23a5b65a92
From-SVN: r206289
3153 lines
96 KiB
C
3153 lines
96 KiB
C
/* SSA Dominator optimizations for trees
|
|
Copyright (C) 2001-2014 Free Software Foundation, Inc.
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "hash-table.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "stor-layout.h"
|
|
#include "flags.h"
|
|
#include "tm_p.h"
|
|
#include "basic-block.h"
|
|
#include "cfgloop.h"
|
|
#include "function.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "tree-ssa-alias.h"
|
|
#include "internal-fn.h"
|
|
#include "gimple-fold.h"
|
|
#include "tree-eh.h"
|
|
#include "gimple-expr.h"
|
|
#include "is-a.h"
|
|
#include "gimple.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimple-ssa.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-phinodes.h"
|
|
#include "ssa-iterators.h"
|
|
#include "stringpool.h"
|
|
#include "tree-ssanames.h"
|
|
#include "tree-into-ssa.h"
|
|
#include "domwalk.h"
|
|
#include "tree-pass.h"
|
|
#include "tree-ssa-propagate.h"
|
|
#include "tree-ssa-threadupdate.h"
|
|
#include "langhooks.h"
|
|
#include "params.h"
|
|
#include "tree-ssa-threadedge.h"
|
|
#include "tree-ssa-dom.h"
|
|
|
|
/* This file implements optimizations on the dominator tree. */
|
|
|
|
/* Representation of a "naked" right-hand-side expression, to be used
|
|
in recording available expressions in the expression hash table. */
|
|
|
|
enum expr_kind
|
|
{
|
|
EXPR_SINGLE,
|
|
EXPR_UNARY,
|
|
EXPR_BINARY,
|
|
EXPR_TERNARY,
|
|
EXPR_CALL,
|
|
EXPR_PHI
|
|
};
|
|
|
|
struct hashable_expr
|
|
{
|
|
tree type;
|
|
enum expr_kind kind;
|
|
union {
|
|
struct { tree rhs; } single;
|
|
struct { enum tree_code op; tree opnd; } unary;
|
|
struct { enum tree_code op; tree opnd0, opnd1; } binary;
|
|
struct { enum tree_code op; tree opnd0, opnd1, opnd2; } ternary;
|
|
struct { gimple fn_from; bool pure; size_t nargs; tree *args; } call;
|
|
struct { size_t nargs; tree *args; } phi;
|
|
} ops;
|
|
};
|
|
|
|
/* Structure for recording known values of a conditional expression
|
|
at the exits from its block. */
|
|
|
|
typedef struct cond_equivalence_s
|
|
{
|
|
struct hashable_expr cond;
|
|
tree value;
|
|
} cond_equivalence;
|
|
|
|
|
|
/* Structure for recording edge equivalences as well as any pending
|
|
edge redirections during the dominator optimizer.
|
|
|
|
Computing and storing the edge equivalences instead of creating
|
|
them on-demand can save significant amounts of time, particularly
|
|
for pathological cases involving switch statements.
|
|
|
|
These structures live for a single iteration of the dominator
|
|
optimizer in the edge's AUX field. At the end of an iteration we
|
|
free each of these structures and update the AUX field to point
|
|
to any requested redirection target (the code for updating the
|
|
CFG and SSA graph for edge redirection expects redirection edge
|
|
targets to be in the AUX field for each edge. */
|
|
|
|
struct edge_info
|
|
{
|
|
/* If this edge creates a simple equivalence, the LHS and RHS of
|
|
the equivalence will be stored here. */
|
|
tree lhs;
|
|
tree rhs;
|
|
|
|
/* Traversing an edge may also indicate one or more particular conditions
|
|
are true or false. */
|
|
vec<cond_equivalence> cond_equivalences;
|
|
};
|
|
|
|
/* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
|
|
expressions it enters into the hash table along with a marker entry
|
|
(null). When we finish processing the block, we pop off entries and
|
|
remove the expressions from the global hash table until we hit the
|
|
marker. */
|
|
typedef struct expr_hash_elt * expr_hash_elt_t;
|
|
|
|
static vec<expr_hash_elt_t> avail_exprs_stack;
|
|
|
|
/* Structure for entries in the expression hash table. */
|
|
|
|
struct expr_hash_elt
|
|
{
|
|
/* The value (lhs) of this expression. */
|
|
tree lhs;
|
|
|
|
/* The expression (rhs) we want to record. */
|
|
struct hashable_expr expr;
|
|
|
|
/* The stmt pointer if this element corresponds to a statement. */
|
|
gimple stmt;
|
|
|
|
/* The hash value for RHS. */
|
|
hashval_t hash;
|
|
|
|
/* A unique stamp, typically the address of the hash
|
|
element itself, used in removing entries from the table. */
|
|
struct expr_hash_elt *stamp;
|
|
};
|
|
|
|
/* Hashtable helpers. */
|
|
|
|
static bool hashable_expr_equal_p (const struct hashable_expr *,
|
|
const struct hashable_expr *);
|
|
static void free_expr_hash_elt (void *);
|
|
|
|
struct expr_elt_hasher
|
|
{
|
|
typedef expr_hash_elt value_type;
|
|
typedef expr_hash_elt compare_type;
|
|
static inline hashval_t hash (const value_type *);
|
|
static inline bool equal (const value_type *, const compare_type *);
|
|
static inline void remove (value_type *);
|
|
};
|
|
|
|
inline hashval_t
|
|
expr_elt_hasher::hash (const value_type *p)
|
|
{
|
|
return p->hash;
|
|
}
|
|
|
|
inline bool
|
|
expr_elt_hasher::equal (const value_type *p1, const compare_type *p2)
|
|
{
|
|
gimple stmt1 = p1->stmt;
|
|
const struct hashable_expr *expr1 = &p1->expr;
|
|
const struct expr_hash_elt *stamp1 = p1->stamp;
|
|
gimple stmt2 = p2->stmt;
|
|
const struct hashable_expr *expr2 = &p2->expr;
|
|
const struct expr_hash_elt *stamp2 = p2->stamp;
|
|
|
|
/* This case should apply only when removing entries from the table. */
|
|
if (stamp1 == stamp2)
|
|
return true;
|
|
|
|
/* FIXME tuples:
|
|
We add stmts to a hash table and them modify them. To detect the case
|
|
that we modify a stmt and then search for it, we assume that the hash
|
|
is always modified by that change.
|
|
We have to fully check why this doesn't happen on trunk or rewrite
|
|
this in a more reliable (and easier to understand) way. */
|
|
if (((const struct expr_hash_elt *)p1)->hash
|
|
!= ((const struct expr_hash_elt *)p2)->hash)
|
|
return false;
|
|
|
|
/* In case of a collision, both RHS have to be identical and have the
|
|
same VUSE operands. */
|
|
if (hashable_expr_equal_p (expr1, expr2)
|
|
&& types_compatible_p (expr1->type, expr2->type))
|
|
{
|
|
/* Note that STMT1 and/or STMT2 may be NULL. */
|
|
return ((stmt1 ? gimple_vuse (stmt1) : NULL_TREE)
|
|
== (stmt2 ? gimple_vuse (stmt2) : NULL_TREE));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Delete an expr_hash_elt and reclaim its storage. */
|
|
|
|
inline void
|
|
expr_elt_hasher::remove (value_type *element)
|
|
{
|
|
free_expr_hash_elt (element);
|
|
}
|
|
|
|
/* Hash table with expressions made available during the renaming process.
|
|
When an assignment of the form X_i = EXPR is found, the statement is
|
|
stored in this table. If the same expression EXPR is later found on the
|
|
RHS of another statement, it is replaced with X_i (thus performing
|
|
global redundancy elimination). Similarly as we pass through conditionals
|
|
we record the conditional itself as having either a true or false value
|
|
in this table. */
|
|
static hash_table <expr_elt_hasher> avail_exprs;
|
|
|
|
/* Stack of dest,src pairs that need to be restored during finalization.
