
v = *((*unsafe.Pointer)(v))
|
|
}
|
|
return v
|
|
}
|
|
}
|
|
b = b.overflow(t)
|
|
if b == nil {
|
|
return unsafe.Pointer(&zeroVal[0])
|
|
}
|
|
}
|
|
}
|
|
|
|
func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool) {
|
|
if raceenabled && h != nil {
|
|
callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
|
|
pc := funcPC(mapaccess2)
|
|
racereadpc(unsafe.Pointer(h), callerpc, pc)
|
|
raceReadObjectPC(t.key, key, callerpc, pc)
|
|
}
|
|
if msanenabled && h != nil {
|
|
msanread(key, t.key.size)
|
|
}
|
|
if h == nil || h.count == 0 {
|
|
return unsafe.Pointer(&zeroVal[0]), false
|
|
}
|
|
if h.flags&hashWriting != 0 {
|
|
throw("concurrent map read and map write")
|
|
}
|
|
hashfn := t.key.hashfn
|
|
equalfn := t.key.equalfn
|
|
hash := hashfn(key, uintptr(h.hash0))
|
|
m := uintptr(1)<<h.B - 1
|
|
b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
|
|
if c := h.oldbuckets; c != nil {
|
|
if !h.sameSizeGrow() {
|
|
// There used to be half as many buckets; mask down one more power of two.
|
|
m >>= 1
|
|
}
|
|
oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize)))
|
|
if !evacuated(oldb) {
|
|
b = oldb
|
|
}
|
|
}
|
|
top := uint8(hash >> (sys.PtrSize*8 - 8))
|
|
if top < minTopHash {
|
|
top += minTopHash
|
|
}
|
|
for {
|
|
for i := uintptr(0); i < bucketCnt; i++ {
|
|
if b.tophash[i] != top {
|
|
continue
|
|
}
|
|
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
|
|
if t.indirectkey {
|
|
k = *((*unsafe.Pointer)(k))
|
|
}
|
|
if equalfn(key, k) {
|
|
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
|
|
if t.indirectvalue {
|
|
v = *((*unsafe.Pointer)(v))
|
|
}
|
|
return v, true
|
|
}
|
|
}
|
|
b = b.overflow(t)
|
|
if b == nil {
|
|
return unsafe.Pointer(&zeroVal[0]), false
|
|
}
|
|
}
|
|
}
|
|
|
|
// returns both key and value. Used by map iterator
|
|
func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer) {
|
|
if h == nil || h.count == 0 {
|
|
return nil, nil
|
|
}
|
|
hashfn := t.key.hashfn
|
|
equalfn := t.key.equalfn
|
|
hash := hashfn(key, uintptr(h.hash0))
|
|
m := uintptr(1)<<h.B - 1
|
|
b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
|
|
if c := h.oldbuckets; c != nil {
|
|
if !h.sameSizeGrow() {
|
|
// There used to be half as many buckets; mask down one more power of two.
|
|
m >>= 1
|
|
}
|
|
oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize)))
|
|
if !evacuated(oldb) {
|
|
b = oldb
|
|
}
|
|
}
|
|
top := uint8(hash >> (sys.PtrSize*8 - 8))
|
|
if top < minTopHash {
|
|
top += minTopHash
|
|
}
|
|
for {
|
|
for i := uintptr(0); i < bucketCnt; i++ {
|
|
if b.tophash[i] != top {
|
|
continue
|
|
}
|
|
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
|
|
if t.indirectkey {
|
|
k = *((*unsafe.Pointer)(k))
|
|
}
|
|
if equalfn(key, k) {
|
|
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
|
|
if t.indirectvalue {
|
|
v = *((*unsafe.Pointer)(v))
|
|
}
|
|
return k, v
|
|
}
|
|
}
|
|
b = b.overflow(t)
|
|
if b == nil {
|
|
return nil, nil
|
|
}
|
|
}
|
|
}
|
|
|
|
func mapaccess1_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) unsafe.Pointer {
|
|
v := mapaccess1(t, h, key)
|
|
if v == unsafe.Pointer(&zeroVal[0]) {
|
|
return zero
|
|
}
|
|
return v
|
|
}
|
|
|
|
func mapaccess2_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) (unsafe.Pointer, bool) {
|
|
v := mapaccess1(t, h, key)
|
|
if v == unsafe.Pointer(&zeroVal[0]) {
|
|
return zero, false
|
|
}
|
|
return v, true
|
|
}
|
|
|
|
// Like mapaccess, but allocates a slot for the key if it is not present in the map.