|
|
|
|
A NULL entry is used to mark the end of pairs which need to be
|
|
restored during finalization of this block. */
|
|
static vec<tree> const_and_copies_stack;
|
|
|
|
/* Track whether or not we have changed the control flow graph. */
|
|
static bool cfg_altered;
|
|
|
|
/* Bitmap of blocks that have had EH statements cleaned. We should
|
|
remove their dead edges eventually. */
|
|
static bitmap need_eh_cleanup;
|
|
|
|
/* Statistics for dominator optimizations. */
|
|
struct opt_stats_d
|
|
{
|
|
long num_stmts;
|
|
long num_exprs_considered;
|
|
long num_re;
|
|
long num_const_prop;
|
|
long num_copy_prop;
|
|
};
|
|
|
|
static struct opt_stats_d opt_stats;
|
|
|
|
/* Local functions. */
|
|
static void optimize_stmt (basic_block, gimple_stmt_iterator);
|
|
static tree lookup_avail_expr (gimple, bool);
|
|
static hashval_t avail_expr_hash (const void *);
|
|
static void htab_statistics (FILE *, hash_table <expr_elt_hasher>);
|
|
static void record_cond (cond_equivalence *);
|
|
static void record_const_or_copy (tree, tree);
|
|
static void record_equality (tree, tree);
|
|
static void record_equivalences_from_phis (basic_block);
|
|
static void record_equivalences_from_incoming_edge (basic_block);
|
|
static void eliminate_redundant_computations (gimple_stmt_iterator *);
|
|
static void record_equivalences_from_stmt (gimple, int);
|
|
static void remove_local_expressions_from_table (void);
|
|
static void restore_vars_to_original_value (void);
|
|
static edge single_incoming_edge_ignoring_loop_edges (basic_block);
|
|
|
|
|
|
/* Given a statement STMT, initialize the hash table element pointed to
|
|
by ELEMENT. */
|
|
|
|
static void
|
|
initialize_hash_element (gimple stmt, tree lhs,
|
|
struct expr_hash_elt *element)
|
|
{
|
|
enum gimple_code code = gimple_code (stmt);
|
|
struct hashable_expr *expr = &element->expr;
|
|
|
|
if (code == GIMPLE_ASSIGN)
|
|
{
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
|
|
|
switch (get_gimple_rhs_class (subcode))
|
|
{
|
|
case GIMPLE_SINGLE_RHS:
|
|
expr->kind = EXPR_SINGLE;
|
|
expr->type = TREE_TYPE (gimple_assign_rhs1 (stmt));
|
|
expr->ops.single.rhs = gimple_assign_rhs1 (stmt);
|
|
break;
|
|
case GIMPLE_UNARY_RHS:
|
|
expr->kind = EXPR_UNARY;
|
|
expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
|
|
expr->ops.unary.op = subcode;
|
|
expr->ops.unary.opnd = gimple_assign_rhs1 (stmt);
|
|
break;
|
|
case GIMPLE_BINARY_RHS:
|
|
expr->kind = EXPR_BINARY;
|
|
expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
|
|
expr->ops.binary.op = subcode;
|
|
expr->ops.binary.opnd0 = gimple_assign_rhs1 (stmt);
|
|
expr->ops.binary.opnd1 = gimple_assign_rhs2 (stmt);
|
|
break;
|
|
case GIMPLE_TERNARY_RHS:
|
|
expr->kind = EXPR_TERNARY;
|
|
expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
|
|
expr->ops.ternary.op = subcode;
|
|
expr->ops.ternary.opnd0 = gimple_assign_rhs1 (stmt);
|
|
expr->ops.ternary.opnd1 = gimple_assign_rhs2 (stmt);
|
|
expr->ops.ternary.opnd2 = gimple_assign_rhs3 (stmt);
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
else if (code == GIMPLE_COND)
|
|
{
|
|
expr->type = boolean_type_node;
|
|
expr->kind = EXPR_BINARY;
|
|
expr->ops.binary.op = gimple_cond_code (stmt);
|
|
expr->ops.binary.opnd0 = gimple_cond_lhs (stmt);
|
|
expr->ops.binary.opnd1 = gimple_cond_rhs (stmt);
|
|
}
|
|
else if (code == GIMPLE_CALL)
|
|
{
|
|
size_t nargs = gimple_call_num_args (stmt);
|
|
size_t i;
|
|
|
|
gcc_assert (gimple_call_lhs (stmt));
|
|
|
|
expr->type = TREE_TYPE (gimple_call_lhs (stmt));
|
|
expr->kind = EXPR_CALL;
|
|
expr->ops.call.fn_from = stmt;
|
|
|
|
if (gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE))
|
|
expr->ops.call.pure = true;
|
|
else
|
|
expr->ops.call.pure = false;
|
|
|
|
expr->ops.call.nargs = nargs;
|
|
expr->ops.call.args = XCNEWVEC (tree, nargs);
|
|
for (i = 0; i < nargs; i++)
|
|
expr->ops.call.args[i] = gimple_call_arg (stmt, i);
|
|
}
|
|
else if (code == GIMPLE_SWITCH)
|
|
{
|
|
expr->type = TREE_TYPE (gimple_switch_index (stmt));
|
|
expr->kind = EXPR_SINGLE;
|
|
expr->ops.single.rhs = gimple_switch_index (stmt);
|
|
}
|
|
else if (code == GIMPLE_GOTO)
|
|
{
|
|
expr->type = TREE_TYPE (gimple_goto_dest (stmt));
|
|
expr->kind = EXPR_SINGLE;
|
|
expr->ops.single.rhs = gimple_goto_dest (stmt);
|
|
}
|
|
else if (code == GIMPLE_PHI)
|
|
{
|
|
size_t nargs = gimple_phi_num_args (stmt);
|
|
size_t i;
|
|
|
|
expr->type = TREE_TYPE (gimple_phi_result (stmt));
|
|
expr->kind = EXPR_PHI;
|
|
expr->ops.phi.nargs = nargs;
|
|
expr->ops.phi.args = XCNEWVEC (tree, nargs);
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
expr->ops.phi.args[i] = gimple_phi_arg_def (stmt, i);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
element->lhs = lhs;
|
|
element->stmt = stmt;
|
|
element->hash = avail_expr_hash (element);
|
|
element->stamp = element;
|
|
}
|
|
|
|
/* Given a conditional expression COND as a tree, initialize
|
|
a hashable_expr expression EXPR. The conditional must be a
|
|
comparison or logical negation. A constant or a variable is
|
|
not permitted. */
|
|
|
|
static void
|
|
initialize_expr_from_cond (tree cond, struct hashable_expr *expr)
|
|
{
|
|
expr->type = boolean_type_node;
|
|
|
|
if (COMPARISON_CLASS_P (cond))
|
|
{
|
|
expr->kind = EXPR_BINARY;
|
|
expr->ops.binary.op = TREE_CODE (cond);
|
|
expr->ops.binary.opnd0 = TREE_OPERAND (cond, 0);
|
|
expr->ops.binary.opnd1 = TREE_OPERAND (cond, 1);
|
|
}
|
|
else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
|
|
{
|
|
expr->kind = EXPR_UNARY;
|
|
expr->ops.unary.op = TRUTH_NOT_EXPR;
|
|
expr->ops.unary.opnd = TREE_OPERAND (cond, 0);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Given a hashable_expr expression EXPR and an LHS,
|
|
initialize the hash table element pointed to by ELEMENT. */
|
|
|
|
static void
|
|
initialize_hash_element_from_expr (struct hashable_expr *expr,
|
|
tree lhs,
|
|
struct expr_hash_elt *element)
|
|
{
|
|
element->expr = *expr;
|
|
element->lhs = lhs;
|
|
element->stmt = NULL;
|
|
element->hash = avail_expr_hash (element);
|
|
element->stamp = element;
|
|
}
|
|
|
|
/* Compare two hashable_expr structures for equivalence.
|
|
They are considered equivalent when the the expressions
|
|
they denote must necessarily be equal. The logic is intended
|
|
to follow that of operand_equal_p in fold-const.c */
|
|
|
|
static bool
|
|
hashable_expr_equal_p (const struct hashable_expr *expr0,
|
|
const struct hashable_expr *expr1)
|
|
{
|
|
tree type0 = expr0->type;
|
|
tree type1 = expr1->type;
|
|
|
|
/* If either type is NULL, there is nothing to check. */
|
|
if ((type0 == NULL_TREE) ^ (type1 == NULL_TREE))
|
|
return false;
|
|
|
|
/* If both types don't have the same signedness, precision, and mode,
|
|
then we can't consider them equal. */
|
|
if (type0 != type1
|
|
&& (TREE_CODE (type0) == ERROR_MARK
|
|
|| TREE_CODE (type1) == ERROR_MARK
|
|
|| TYPE_UNSIGNED (type0) != TYPE_UNSIGNED (type1)
|
|
|| TYPE_PRECISION (type0) != TYPE_PRECISION (type1)
|
|
|| TYPE_MODE (type0) != TYPE_MODE (type1)))
|
|
return false;
|
|
|
|
if (expr0->kind != expr1->kind)
|
|
return false;
|
|
|
|
switch (expr0->kind)
|
|
{
|
|
case EXPR_SINGLE:
|
|
return operand_equal_p (expr0->ops.single.rhs,
|
|
expr1->ops.single.rhs, 0);
|
|
|
|
case EXPR_UNARY:
|
|
if (expr0->ops.unary.op != expr1->ops.unary.op)
|
|
return false;
|
|
|
|
if ((CONVERT_EXPR_CODE_P (expr0->ops.unary.op)
|
|
|| expr0->ops.unary.op == NON_LVALUE_EXPR)
|
|
&& TYPE_UNSIGNED (expr0->type) != TYPE_UNSIGNED (expr1->type))
|
|
return false;
|
|
|
|
return operand_equal_p (expr0->ops.unary.opnd,
|
|
expr1->ops.unary.opnd, 0);
|
|
|
|
case EXPR_BINARY:
|
|
if (expr0->ops.binary.op != expr1->ops.binary.op)
|
|
return false;
|
|
|
|
if (operand_equal_p (expr0->ops.binary.opnd0,
|
|
expr1->ops.binary.opnd0, 0)
|
|
&& operand_equal_p (expr0->ops.binary.opnd1,
|
|
expr1->ops.binary.opnd1, 0))
|
|
return true;
|
|
|
|
/* For commutative ops, allow the other order. */
|
|
return (commutative_tree_code (expr0->ops.binary.op)
|
|
&& operand_equal_p (expr0->ops.binary.opnd0,
|
|
expr1->ops.binary.opnd1, 0)
|
|
&& operand_equal_p (expr0->ops.binary.opnd1,
|
|
expr1->ops.binary.opnd0, 0));
|
|
|
|
case EXPR_TERNARY:
|
|
if (expr0->ops.ternary.op != expr1->ops.ternary.op
|
|
|| !operand_equal_p (expr0->ops.ternary.opnd2,
|
|
expr1->ops.ternary.opnd2, 0))
|
|
return false;
|
|
|
|
if (operand_equal_p (expr0->ops.ternary.opnd0,
|
|
expr1->ops.ternary.opnd0, 0)
|
|
&& operand_equal_p (expr0->ops.ternary.opnd1,
|
|
expr1->ops.ternary.opnd1, 0))
|
|
return true;
|
|
|
|
/* For commutative ops, allow the other order. */
|
|
return (commutative_ternary_tree_code (expr0->ops.ternary.op)
|
|
&& operand_equal_p (expr0->ops.ternary.opnd0,
|
|
expr1->ops.ternary.opnd1, 0)
|
|
&& operand_equal_p (expr0->ops.ternary.opnd1,
|
|
expr1->ops.ternary.opnd0, 0));
|
|
|
|
case EXPR_CALL:
|
|
{
|
|
size_t i;
|
|
|
|
/* If the calls are to different functions, then they
|
|
clearly cannot be equal. */
|
|
if (!gimple_call_same_target_p (expr0->ops.call.fn_from,
|
|
expr1->ops.call.fn_from))
|
|
return false;
|
|
|
|
if (! expr0->ops.call.pure)
|
|
return false;
|
|
|
|
if (expr0->ops.call.nargs != expr1->ops.call.nargs)
|
|
return false;
|
|
|
|
for (i = 0; i < expr0->ops.call.nargs; i++)
|
|
if (! operand_equal_p (expr0->ops.call.args[i],
|
|
expr1->ops.call.args[i], 0))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
case EXPR_PHI:
|
|
{
|
|
size_t i;
|
|
|
|
if (expr0->ops.phi.nargs != expr1->ops.phi.nargs)
|
|
return false;
|
|
|
|
for (i = 0; i < expr0->ops.phi.nargs; i++)
|
|
if (! operand_equal_p (expr0->ops.phi.args[i],
|
|
expr1->ops.phi.args[i], 0))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Generate a hash value for a pair of expressions. This can be used
|
|
iteratively by passing a previous result as the VAL argument.
|
|
|
|
The same hash value is always returned for a given pair of expressions,
|
|
regardless of the order in which they are presented. This is useful in
|
|
hashing the operands of commutative functions. */
|
|
|
|
static hashval_t
|
|
iterative_hash_exprs_commutative (const_tree t1,
|
|
const_tree t2, hashval_t val)
|
|
{
|
|
hashval_t one = iterative_hash_expr (t1, 0);
|
|
hashval_t two = iterative_hash_expr (t2, 0);
|
|
hashval_t t;
|
|
|
|
if (one > two)
|
|
t = one, one = two, two = t;
|
|
val = iterative_hash_hashval_t (one, val);
|
|
val = iterative_hash_hashval_t (two, val);
|
|
|
|
return val;
|
|
}
|
|
|
|
/* Compute a hash value for a hashable_expr value EXPR and a
|
|
previously accumulated hash value VAL. If two hashable_expr
|
|
values compare equal with hashable_expr_equal_p, they must
|
|
hash to the same value, given an identical value of VAL.
|
|
The logic is intended to follow iterative_hash_expr in tree.c. */
|
|
|
|
static hashval_t
|
|
iterative_hash_hashable_expr (const struct hashable_expr *expr, hashval_t val)
|
|
{
|
|
switch (expr->kind)
|
|
{
|
|
case EXPR_SINGLE:
|
|
val = iterative_hash_expr (expr->ops.single.rhs, val);
|
|
break;
|
|
|
|
case EXPR_UNARY:
|
|
val = iterative_hash_object (expr->ops.unary.op, val);
|
|
|
|
/* Make sure to include signedness in the hash computation.
|
|
Don't hash the type, that can lead to having nodes which
|
|
compare equal according to operand_equal_p, but which
|
|
have different hash codes. */
|
|
if (CONVERT_EXPR_CODE_P (expr->ops.unary.op)
|
|
|| expr->ops.unary.op == NON_LVALUE_EXPR)
|
|
val += TYPE_UNSIGNED (expr->type);
|
|
|
|
val = iterative_hash_expr (expr->ops.unary.opnd, val);
|
|
break;
|
|
|
|
case EXPR_BINARY:
|
|
val = iterative_hash_object (expr->ops.binary.op, val);
|
|
if (commutative_tree_code (expr->ops.binary.op))
|
|
val = iterative_hash_exprs_commutative (expr->ops.binary.opnd0,
|
|
expr->ops.binary.opnd1, val);
|
|
else
|
|
{
|
|
val = iterative_hash_expr (expr->ops.binary.opnd0, val);
|
|
val = iterative_hash_expr (expr->ops.binary.opnd1, val);
|
|
}
|
|
break;
|
|
|
|
case EXPR_TERNARY:
|
|
val = iterative_hash_object (expr->ops.ternary.op, val);
|
|
if (commutative_ternary_tree_code (expr->ops.ternary.op))
|
|
val = iterative_hash_exprs_commutative (expr->ops.ternary.opnd0,
|
|
expr->ops.ternary.opnd1, val);
|
|
else
|
|
{
|
|
val = iterative_hash_expr (expr->ops.ternary.opnd0, val);
|
|
val = iterative_hash_expr (expr->ops.ternary.opnd1, val);
|
|
}
|
|
val = iterative_hash_expr (expr->ops.ternary.opnd2, val);
|
|
break;
|
|
|
|
case EXPR_CALL:
|
|
{
|
|
size_t i;
|
|
enum tree_code code = CALL_EXPR;
|
|
gimple fn_from;
|
|
|
|
val = iterative_hash_object (code, val);
|
|
fn_from = expr->ops.call.fn_from;
|
|
if (gimple_call_internal_p (fn_from))
|
|
val = iterative_hash_hashval_t
|
|
((hashval_t) gimple_call_internal_fn (fn_from), val);
|
|
else
|
|
val = iterative_hash_expr (gimple_call_fn (fn_from), val);
|
|
for (i = 0; i < expr->ops.call.nargs; i++)
|
|
val = iterative_hash_expr (expr->ops.call.args[i], val);
|
|
}
|
|
break;
|
|
|
|
case EXPR_PHI:
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < expr->ops.phi.nargs; i++)
|
|
val = iterative_hash_expr (expr->ops.phi.args[i], val);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/* Print a diagnostic dump of an expression hash table entry. */