|
|
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
|
|
if h == nil {
|
|
panic(plainError("assignment to entry in nil map"))
|
|
}
|
|
if raceenabled {
|
|
callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
|
|
pc := funcPC(mapassign)
|
|
racewritepc(unsafe.Pointer(h), callerpc, pc)
|
|
raceReadObjectPC(t.key, key, callerpc, pc)
|
|
}
|
|
if msanenabled {
|
|
msanread(key, t.key.size)
|
|
}
|
|
if h.flags&hashWriting != 0 {
|
|
throw("concurrent map writes")
|
|
}
|
|
h.flags |= hashWriting
|
|
|
|
hashfn := t.key.hashfn
|
|
equalfn := t.key.equalfn
|
|
hash := hashfn(key, uintptr(h.hash0))
|
|
|
|
if h.buckets == nil {
|
|
h.buckets = newarray(t.bucket, 1)
|
|
}
|
|
|
|
again:
|
|
bucket := hash & (uintptr(1)<<h.B - 1)
|
|
if h.growing() {
|
|
growWork(t, h, bucket)
|
|
}
|
|
b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
|
|
top := uint8(hash >> (sys.PtrSize*8 - 8))
|
|
if top < minTopHash {
|
|
top += minTopHash
|
|
}
|
|
|
|
var inserti *uint8
|
|
var insertk unsafe.Pointer
|
|
var val unsafe.Pointer
|
|
for {
|
|
for i := uintptr(0); i < bucketCnt; i++ {
|
|
if b.tophash[i] != top {
|
|
if b.tophash[i] == empty && inserti == nil {
|
|
inserti = &b.tophash[i]
|
|
insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
|
|
val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
|
|
}
|
|
continue
|
|
}
|
|
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
|
|
if t.indirectkey {
|
|
k = *((*unsafe.Pointer)(k))
|
|
}
|
|
if !equalfn(key, k) {
|
|
continue
|
|
}
|
|
// already have a mapping for key. Update it.
|
|
if t.needkeyupdate {
|
|
typedmemmove(t.key, k, key)
|
|
}
|
|
val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
|
|
goto done
|
|
}
|
|
ovf := b.overflow(t)
|
|
if ovf == nil {
|
|
break
|
|
}
|
|
b = ovf
|
|
}
|
|
|
|
// Did not find mapping for key. Allocate new cell & add entry.
|
|
|
|
// If we hit the max load factor or we have too many overflow buckets,
|
|
// and we're not already in the middle of growing, start growing.
|
|
if !h.growing() && (overLoadFactor(int64(h.count), h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
|
|
hashGrow(t, h)
|
|
goto again // Growing the table invalidates everything, so try again
|
|
}
|
|
|
|
if inserti == nil {
|
|
// all current buckets are full, allocate a new one.