|
|
|
|
static void
|
|
print_expr_hash_elt (FILE * stream, const struct expr_hash_elt *element)
|
|
{
|
|
if (element->stmt)
|
|
fprintf (stream, "STMT ");
|
|
else
|
|
fprintf (stream, "COND ");
|
|
|
|
if (element->lhs)
|
|
{
|
|
print_generic_expr (stream, element->lhs, 0);
|
|
fprintf (stream, " = ");
|
|
}
|
|
|
|
switch (element->expr.kind)
|
|
{
|
|
case EXPR_SINGLE:
|
|
print_generic_expr (stream, element->expr.ops.single.rhs, 0);
|
|
break;
|
|
|
|
case EXPR_UNARY:
|
|
fprintf (stream, "%s ", get_tree_code_name (element->expr.ops.unary.op));
|
|
print_generic_expr (stream, element->expr.ops.unary.opnd, 0);
|
|
break;
|
|
|
|
case EXPR_BINARY:
|
|
print_generic_expr (stream, element->expr.ops.binary.opnd0, 0);
|
|
fprintf (stream, " %s ", get_tree_code_name (element->expr.ops.binary.op));
|
|
print_generic_expr (stream, element->expr.ops.binary.opnd1, 0);
|
|
break;
|
|
|
|
case EXPR_TERNARY:
|
|
fprintf (stream, " %s <", get_tree_code_name (element->expr.ops.ternary.op));
|
|
print_generic_expr (stream, element->expr.ops.ternary.opnd0, 0);
|
|
fputs (", ", stream);
|
|
print_generic_expr (stream, element->expr.ops.ternary.opnd1, 0);
|
|
fputs (", ", stream);
|
|
print_generic_expr (stream, element->expr.ops.ternary.opnd2, 0);
|
|
fputs (">", stream);
|
|
break;
|
|
|
|
case EXPR_CALL:
|
|
{
|
|
size_t i;
|
|
size_t nargs = element->expr.ops.call.nargs;
|
|
gimple fn_from;
|
|
|
|
fn_from = element->expr.ops.call.fn_from;
|
|
if (gimple_call_internal_p (fn_from))
|
|
fputs (internal_fn_name (gimple_call_internal_fn (fn_from)),
|
|
stream);
|
|
else
|
|
print_generic_expr (stream, gimple_call_fn (fn_from), 0);
|
|
fprintf (stream, " (");
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
print_generic_expr (stream, element->expr.ops.call.args[i], 0);
|
|
if (i + 1 < nargs)
|
|
fprintf (stream, ", ");
|
|
}
|
|
fprintf (stream, ")");
|
|
}
|
|
break;
|
|
|
|
case EXPR_PHI:
|
|
{
|
|
size_t i;
|
|
size_t nargs = element->expr.ops.phi.nargs;
|
|
|
|
fprintf (stream, "PHI <");
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
print_generic_expr (stream, element->expr.ops.phi.args[i], 0);
|
|
if (i + 1 < nargs)
|
|
fprintf (stream, ", ");
|
|
}
|
|
fprintf (stream, ">");
|
|
}
|
|
break;
|
|
}
|
|
fprintf (stream, "\n");
|
|
|
|
if (element->stmt)
|
|
{
|
|
fprintf (stream, " ");
|
|
print_gimple_stmt (stream, element->stmt, 0, 0);
|
|
}
|
|
}
|
|
|
|
/* Delete variable sized pieces of the expr_hash_elt ELEMENT. */
|
|
|
|
static void
|
|
free_expr_hash_elt_contents (struct expr_hash_elt *element)
|
|
{
|
|
if (element->expr.kind == EXPR_CALL)
|
|
free (element->expr.ops.call.args);
|
|
else if (element->expr.kind == EXPR_PHI)
|
|
free (element->expr.ops.phi.args);
|
|
}
|
|
|
|
/* Delete an expr_hash_elt and reclaim its storage. */
|
|
|
|
static void
|
|
free_expr_hash_elt (void *elt)
|
|
{
|
|
struct expr_hash_elt *element = ((struct expr_hash_elt *)elt);
|
|
free_expr_hash_elt_contents (element);
|
|
free (element);
|
|
}
|
|
|
|
/* Allocate an EDGE_INFO for edge E and attach it to E.
|
|
Return the new EDGE_INFO structure. */
|
|
|
|
static struct edge_info *
|
|
allocate_edge_info (edge e)
|
|
{
|
|
struct edge_info *edge_info;
|
|
|
|
edge_info = XCNEW (struct edge_info);
|
|
|
|
e->aux = edge_info;
|
|
return edge_info;
|
|
}
|
|
|
|
/* Free all EDGE_INFO structures associated with edges in the CFG.
|
|
If a particular edge can be threaded, copy the redirection
|
|
target from the EDGE_INFO structure into the edge's AUX field
|
|
as required by code to update the CFG and SSA graph for
|
|
jump threading. */
|
|
|
|
static void
|
|
free_all_edge_infos (void)
|
|
{
|
|
basic_block bb;
|
|
edge_iterator ei;
|
|
edge e;
|
|
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
{
|
|
struct edge_info *edge_info = (struct edge_info *) e->aux;
|
|
|
|
if (edge_info)
|
|
{
|
|
edge_info->cond_equivalences.release ();
|
|
free (edge_info);
|
|
e->aux = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
class dom_opt_dom_walker : public dom_walker
|
|
{
|
|
public:
|
|
dom_opt_dom_walker (cdi_direction direction)
|
|
: dom_walker (direction), m_dummy_cond (NULL) {}
|
|
|
|
virtual void before_dom_children (basic_block);
|
|
virtual void after_dom_children (basic_block);
|
|
|
|
private:
|
|
void thread_across_edge (edge);
|
|
|
|
gimple m_dummy_cond;
|
|
};
|
|
|
|
/* Jump threading, redundancy elimination and const/copy propagation.
|
|
|
|
This pass may expose new symbols that need to be renamed into SSA. For
|
|
every new symbol exposed, its corresponding bit will be set in
|
|
VARS_TO_RENAME. */
|
|
|
|
static unsigned int
|
|
tree_ssa_dominator_optimize (void)
|
|
{
|
|
memset (&opt_stats, 0, sizeof (opt_stats));
|
|
|
|
/* Create our hash tables. */
|
|
avail_exprs.create (1024);
|
|
avail_exprs_stack.create (20);
|
|
const_and_copies_stack.create (20);
|
|
need_eh_cleanup = BITMAP_ALLOC (NULL);
|
|
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
cfg_altered = false;
|
|
|
|
/* We need to know loop structures in order to avoid destroying them
|
|
in jump threading. Note that we still can e.g. thread through loop
|
|
headers to an exit edge, or through loop header to the loop body, assuming
|
|
that we update the loop info. */
|
|
loop_optimizer_init (LOOPS_HAVE_SIMPLE_LATCHES);
|
|
|
|
/* Initialize the value-handle array. */
|
|
threadedge_initialize_values ();
|
|
|
|
/* We need accurate information regarding back edges in the CFG
|
|
for jump threading; this may include back edges that are not part of
|
|
a single loop. */
|
|
mark_dfs_back_edges ();
|
|
|
|
/* Recursively walk the dominator tree optimizing statements. */
|
|
dom_opt_dom_walker (CDI_DOMINATORS).walk (cfun->cfg->x_entry_block_ptr);
|
|
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
basic_block bb;
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
update_stmt_if_modified (gsi_stmt (gsi));
|
|
}
|
|
}
|
|
|
|
/* If we exposed any new variables, go ahead and put them into
|
|
SSA form now, before we handle jump threading. This simplifies
|
|
interactions between rewriting of _DECL nodes into SSA form
|
|
and rewriting SSA_NAME nodes into SSA form after block
|
|
duplication and CFG manipulation. */
|
|
update_ssa (TODO_update_ssa);
|
|
|
|
free_all_edge_infos ();
|
|
|
|
/* Thread jumps, creating duplicate blocks as needed. */
|
|
cfg_altered |= thread_through_all_blocks (first_pass_instance);
|
|
|
|
if (cfg_altered)
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
|
|
/* Removal of statements may make some EH edges dead. Purge
|
|
such edges from the CFG as needed. */
|
|
if (!bitmap_empty_p (need_eh_cleanup))
|
|
{
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
|
|
/* Jump threading may have created forwarder blocks from blocks
|
|
needing EH cleanup; the new successor of these blocks, which
|
|
has inherited from the original block, needs the cleanup.
|
|
Don't clear bits in the bitmap, as that can break the bitmap
|
|
iterator. */
|
|
EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
|
|
{
|
|
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
|
|
if (bb == NULL)
|
|
continue;
|
|
while (single_succ_p (bb)
|
|
&& (single_succ_edge (bb)->flags & EDGE_EH) == 0)
|
|
bb = single_succ (bb);
|
|
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
|
continue;
|
|
if ((unsigned) bb->index != i)
|
|
bitmap_set_bit (need_eh_cleanup, bb->index);
|
|
}
|
|
|
|
gimple_purge_all_dead_eh_edges (need_eh_cleanup);
|
|
bitmap_clear (need_eh_cleanup);
|
|
}
|
|
|
|
statistics_counter_event (cfun, "Redundant expressions eliminated",
|
|
opt_stats.num_re);
|
|
statistics_counter_event (cfun, "Constants propagated",
|
|
opt_stats.num_const_prop);
|
|
statistics_counter_event (cfun, "Copies propagated",
|
|
opt_stats.num_copy_prop);
|
|
|
|
/* Debugging dumps. */
|
|
if (dump_file && (dump_flags & TDF_STATS))
|
|
dump_dominator_optimization_stats (dump_file);
|
|
|
|
loop_optimizer_finalize ();
|
|
|
|
/* Delete our main hashtable. */
|
|
avail_exprs.dispose ();
|
|
|
|
/* Free asserted bitmaps and stacks. */
|
|
BITMAP_FREE (need_eh_cleanup);
|
|
|
|
avail_exprs_stack.release ();
|
|
const_and_copies_stack.release ();
|
|
|
|
/* Free the value-handle array. */
|
|
threadedge_finalize_values ();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
gate_dominator (void)
|
|
{
|
|
return flag_tree_dom != 0;
|
|
}
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_dominator =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"dom", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
true, /* has_gate */
|
|
true, /* has_execute */
|
|
TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
( TODO_cleanup_cfg | TODO_update_ssa
|
|
| TODO_verify_ssa
|
|
| TODO_verify_flow ), /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_dominator : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_dominator (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_dominator, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
opt_pass * clone () { return new pass_dominator (m_ctxt); }
|
|
bool gate () { return gate_dominator (); }
|
|
unsigned int execute () { return tree_ssa_dominator_optimize (); }
|
|
|
|
}; // class pass_dominator
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_dominator (gcc::context *ctxt)
|
|
{
|
|
return new pass_dominator (ctxt);
|
|
}
|
|
|
|
|
|
/* Given a conditional statement CONDSTMT, convert the
|
|
condition to a canonical form. */
|
|
|
|
static void
|
|
canonicalize_comparison (gimple condstmt)
|
|
{
|
|
tree op0;
|
|
tree op1;
|
|
enum tree_code code;
|
|
|
|
gcc_assert (gimple_code (condstmt) == GIMPLE_COND);
|
|
|
|
op0 = gimple_cond_lhs (condstmt);
|
|
op1 = gimple_cond_rhs (condstmt);
|
|
|
|
code = gimple_cond_code (condstmt);
|
|
|
|
/* If it would be profitable to swap the operands, then do so to
|
|
canonicalize the statement, enabling better optimization.
|
|
|
|
By placing canonicalization of such expressions here we
|
|
transparently keep statements in canonical form, even
|
|
when the statement is modified. */
|
|
if (tree_swap_operands_p (op0, op1, false))
|
|
{
|
|
/* For relationals we need to swap the operands
|
|
and change the code. */
|
|
if (code == LT_EXPR
|
|
|| code == GT_EXPR
|
|
|| code == LE_EXPR
|
|
|| code == GE_EXPR)
|
|
{
|
|
code = swap_tree_comparison (code);
|
|
|
|
gimple_cond_set_code (condstmt, code);
|
|
gimple_cond_set_lhs (condstmt, op1);
|
|
gimple_cond_set_rhs (condstmt, op0);
|
|
|
|
update_stmt (condstmt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Initialize local stacks for this optimizer and record equivalences
|
|
upon entry to BB. Equivalences can come from the edge traversed to
|
|
reach BB or they may come from PHI nodes at the start of BB. */
|
|
|
|
/* Remove all the expressions in LOCALS from TABLE, stopping when there are
|
|
LIMIT entries left in LOCALs. */
|
|
|
|
static void
|
|
remove_local_expressions_from_table (void)
|
|
{
|
|
/* Remove all the expressions made available in this block. */
|
|
while (avail_exprs_stack.length () > 0)
|
|
{
|
|
expr_hash_elt_t victim = avail_exprs_stack.pop ();
|
|
expr_hash_elt **slot;
|
|
|
|
if (victim == NULL)
|
|
break;
|
|
|
|
/* This must precede the actual removal from the hash table,
|
|
as ELEMENT and the table entry may share a call argument
|
|
vector which will be freed during removal. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "<<<< ");
|
|
print_expr_hash_elt (dump_file, victim);
|
|
}
|
|
|
|
slot = avail_exprs.find_slot_with_hash (victim, victim->hash, NO_INSERT);
|
|
gcc_assert (slot && *slot == victim);
|
|
avail_exprs.clear_slot (slot);
|
|
}
|
|
}
|
|
|
|
/* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
|
|
CONST_AND_COPIES to its original state, stopping when we hit a
|
|
NULL marker. */
|
|
|
|
static void
|
|
restore_vars_to_original_value (void)
|
|
{
|
|
while (const_and_copies_stack.length () > 0)
|
|
{
|
|
tree prev_value, dest;
|
|
|
|
dest = const_and_copies_stack.pop ();
|
|
|
|
if (dest == NULL)
|
|
break;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "<<<< COPY ");
|
|
print_generic_expr (dump_file, dest, 0);
|
|
fprintf (dump_file, " = ");
|
|
print_generic_expr (dump_file, SSA_NAME_VALUE (dest), 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
prev_value = const_and_copies_stack.pop ();
|
|
set_ssa_name_value (dest, prev_value);
|
|
}
|
|
}
|
|
|
|
/* A trivial wrapper so that we can present the generic jump
|
|
threading code with a simple API for simplifying statements. */
|
|
static tree
|
|
simplify_stmt_for_jump_threading (gimple stmt,
|
|
gimple within_stmt ATTRIBUTE_UNUSED)
|
|
{
|
|
return lookup_avail_expr (stmt, false);
|
|
}
|
|
|
|
/* Record into the equivalence tables any equivalences implied by
|
|
traversing edge E (which are cached in E->aux).
|
|
|
|
Callers are responsible for managing the unwinding markers. */
|
|
static void
|
|
record_temporary_equivalences (edge e)
|
|
{
|
|
int i;
|
|
struct edge_info *edge_info = (struct edge_info *) e->aux;
|
|
|
|
/* If we have info associated with this edge, record it into
|
|
our equivalence tables. */
|
|
if (edge_info)
|
|
{
|
|
cond_equivalence *eq;
|
|
tree lhs = edge_info->lhs;
|
|
tree rhs = edge_info->rhs;
|
|
|
|
/* If we have a simple NAME = VALUE equivalence, record it. */
|
|
if (lhs && TREE_CODE (lhs) == SSA_NAME)
|
|
record_const_or_copy (lhs, rhs);
|
|
|
|
/* If we have 0 = COND or 1 = COND equivalences, record them
|
|
into our expression hash tables. */
|
|
for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
|
|
record_cond (eq);
|
|
}
|
|
}
|
|
|
|
/* Wrapper for common code to attempt to thread an edge. For example,
|
|
it handles lazily building the dummy condition and the bookkeeping
|
|
when jump threading is successful. */
|
|
|
|
void
|
|
dom_opt_dom_walker::thread_across_edge (edge e)
|
|
{
|
|
if (! m_dummy_cond)
|
|
m_dummy_cond =
|
|
gimple_build_cond (NE_EXPR,
|
|
integer_zero_node, integer_zero_node,
|
|
NULL, NULL);
|
|
|
|
/* Push a marker on both stacks so we can unwind the tables back to their
|
|
current state. */
|
|
avail_exprs_stack.safe_push (NULL);
|
|
const_and_copies_stack.safe_push (NULL_TREE);
|
|
|
|
/* Traversing E may result in equivalences we can utilize. */
|
|
record_temporary_equivalences (e);
|
|
|
|
/* With all the edge equivalences in the tables, go ahead and attempt
|
|
to thread through E->dest. */
|
|
::thread_across_edge (m_dummy_cond, e, false,
|
|
&const_and_copies_stack,
|
|
simplify_stmt_for_jump_threading);
|
|
|
|
/* And restore the various tables to their state before
|
|
we threaded this edge.