|
|
newb := (*bmap)(newobject(t.bucket))
|
|
h.setoverflow(t, b, newb)
|
|
inserti = &newb.tophash[0]
|
|
insertk = add(unsafe.Pointer(newb), dataOffset)
|
|
val = add(insertk, bucketCnt*uintptr(t.keysize))
|
|
}
|
|
|
|
// store new key/value at insert position
|
|
if t.indirectkey {
|
|
kmem := newobject(t.key)
|
|
*(*unsafe.Pointer)(insertk) = kmem
|
|
insertk = kmem
|
|
}
|
|
if t.indirectvalue {
|
|
vmem := newobject(t.elem)
|
|
*(*unsafe.Pointer)(val) = vmem
|
|
}
|
|
typedmemmove(t.key, insertk, key)
|
|
*inserti = top
|
|
h.count++
|
|
|
|
done:
|
|
if h.flags&hashWriting == 0 {
|
|
throw("concurrent map writes")
|
|
}
|
|
h.flags &^= hashWriting
|
|
if t.indirectvalue {
|
|
val = *((*unsafe.Pointer)(val))
|
|
}
|
|
return val
|
|
}
|
|
|
|
func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
|
|
if raceenabled && h != nil {
|
|
callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
|
|
pc := funcPC(mapdelete)
|
|
racewritepc(unsafe.Pointer(h), callerpc, pc)
|
|
raceReadObjectPC(t.key, key, callerpc, pc)
|
|
}
|
|
if msanenabled && h != nil {
|
|
msanread(key, t.key.size)
|
|
}
|
|
if h == nil || h.count == 0 {
|
|
return
|
|
}
|
|
if h.flags&hashWriting != 0 {
|
|
throw("concurrent map writes")
|
|
}
|
|
h.flags |= hashWriting
|
|
|
|
hashfn := t.key.hashfn
|
|
equalfn := t.key.equalfn
|
|
hash := hashfn(key, uintptr(h.hash0))
|
|
bucket := hash & (uintptr(1)<<h.B - 1)
|
|
if h.growing() {
|
|
growWork(t, h, bucket)
|
|
}
|
|
b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
|
|
top := uint8(hash >> (sys.PtrSize*8 - 8))
|
|
if top < minTopHash {
|
|
top += minTopHash
|
|
}
|
|
for {
|
|
for i := uintptr(0); i < bucketCnt; i++ {
|
|
if b.tophash[i] != top {
|
|
continue
|
|
}
|
|
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
|
|
k2 := k
|
|
if t.indirectkey {
|
|
k2 = *((*unsafe.Pointer)(k2))
|
|
}
|
|
if !equalfn(key, k2) {
|
|
continue
|
|
}
|
|
if t.indirectkey {
|
|
*(*unsafe.Pointer)(k) = nil
|
|
} else {
|
|
typedmemclr(t.key, k)
|
|
}
|
|
v := unsafe.Pointer(uintptr(unsafe.Pointer(b)) + dataOffset + bucketCnt*uintptr(t.keysize) + i*uintptr(t.valuesize))
|
|
if t.indirectvalue {
|
|
*(*unsafe.Pointer)(v) = nil
|
|
} else {
|
|
typedmemclr(t.elem, v)
|
|
}
|
|
b.tophash[i] = empty
|
|
h.count--
|
|
goto done
|
|
}
|
|
b = b.overflow(t)
|
|
if b == nil {
|
|
goto done
|
|
}
|
|
}
|
|
|
|
done:
|
|
if h.flags&hashWriting == 0 {
|
|
throw("concurrent map writes")
|
|
}
|
|
h.flags &^= hashWriting
|
|
}
|
|
|
|
func mapiterinit(t *maptype, h *hmap, it *hiter) {
|
|
// Clear pointer fields so garbage collector does not complain.
|
|
it.key = nil
|
|
it.value = nil
|
|
it.t = nil
|
|
it.h = nil
|
|
it.buckets = nil
|
|
it.bptr = nil
|
|
it.overflow[0] = nil
|
|
it.overflow[1] = nil
|
|
|
|
if raceenabled && h != nil {
|
|
callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
|
|
racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiterinit))
|
|
}
|
|
|
|
if h == nil || h.count == 0 {
|
|
it.key = nil
|
|
it.value = nil
|
|
return
|
|
}
|
|
|
|
if unsafe.Sizeof(hiter{})/sys.PtrSize != 12 {
|
|
throw("hash_iter size incorrect") // see ../../cmd/internal/gc/reflect.go
|
|
}
|
|
it.t = t
|
|
it.h = h
|
|
|
|
// grab snapshot of bucket state
|
|
it.B = h.B
|
|
it.buckets = h.buckets
|
|
if t.bucket.kind&kindNoPointers != 0 {
|
|
// Allocate the current slice and remember pointers to both current and old.