|
|
|
|
XXX The code in tree-ssa-threadedge.c will restore the state of
|
|
the const_and_copies table. We we just have to restore the expression
|
|
table. */
|
|
remove_local_expressions_from_table ();
|
|
}
|
|
|
|
/* PHI nodes can create equivalences too.
|
|
|
|
Ignoring any alternatives which are the same as the result, if
|
|
all the alternatives are equal, then the PHI node creates an
|
|
equivalence. */
|
|
|
|
static void
|
|
record_equivalences_from_phis (basic_block bb)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple phi = gsi_stmt (gsi);
|
|
|
|
tree lhs = gimple_phi_result (phi);
|
|
tree rhs = NULL;
|
|
size_t i;
|
|
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
tree t = gimple_phi_arg_def (phi, i);
|
|
|
|
/* Ignore alternatives which are the same as our LHS. Since
|
|
LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
|
|
can simply compare pointers. */
|
|
if (lhs == t)
|
|
continue;
|
|
|
|
/* If we have not processed an alternative yet, then set
|
|
RHS to this alternative. */
|
|
if (rhs == NULL)
|
|
rhs = t;
|
|
/* If we have processed an alternative (stored in RHS), then
|
|
see if it is equal to this one. If it isn't, then stop
|
|
the search. */
|
|
else if (! operand_equal_for_phi_arg_p (rhs, t))
|
|
break;
|
|
}
|
|
|
|
/* If we had no interesting alternatives, then all the RHS alternatives
|
|
must have been the same as LHS. */
|
|
if (!rhs)
|
|
rhs = lhs;
|
|
|
|
/* If we managed to iterate through each PHI alternative without
|
|
breaking out of the loop, then we have a PHI which may create
|
|
a useful equivalence. We do not need to record unwind data for
|
|
this, since this is a true assignment and not an equivalence
|
|
inferred from a comparison. All uses of this ssa name are dominated
|
|
by this assignment, so unwinding just costs time and space. */
|
|
if (i == gimple_phi_num_args (phi) && may_propagate_copy (lhs, rhs))
|
|
set_ssa_name_value (lhs, rhs);
|
|
}
|
|
}
|
|
|
|
/* Ignoring loop backedges, if BB has precisely one incoming edge then
|
|
return that edge. Otherwise return NULL. */
|
|
static edge
|
|
single_incoming_edge_ignoring_loop_edges (basic_block bb)
|
|
{
|
|
edge retval = NULL;
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
{
|
|
/* A loop back edge can be identified by the destination of
|
|
the edge dominating the source of the edge. */
|
|
if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
|
|
continue;
|
|
|
|
/* If we have already seen a non-loop edge, then we must have
|
|
multiple incoming non-loop edges and thus we return NULL. */
|
|
if (retval)
|
|
return NULL;
|
|
|
|
/* This is the first non-loop incoming edge we have found. Record
|
|
it. */
|
|
retval = e;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Record any equivalences created by the incoming edge to BB. If BB
|
|
has more than one incoming edge, then no equivalence is created. */
|
|
|
|
static void
|
|
record_equivalences_from_incoming_edge (basic_block bb)
|
|
{
|
|
edge e;
|
|
basic_block parent;
|
|
struct edge_info *edge_info;
|
|
|
|
/* If our parent block ended with a control statement, then we may be
|
|
able to record some equivalences based on which outgoing edge from
|
|
the parent was followed. */
|
|
parent = get_immediate_dominator (CDI_DOMINATORS, bb);
|
|
|
|
e = single_incoming_edge_ignoring_loop_edges (bb);
|
|
|
|
/* If we had a single incoming edge from our parent block, then enter
|
|
any data associated with the edge into our tables. */
|
|
if (e && e->src == parent)
|
|
{
|
|
unsigned int i;
|
|
|
|
edge_info = (struct edge_info *) e->aux;
|
|
|
|
if (edge_info)
|
|
{
|
|
tree lhs = edge_info->lhs;
|
|
tree rhs = edge_info->rhs;
|
|
cond_equivalence *eq;
|
|
|
|
if (lhs)
|
|
record_equality (lhs, rhs);
|
|
|
|
/* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
|
|
set via a widening type conversion, then we may be able to record
|
|
additional equivalences. */
|
|
if (lhs
|
|
&& TREE_CODE (lhs) == SSA_NAME
|
|
&& is_gimple_constant (rhs)
|
|
&& TREE_CODE (rhs) == INTEGER_CST)
|
|
{
|
|
gimple defstmt = SSA_NAME_DEF_STMT (lhs);
|
|
|
|
if (defstmt
|
|
&& is_gimple_assign (defstmt)
|
|
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (defstmt)))
|
|
{
|
|
tree old_rhs = gimple_assign_rhs1 (defstmt);
|
|
|
|
/* If the conversion widens the original value and
|
|
the constant is in the range of the type of OLD_RHS,
|
|
then convert the constant and record the equivalence.
|
|
|
|
Note that int_fits_type_p does not check the precision
|
|
if the upper and lower bounds are OK. */
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (old_rhs))
|
|
&& (TYPE_PRECISION (TREE_TYPE (lhs))
|
|
> TYPE_PRECISION (TREE_TYPE (old_rhs)))
|
|
&& int_fits_type_p (rhs, TREE_TYPE (old_rhs)))
|
|
{
|
|
tree newval = fold_convert (TREE_TYPE (old_rhs), rhs);
|
|
record_equality (old_rhs, newval);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
|
|
record_cond (eq);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Dump SSA statistics on FILE. */
|
|
|
|
void
|
|
dump_dominator_optimization_stats (FILE *file)
|
|
{
|
|
fprintf (file, "Total number of statements: %6ld\n\n",
|
|
opt_stats.num_stmts);
|
|
fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
|
|
opt_stats.num_exprs_considered);
|
|
|
|
fprintf (file, "\nHash table statistics:\n");
|
|
|
|
fprintf (file, " avail_exprs: ");
|
|
htab_statistics (file, avail_exprs);
|
|
}
|
|
|
|
|
|
/* Dump SSA statistics on stderr. */
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_dominator_optimization_stats (void)
|
|
{
|
|
dump_dominator_optimization_stats (stderr);
|
|
}
|
|
|
|
|
|
/* Dump statistics for the hash table HTAB. */
|
|
|
|
static void
|
|
htab_statistics (FILE *file, hash_table <expr_elt_hasher> htab)
|
|
{
|
|
fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
|
|
(long) htab.size (),
|
|
(long) htab.elements (),
|
|
htab.collisions ());
|
|
}
|
|
|
|
|
|
/* Enter condition equivalence into the expression hash table.
|
|
This indicates that a conditional expression has a known
|
|
boolean value. */
|
|
|
|
static void
|
|
record_cond (cond_equivalence *p)
|
|
{
|
|
struct expr_hash_elt *element = XCNEW (struct expr_hash_elt);
|
|
expr_hash_elt **slot;
|
|
|
|
initialize_hash_element_from_expr (&p->cond, p->value, element);
|
|
|
|
slot = avail_exprs.find_slot_with_hash (element, element->hash, INSERT);
|
|
if (*slot == NULL)
|
|
{
|
|
*slot = element;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "1>>> ");
|
|
print_expr_hash_elt (dump_file, element);
|
|
}
|
|
|
|
avail_exprs_stack.safe_push (element);
|
|
}
|
|
else
|
|
free_expr_hash_elt (element);
|
|
}
|
|
|
|
/* Build a cond_equivalence record indicating that the comparison
|
|
CODE holds between operands OP0 and OP1 and push it to **P. */
|
|
|
|
static void
|
|
build_and_record_new_cond (enum tree_code code,
|
|
tree op0, tree op1,
|
|
vec<cond_equivalence> *p)
|
|
{
|
|
cond_equivalence c;
|
|
struct hashable_expr *cond = &c.cond;
|
|
|
|
gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
|
|
|
|
cond->type = boolean_type_node;
|
|
cond->kind = EXPR_BINARY;
|
|
cond->ops.binary.op = code;
|
|
cond->ops.binary.opnd0 = op0;
|
|
cond->ops.binary.opnd1 = op1;
|
|
|
|
c.value = boolean_true_node;
|
|
p->safe_push (c);
|
|
}
|
|
|
|
/* Record that COND is true and INVERTED is false into the edge information
|
|
structure. Also record that any conditions dominated by COND are true
|
|
as well.