|
|
// This preserves all relevant overflow buckets alive even if
|
|
// the table grows and/or overflow buckets are added to the table
|
|
// while we are iterating.
|
|
h.createOverflow()
|
|
it.overflow = *h.overflow
|
|
}
|
|
|
|
// decide where to start
|
|
r := uintptr(fastrand())
|
|
if h.B > 31-bucketCntBits {
|
|
r += uintptr(fastrand()) << 31
|
|
}
|
|
it.startBucket = r & (uintptr(1)<<h.B - 1)
|
|
it.offset = uint8(r >> h.B & (bucketCnt - 1))
|
|
|
|
// iterator state
|
|
it.bucket = it.startBucket
|
|
it.wrapped = false
|
|
it.bptr = nil
|
|
|
|
// Remember we have an iterator.
|
|
// Can run concurrently with another hash_iter_init().
|
|
if old := h.flags; old&(iterator|oldIterator) != iterator|oldIterator {
|
|
atomic.Or8(&h.flags, iterator|oldIterator)
|
|
}
|
|
|
|
mapiternext(it)
|
|
}
|
|
|
|
func mapiternext(it *hiter) {
|
|
h := it.h
|
|
if raceenabled {
|
|
callerpc := getcallerpc(unsafe.Pointer( /* &it */ nil))
|
|
racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiternext))
|
|
}
|
|
if h.flags&hashWriting != 0 {
|
|
throw("concurrent map iteration and map write")
|
|
}
|
|
t := it.t
|
|
bucket := it.bucket
|
|
b := it.bptr
|
|
i := it.i
|
|
checkBucket := it.checkBucket
|
|
hashfn := t.key.hashfn
|
|
equalfn := t.key.equalfn
|
|
|
|
next:
|
|
if b == nil {
|
|
if bucket == it.startBucket && it.wrapped {
|
|
// end of iteration
|
|
it.key = nil
|
|
it.value = nil
|
|
return
|
|
}
|
|
if h.growing() && it.B == h.B {
|
|
// Iterator was started in the middle of a grow, and the grow isn't done yet.
|
|
// If the bucket we're looking at hasn't been filled in yet (i.e. the old
|
|
// bucket hasn't been evacuated) then we need to iterate through the old
|
|
// bucket and only return the ones that will be migrated to this bucket.
|
|
oldbucket := bucket & it.h.oldbucketmask()
|
|
b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
|
|
if !evacuated(b) {
|
|
checkBucket = bucket
|
|
} else {
|
|
b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
|
|
checkBucket = noCheck
|
|
}
|
|
} else {
|
|
b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
|
|
checkBucket = noCheck
|
|
}
|
|
bucket++
|
|
if bucket == uintptr(1)<<it.B {
|
|
bucket = 0
|
|
it.wrapped = true
|
|
}
|
|
i = 0
|
|
}
|
|
for ; i < bucketCnt; i++ {
|
|
offi := (i + it.offset) & (bucketCnt - 1)
|
|
k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.keysize))
|
|
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.valuesize))
|
|
if b.tophash[offi] != empty && b.tophash[offi] != evacuatedEmpty {
|
|
if checkBucket != noCheck && !h.sameSizeGrow() {
|
|
// Special case: iterator was started during a grow to a larger size
|
|
// and the grow is not done yet. We're working on a bucket whose
|
|
// oldbucket has not been evacuated yet. Or at least, it wasn't
|
|
// evacuated when we started the bucket. So we're iterating
|
|
// through the oldbucket, skipping any keys that will go
|
|
// to the other new bucket (each oldbucket expands to two
|
|
// buckets during a grow).
|
|
k2 := k
|
|
if t.indirectkey {
|
|
k2 = *((*unsafe.Pointer)(k2))
|
|
}
|
|
if t.reflexivekey || equalfn(k2, k2) {
|
|
// If the item in the oldbucket is not destined for
|
|
// the current new bucket in the iteration, skip it.
|
|
hash := hashfn(k2, uintptr(h.hash0))
|
|
if hash&(uintptr(1)<<it.B-1) != checkBucket {
|
|
continue
|
|
}
|
|
} else {
|
|
// Hash isn't repeatable if k != k (NaNs). We need a
|
|
// repeatable and randomish choice of which direction
|
|
// to send NaNs during evacuation. We'll use the low
|
|
// bit of tophash to decide which way NaNs go.
|
|
// NOTE: this case is why we need two evacuate tophash
|
|
// values, evacuatedX and evacuatedY, that differ in
|
|
// their low bit.
|
|
if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) {
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
if b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY {
|
|
// this is the golden data, we can return it.
|
|
if t.indirectkey {
|
|
k = *((*unsafe.Pointer)(k))
|
|
}
|
|
it.key = k
|
|
if t.indirectvalue {
|
|
v = *((*unsafe.Pointer)(v))
|
|
}
|
|
it.value = v
|
|
} else {
|
|
// The hash table has grown since the iterator was started.
|
|
// The golden data for this key is now somewhere else.
|
|
k2 := k
|
|
if t.indirectkey {
|
|
k2 = *((*unsafe.Pointer)(k2))
|
|
}
|
|
if t.reflexivekey || equalfn(k2, k2) {
|
|
// Check the current hash table for the data.
|
|
// This code handles the case where the key
|
|
// has been deleted, updated, or deleted and reinserted.
|
|
// NOTE: we need to regrab the key as it has potentially been
|
|
// updated to an equal() but not identical key (e.g. +0.0 vs -0.0).
|
|
rk, rv := mapaccessK(t, h, k2)
|
|
if rk == nil {
|
|
continue // key has been deleted
|
|
}
|
|
it.key = rk
|
|
it.value = rv
|
|
} else {
|
|
// if key!=key then the entry can't be deleted or
|
|
// updated, so we can just return it. That's lucky for
|
|
// us because when key!=key we can't look it up
|
|
// successfully in the current table.
|
|
it.key = k2
|
|
if t.indirectvalue {
|
|
v = *((*unsafe.Pointer)(v))
|
|
}
|
|
it.value = v
|
|
}
|
|
}
|
|
it.bucket = bucket
|
|
if it.bptr != b { // avoid unnecessary write barrier; see issue 14921
|
|
it.bptr = b
|
|
}
|
|
it.i = i + 1
|
|
it.checkBucket = checkBucket
|
|
return
|
|
}
|
|
}
|
|
b = b.overflow(t)
|
|
i = 0
|
|
goto next
|
|
}
|
|
|
|
func hashGrow(t *maptype, h *hmap) {
|
|
// If we've hit the load factor, get bigger.
|
|
// Otherwise, there are too many overflow buckets,
|
|
// so keep the same number of buckets and "grow" laterally.
|
|
bigger := uint8(1)
|
|
if !overLoadFactor(int64(h.count), h.B) {
|
|
bigger = 0
|
|
h.flags |= sameSizeGrow
|
|
}
|
|
oldbuckets := h.buckets
|
|
newbuckets := newarray(t.bucket, 1<<(h.B+bigger))
|
|
flags := h.flags &^ (iterator | oldIterator)
|
|
if h.flags&iterator != 0 {
|
|
flags |= oldIterator
|
|
}
|
|
// commit the grow (atomic wrt gc)
|
|
h.B += bigger
|
|
h.flags = flags
|
|
h.oldbuckets = oldbuckets
|
|
h.buckets = newbuckets
|
|
h.nevacuate = 0
|
|
h.noverflow = 0
|
|
|
|
if h.overflow != nil {
|
|
// Promote current overflow buckets to the old generation.
|
|
if h.overflow[1] != nil {
|
|
throw("overflow is not nil")
|
|
}
|
|
h.overflow[1] = h.overflow[0]
|
|
h.overflow[0] = nil
|
|
}
|
|
|
|
// the actual copying of the hash table data is done incrementally
|
|
// by growWork() and evacuate().