|
|
|
|
For example, if a < b is true, then a <= b must also be true. */
|
|
|
|
static void
|
|
record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
|
|
{
|
|
tree op0, op1;
|
|
cond_equivalence c;
|
|
|
|
if (!COMPARISON_CLASS_P (cond))
|
|
return;
|
|
|
|
op0 = TREE_OPERAND (cond, 0);
|
|
op1 = TREE_OPERAND (cond, 1);
|
|
|
|
switch (TREE_CODE (cond))
|
|
{
|
|
case LT_EXPR:
|
|
case GT_EXPR:
|
|
if (FLOAT_TYPE_P (TREE_TYPE (op0)))
|
|
{
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
build_and_record_new_cond (LTGT_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
}
|
|
|
|
build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
|
|
? LE_EXPR : GE_EXPR),
|
|
op0, op1, &edge_info->cond_equivalences);
|
|
build_and_record_new_cond (NE_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
break;
|
|
|
|
case GE_EXPR:
|
|
case LE_EXPR:
|
|
if (FLOAT_TYPE_P (TREE_TYPE (op0)))
|
|
{
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
}
|
|
break;
|
|
|
|
case EQ_EXPR:
|
|
if (FLOAT_TYPE_P (TREE_TYPE (op0)))
|
|
{
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
}
|
|
build_and_record_new_cond (LE_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
build_and_record_new_cond (GE_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
break;
|
|
|
|
case UNORDERED_EXPR:
|
|
build_and_record_new_cond (NE_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
build_and_record_new_cond (UNLE_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
build_and_record_new_cond (UNGE_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
build_and_record_new_cond (UNEQ_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
build_and_record_new_cond (UNLT_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
build_and_record_new_cond (UNGT_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
break;
|
|
|
|
case UNLT_EXPR:
|
|
case UNGT_EXPR:
|
|
build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
|
|
? UNLE_EXPR : UNGE_EXPR),
|
|
op0, op1, &edge_info->cond_equivalences);
|
|
build_and_record_new_cond (NE_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
break;
|
|
|
|
case UNEQ_EXPR:
|
|
build_and_record_new_cond (UNLE_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
build_and_record_new_cond (UNGE_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
break;
|
|
|
|
case LTGT_EXPR:
|
|
build_and_record_new_cond (NE_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1,
|
|
&edge_info->cond_equivalences);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Now store the original true and false conditions into the first
|
|
two slots. */
|
|
initialize_expr_from_cond (cond, &c.cond);
|
|
c.value = boolean_true_node;
|
|
edge_info->cond_equivalences.safe_push (c);
|
|
|
|
/* It is possible for INVERTED to be the negation of a comparison,
|
|
and not a valid RHS or GIMPLE_COND condition. This happens because
|
|
invert_truthvalue may return such an expression when asked to invert
|
|
a floating-point comparison. These comparisons are not assumed to
|
|
obey the trichotomy law. */
|
|
initialize_expr_from_cond (inverted, &c.cond);
|
|
c.value = boolean_false_node;
|
|
edge_info->cond_equivalences.safe_push (c);
|
|
}
|
|
|
|
/* A helper function for record_const_or_copy and record_equality.
|
|
Do the work of recording the value and undo info. */
|
|
|
|
static void
|
|
record_const_or_copy_1 (tree x, tree y, tree prev_x)
|
|
{
|
|
set_ssa_name_value (x, y);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "0>>> COPY ");
|
|
print_generic_expr (dump_file, x, 0);
|
|
fprintf (dump_file, " = ");
|
|
print_generic_expr (dump_file, y, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
const_and_copies_stack.reserve (2);
|
|
const_and_copies_stack.quick_push (prev_x);
|
|
const_and_copies_stack.quick_push (x);
|
|
}
|
|
|
|
/* Return the loop depth of the basic block of the defining statement of X.
|
|
This number should not be treated as absolutely correct because the loop
|
|
information may not be completely up-to-date when dom runs. However, it
|
|
will be relatively correct, and as more passes are taught to keep loop info
|
|
up to date, the result will become more and more accurate. */
|
|
|
|
int
|
|
loop_depth_of_name (tree x)
|
|
{
|
|
gimple defstmt;
|
|
basic_block defbb;
|
|
|
|
/* If it's not an SSA_NAME, we have no clue where the definition is. */
|
|
if (TREE_CODE (x) != SSA_NAME)
|
|
return 0;
|
|
|
|
/* Otherwise return the loop depth of the defining statement's bb.
|
|
Note that there may not actually be a bb for this statement, if the
|
|
ssa_name is live on entry. */
|
|
defstmt = SSA_NAME_DEF_STMT (x);
|
|
defbb = gimple_bb (defstmt);
|
|
if (!defbb)
|
|
return 0;
|
|
|
|
return bb_loop_depth (defbb);
|
|
}
|
|
|
|
/* Record that X is equal to Y in const_and_copies. Record undo
|
|
information in the block-local vector. */
|
|
|
|
static void
|
|
record_const_or_copy (tree x, tree y)
|
|
{
|
|
tree prev_x = SSA_NAME_VALUE (x);
|
|
|
|
gcc_assert (TREE_CODE (x) == SSA_NAME);
|
|
|
|
if (TREE_CODE (y) == SSA_NAME)
|
|
{
|
|
tree tmp = SSA_NAME_VALUE (y);
|
|
if (tmp)
|
|
y = tmp;
|
|
}
|
|
|
|
record_const_or_copy_1 (x, y, prev_x);
|
|
}
|
|
|
|
/* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
|
|
This constrains the cases in which we may treat this as assignment. */
|
|
|
|
static void
|
|
record_equality (tree x, tree y)
|
|
{
|
|
tree prev_x = NULL, prev_y = NULL;
|
|
|
|
if (TREE_CODE (x) == SSA_NAME)
|
|
prev_x = SSA_NAME_VALUE (x);
|
|
if (TREE_CODE (y) == SSA_NAME)
|
|
prev_y = SSA_NAME_VALUE (y);
|
|
|
|
/* If one of the previous values is invariant, or invariant in more loops
|
|
(by depth), then use that.
|
|
Otherwise it doesn't matter which value we choose, just so
|
|
long as we canonicalize on one value. */
|
|
if (is_gimple_min_invariant (y))
|
|
;
|
|
else if (is_gimple_min_invariant (x)
|
|
|| (loop_depth_of_name (x) <= loop_depth_of_name (y)))
|
|
prev_x = x, x = y, y = prev_x, prev_x = prev_y;
|
|
else if (prev_x && is_gimple_min_invariant (prev_x))
|
|
x = y, y = prev_x, prev_x = prev_y;
|
|
else if (prev_y)
|
|
y = prev_y;
|
|
|
|
/* After the swapping, we must have one SSA_NAME. */
|
|
if (TREE_CODE (x) != SSA_NAME)
|
|
return;
|
|
|
|
/* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
|
|
variable compared against zero. If we're honoring signed zeros,
|
|
then we cannot record this value unless we know that the value is
|
|
nonzero. */
|
|
if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x)))
|
|
&& (TREE_CODE (y) != REAL_CST
|
|
|| REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
|
|
return;
|
|
|
|
record_const_or_copy_1 (x, y, prev_x);
|
|
}
|
|
|
|
/* Returns true when STMT is a simple iv increment. It detects the
|
|
following situation:
|
|
|
|
i_1 = phi (..., i_2)
|
|
i_2 = i_1 +/- ... */
|
|
|
|
bool
|
|
simple_iv_increment_p (gimple stmt)
|
|
{
|
|
enum tree_code code;
|
|
tree lhs, preinc;
|
|
gimple phi;
|
|
size_t i;
|
|
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
|
return false;
|
|
|
|
lhs = gimple_assign_lhs (stmt);
|
|
if (TREE_CODE (lhs) != SSA_NAME)
|
|
return false;
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
if (code != PLUS_EXPR
|
|
&& code != MINUS_EXPR
|
|
&& code != POINTER_PLUS_EXPR)
|
|
return false;
|
|
|
|
preinc = gimple_assign_rhs1 (stmt);
|
|
if (TREE_CODE (preinc) != SSA_NAME)
|
|
return false;
|
|
|
|
phi = SSA_NAME_DEF_STMT (preinc);
|
|
if (gimple_code (phi) != GIMPLE_PHI)
|
|
return false;
|
|
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
if (gimple_phi_arg_def (phi, i) == lhs)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
|
|
known value for that SSA_NAME (or NULL if no value is known).