|
|
}
|
|
|
|
// overLoadFactor reports whether count items placed in 1<<B buckets is over loadFactor.
|
|
func overLoadFactor(count int64, B uint8) bool {
|
|
// TODO: rewrite to use integer math and comparison?
|
|
return count >= bucketCnt && float32(count) >= loadFactor*float32((uintptr(1)<<B))
|
|
}
|
|
|
|
// tooManyOverflowBuckets reports whether noverflow buckets is too many for a map with 1<<B buckets.
|
|
// Note that most of these overflow buckets must be in sparse use;
|
|
// if use was dense, then we'd have already triggered regular map growth.
|
|
func tooManyOverflowBuckets(noverflow uint16, B uint8) bool {
|
|
// If the threshold is too low, we do extraneous work.
|
|
// If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory.
|
|
// "too many" means (approximately) as many overflow buckets as regular buckets.
|
|
// See incrnoverflow for more details.
|
|
if B < 16 {
|
|
return noverflow >= uint16(1)<<B
|
|
}
|
|
return noverflow >= 1<<15
|
|
}
|
|
|
|
// growing reports whether h is growing. The growth may be to the same size or bigger.
|
|
func (h *hmap) growing() bool {
|
|
return h.oldbuckets != nil
|
|
}
|
|
|
|
// sameSizeGrow reports whether the current growth is to a map of the same size.
|
|
func (h *hmap) sameSizeGrow() bool {
|
|
return h.flags&sameSizeGrow != 0
|
|
}
|
|
|
|
// noldbuckets calculates the number of buckets prior to the current map growth.
|
|
func (h *hmap) noldbuckets() uintptr {
|
|
oldB := h.B
|
|
if !h.sameSizeGrow() {
|
|
oldB--
|
|
}
|
|
return uintptr(1) << oldB
|
|
}
|
|
|
|
// oldbucketmask provides a mask that can be applied to calculate n % noldbuckets().
|
|
func (h *hmap) oldbucketmask() uintptr {
|
|
return h.noldbuckets() - 1
|
|
}
|
|
|
|
func growWork(t *maptype, h *hmap, bucket uintptr) {
|
|
// make sure we evacuate the oldbucket corresponding
|
|
// to the bucket we're about to use
|
|
evacuate(t, h, bucket&h.oldbucketmask())
|
|
|
|
// evacuate one more oldbucket to make progress on growing
|
|
if h.growing() {
|
|
evacuate(t, h, h.nevacuate)
|
|
}
|
|
}
|
|
|
|
func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
|
|
b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
|
|
newbit := h.noldbuckets()
|
|
hashfn := t.key.hashfn
|
|
equalfn := t.key.equalfn
|
|
if !evacuated(b) {
|
|
// TODO: reuse overflow buckets instead of using new ones, if there
|
|
// is no iterator using the old buckets. (If !oldIterator.)
|
|
|
|
var (
|
|
x, y *bmap // current low/high buckets in new map
|
|
xi, yi int // key/val indices into x and y
|
|
xk, yk unsafe.Pointer // pointers to current x and y key storage
|
|
xv, yv unsafe.Pointer // pointers to current x and y value storage
|
|
)
|
|
x = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
|
|
xi = 0
|
|
xk = add(unsafe.Pointer(x), dataOffset)
|
|
xv = add(xk, bucketCnt*uintptr(t.keysize))
|
|
if !h.sameSizeGrow() {
|
|
// Only calculate y pointers if we're growing bigger.
|
|
// Otherwise GC can see bad pointers.
|
|
y = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
|
|
yi = 0
|
|
yk = add(unsafe.Pointer(y), dataOffset)
|
|
yv = add(yk, bucketCnt*uintptr(t.keysize))
|
|
}
|
|
for ; b != nil; b = b.overflow(t) {
|
|
k := add(unsafe.Pointer(b), dataOffset)
|
|
v := add(k, bucketCnt*uintptr(t.keysize))
|
|
for i := 0; i < bucketCnt; i, k, v = i+1, add(k, uintptr(t.keysize)), add(v, uintptr(t.valuesize)) {
|
|
top := b.tophash[i]
|
|
if top == empty {
|
|
b.tophash[i] = evacuatedEmpty
|
|
continue
|
|
}
|
|
if top < minTopHash {
|
|
throw("bad map state")
|
|
}
|
|
k2 := k
|
|
if t.indirectkey {
|
|
k2 = *((*unsafe.Pointer)(k2))
|
|
}
|
|
useX := true
|
|
if !h.sameSizeGrow() {
|
|
// Compute hash to make our evacuation decision (whether we need
|
|
// to send this key/value to bucket x or bucket y).
|
|
hash := hashfn(k2, uintptr(h.hash0))
|
|
if h.flags&iterator != 0 {
|
|
if !t.reflexivekey && !equalfn(k2, k2) {
|
|
// If key != key (NaNs), then the hash could be (and probably
|
|
// will be) entirely different from the old hash. Moreover,
|
|
// it isn't reproducible. Reproducibility is required in the
|
|
// presence of iterators, as our evacuation decision must
|
|
// match whatever decision the iterator made.
|
|
// Fortunately, we have the freedom to send these keys either
|
|
// way. Also, tophash is meaningless for these kinds of keys.
|
|
// We let the low bit of tophash drive the evacuation decision.
|
|
// We recompute a new random tophash for the next level so
|
|
// these keys will get evenly distributed across all buckets
|
|
// after multiple grows.
|
|
if top&1 != 0 {
|
|
hash |= newbit
|
|
} else {
|
|
hash &^= newbit
|
|
}
|
|
top = uint8(hash >> (sys.PtrSize*8 - 8))
|
|
if top < minTopHash {
|
|
top += minTopHash
|
|
}
|
|
}
|
|
}
|
|
useX = hash&newbit == 0
|
|
}
|
|
if useX {
|
|
b.tophash[i] = evacuatedX
|
|
if xi == bucketCnt {
|
|
newx := (*bmap)(newobject(t.bucket))
|
|
h.setoverflow(t, x, newx)
|
|
x = newx
|
|
xi = 0
|
|
xk = add(unsafe.Pointer(x), dataOffset)
|
|
xv = add(xk, bucketCnt*uintptr(t.keysize))
|
|
}
|
|
x.tophash[xi] = top
|
|
if t.indirectkey {
|
|
*(*unsafe.Pointer)(xk) = k2 // copy pointer
|
|
} else {
|
|
typedmemmove(t.key, xk, k) // copy value
|
|
}
|
|
if t.indirectvalue {
|
|
*(*unsafe.Pointer)(xv) = *(*unsafe.Pointer)(v)
|
|
} else {
|
|
typedmemmove(t.elem, xv, v)
|
|
}
|
|
xi++
|
|
xk = add(xk, uintptr(t.keysize))
|
|
xv = add(xv, uintptr(t.valuesize))
|
|
} else {
|
|
b.tophash[i] = evacuatedY
|
|
if yi == bucketCnt {
|
|
newy := (*bmap)(newobject(t.bucket))
|
|
h.setoverflow(t, y, newy)
|
|
y = newy
|
|
yi = 0
|
|
yk = add(unsafe.Pointer(y), dataOffset)
|
|
yv = add(yk, bucketCnt*uintptr(t.keysize))
|
|
}
|
|
y.tophash[yi] = top
|
|
if t.indirectkey {
|
|
*(*unsafe.Pointer)(yk) = k2
|
|
} else {
|
|
typedmemmove(t.key, yk, k)
|
|
}
|
|
if t.indirectvalue {
|
|
*(*unsafe.Pointer)(yv) = *(*unsafe.Pointer)(v)
|
|
} else {
|
|
typedmemmove(t.elem, yv, v)
|
|
}
|
|
yi++
|
|
yk = add(yk, uintptr(t.keysize))
|
|
yv = add(yv, uintptr(t.valuesize))
|
|
}
|
|
}
|
|
}
|
|
// Unlink the overflow buckets & clear key/value to help GC.
|
|
if h.flags&oldIterator == 0 {
|
|
b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
|
|
// Preserve b.tophash because the evacuation
|
|
// state is maintained there.
|
|
if t.bucket.kind&kindNoPointers == 0 {
|
|
memclrHasPointers(add(unsafe.Pointer(b), dataOffset), uintptr(t.bucketsize)-dataOffset)
|
|
} else {
|
|
memclrNoHeapPointers(add(unsafe.Pointer(b), dataOffset), uintptr(t.bucketsize)-dataOffset)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Advance evacuation mark
|
|
if oldbucket == h.nevacuate {
|
|
h.nevacuate = oldbucket + 1
|
|
if oldbucket+1 == newbit { // newbit == # of oldbuckets
|
|
// Growing is all done. Free old main bucket array.
|
|
h.oldbuckets = nil
|
|
// Can discard old overflow buckets as well.
|
|
// If they are still referenced by an iterator,
|
|
// then the iterator holds a pointers to the slice.
|
|
if h.overflow != nil {
|
|
h.overflow[1] = nil
|
|
}
|
|
h.flags &^= sameSizeGrow
|
|
}
|
|
}
|
|
}
|
|
|
|
func ismapkey(t *_type) bool {
|
|
return t.hashfn != nil
|
|
}
|
|
|
|
// Reflect stubs. Called from ../reflect/asm_*.s
|
|
|
|
//go:linkname reflect_makemap reflect.makemap
|
|
func reflect_makemap(t *maptype) *hmap {
|
|
return makemap(t, 0, nil, nil)
|
|
}
|
|
|
|
//go:linkname reflect_mapaccess reflect.mapaccess
|
|
func reflect_mapaccess(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
|
|
val, ok := mapaccess2(t, h, key)
|
|
if !ok {
|
|
// reflect wants nil for a missing element
|
|
val = nil
|
|
}
|
|
return val
|
|
}
|
|
|
|
//go:linkname reflect_mapassign reflect.mapassign
|
|
func reflect_mapassign(t *maptype, h *hmap, key unsafe.Pointer, val unsafe.Pointer) {
|
|
p := mapassign(t, h, key)
|
|
typedmemmove(t.elem, p, val)
|
|
}
|
|
|
|
//go:linkname reflect_mapdelete reflect.mapdelete
|
|
func reflect_mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
|
|
mapdelete(t, h, key)
|
|
}
|
|
|
|
//go:linkname reflect_mapiterinit reflect.mapiterinit
|
|
func reflect_mapiterinit(t *maptype, h *hmap) *hiter {
|
|
it := new(hiter)
|
|
mapiterinit(t, h, it)
|
|
return it
|
|
}
|
|
|
|
//go:linkname reflect_mapiternext reflect.mapiternext
|
|
func reflect_mapiternext(it *hiter) {
|
|
mapiternext(it)
|
|
}
|
|
|
|
//go:linkname reflect_mapiterkey reflect.mapiterkey
|
|
func reflect_mapiterkey(it *hiter) unsafe.Pointer {
|
|
return it.key
|
|
}
|
|
|
|
//go:linkname reflect_maplen reflect.maplen
|
|
func reflect_maplen(h *hmap) int {
|
|
if h == nil {
|
|
return 0
|
|
}
|
|
if raceenabled {
|
|
callerpc := getcallerpc(unsafe.Pointer( /* &h */ nil))
|
|
racereadpc(unsafe.Pointer(h), callerpc, funcPC(reflect_maplen))
|
|
}
|
|
return h.count
|
|
}
|
|
|
|
//go:linkname reflect_ismapkey reflect.ismapkey
|
|
func reflect_ismapkey(t *_type) bool {
|
|
return ismapkey(t)
|
|
}
|
|
|
|
const maxZero = 1024 // must match value in ../cmd/compile/internal/gc/walk.go
|
|
var zeroVal [maxZero]byte
|