|
|
|
|
Propagate values from CONST_AND_COPIES into the PHI nodes of the
|
|
successors of BB. */
|
|
|
|
static void
|
|
cprop_into_successor_phis (basic_block bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
{
|
|
int indx;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
/* If this is an abnormal edge, then we do not want to copy propagate
|
|
into the PHI alternative associated with this edge. */
|
|
if (e->flags & EDGE_ABNORMAL)
|
|
continue;
|
|
|
|
gsi = gsi_start_phis (e->dest);
|
|
if (gsi_end_p (gsi))
|
|
continue;
|
|
|
|
/* We may have an equivalence associated with this edge. While
|
|
we can not propagate it into non-dominated blocks, we can
|
|
propagate them into PHIs in non-dominated blocks. */
|
|
|
|
/* Push the unwind marker so we can reset the const and copies
|
|
table back to its original state after processing this edge. */
|
|
const_and_copies_stack.safe_push (NULL_TREE);
|
|
|
|
/* Extract and record any simple NAME = VALUE equivalences.
|
|
|
|
Don't bother with [01] = COND equivalences, they're not useful
|
|
here. */
|
|
struct edge_info *edge_info = (struct edge_info *) e->aux;
|
|
if (edge_info)
|
|
{
|
|
tree lhs = edge_info->lhs;
|
|
tree rhs = edge_info->rhs;
|
|
|
|
if (lhs && TREE_CODE (lhs) == SSA_NAME)
|
|
record_const_or_copy (lhs, rhs);
|
|
}
|
|
|
|
indx = e->dest_idx;
|
|
for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
tree new_val;
|
|
use_operand_p orig_p;
|
|
tree orig_val;
|
|
gimple phi = gsi_stmt (gsi);
|
|
|
|
/* The alternative may be associated with a constant, so verify
|
|
it is an SSA_NAME before doing anything with it. */
|
|
orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
|
|
orig_val = get_use_from_ptr (orig_p);
|
|
if (TREE_CODE (orig_val) != SSA_NAME)
|
|
continue;
|
|
|
|
/* If we have *ORIG_P in our constant/copy table, then replace
|
|
ORIG_P with its value in our constant/copy table. */
|
|
new_val = SSA_NAME_VALUE (orig_val);
|
|
if (new_val
|
|
&& new_val != orig_val
|
|
&& (TREE_CODE (new_val) == SSA_NAME
|
|
|| is_gimple_min_invariant (new_val))
|
|
&& may_propagate_copy (orig_val, new_val))
|
|
propagate_value (orig_p, new_val);
|
|
}
|
|
|
|
restore_vars_to_original_value ();
|
|
}
|
|
}
|
|
|
|
/* We have finished optimizing BB, record any information implied by
|
|
taking a specific outgoing edge from BB. */
|
|
|
|
static void
|
|
record_edge_info (basic_block bb)
|
|
{
|
|
gimple_stmt_iterator gsi = gsi_last_bb (bb);
|
|
struct edge_info *edge_info;
|
|
|
|
if (! gsi_end_p (gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
location_t loc = gimple_location (stmt);
|
|
|
|
if (gimple_code (stmt) == GIMPLE_SWITCH)
|
|
{
|
|
tree index = gimple_switch_index (stmt);
|
|
|
|
if (TREE_CODE (index) == SSA_NAME)
|
|
{
|
|
int i;
|
|
int n_labels = gimple_switch_num_labels (stmt);
|
|
tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
for (i = 0; i < n_labels; i++)
|
|
{
|
|
tree label = gimple_switch_label (stmt, i);
|
|
basic_block target_bb = label_to_block (CASE_LABEL (label));
|
|
if (CASE_HIGH (label)
|
|
|| !CASE_LOW (label)
|
|
|| info[target_bb->index])
|
|
info[target_bb->index] = error_mark_node;
|
|
else
|
|
info[target_bb->index] = label;
|
|
}
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
{
|
|
basic_block target_bb = e->dest;
|
|
tree label = info[target_bb->index];
|
|
|
|
if (label != NULL && label != error_mark_node)
|
|
{
|
|
tree x = fold_convert_loc (loc, TREE_TYPE (index),
|
|
CASE_LOW (label));
|
|
edge_info = allocate_edge_info (e);
|
|
edge_info->lhs = index;
|
|
edge_info->rhs = x;
|
|
}
|
|
}
|
|
free (info);
|
|
}
|
|
}
|
|
|
|
/* A COND_EXPR may create equivalences too. */
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
|
{
|
|
edge true_edge;
|
|
edge false_edge;
|
|
|
|
tree op0 = gimple_cond_lhs (stmt);
|
|
tree op1 = gimple_cond_rhs (stmt);
|
|
enum tree_code code = gimple_cond_code (stmt);
|
|
|
|
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
|
|
|
|
/* Special case comparing booleans against a constant as we
|
|
know the value of OP0 on both arms of the branch. i.e., we
|
|
can record an equivalence for OP0 rather than COND. */
|
|
if ((code == EQ_EXPR || code == NE_EXPR)
|
|
&& TREE_CODE (op0) == SSA_NAME
|
|
&& TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
|
|
&& is_gimple_min_invariant (op1))
|
|
{
|
|
if (code == EQ_EXPR)
|
|
{
|
|
edge_info = allocate_edge_info (true_edge);
|
|
edge_info->lhs = op0;
|
|
edge_info->rhs = (integer_zerop (op1)
|
|
? boolean_false_node
|
|
: boolean_true_node);
|
|
|
|
edge_info = allocate_edge_info (false_edge);
|
|
edge_info->lhs = op0;
|
|
edge_info->rhs = (integer_zerop (op1)
|
|
? boolean_true_node
|
|
: boolean_false_node);
|
|
}
|
|
else
|
|
{
|
|
edge_info = allocate_edge_info (true_edge);
|
|
edge_info->lhs = op0;
|
|
edge_info->rhs = (integer_zerop (op1)
|
|
? boolean_true_node
|
|
: boolean_false_node);
|
|
|
|
edge_info = allocate_edge_info (false_edge);
|
|
edge_info->lhs = op0;
|
|
edge_info->rhs = (integer_zerop (op1)
|
|
? boolean_false_node
|
|
: boolean_true_node);
|
|
}
|
|
}
|
|
else if (is_gimple_min_invariant (op0)
|
|
&& (TREE_CODE (op1) == SSA_NAME
|
|
|| is_gimple_min_invariant (op1)))
|
|
{
|
|
tree cond = build2 (code, boolean_type_node, op0, op1);
|
|
tree inverted = invert_truthvalue_loc (loc, cond);
|
|
bool can_infer_simple_equiv
|
|
= !(HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
|
|
&& real_zerop (op0));
|
|
struct edge_info *edge_info;
|
|
|
|
edge_info = allocate_edge_info (true_edge);
|
|
record_conditions (edge_info, cond, inverted);
|
|
|
|
if (can_infer_simple_equiv && code == EQ_EXPR)
|
|
{
|
|
edge_info->lhs = op1;
|
|
edge_info->rhs = op0;
|
|
}
|
|
|
|
edge_info = allocate_edge_info (false_edge);
|
|
record_conditions (edge_info, inverted, cond);
|
|
|
|
if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
|
|
{
|
|
edge_info->lhs = op1;
|
|
edge_info->rhs = op0;
|
|
}
|
|
}
|
|
|
|
else if (TREE_CODE (op0) == SSA_NAME
|
|
&& (TREE_CODE (op1) == SSA_NAME
|
|
|| is_gimple_min_invariant (op1)))
|
|
{
|
|
tree cond = build2 (code, boolean_type_node, op0, op1);
|
|
tree inverted = invert_truthvalue_loc (loc, cond);
|
|
bool can_infer_simple_equiv
|
|
= !(HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op1)))
|
|
&& (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
|
|
struct edge_info *edge_info;
|
|
|
|
edge_info = allocate_edge_info (true_edge);
|
|
record_conditions (edge_info, cond, inverted);
|
|
|
|
if (can_infer_simple_equiv && code == EQ_EXPR)
|
|
{
|
|
edge_info->lhs = op0;
|
|
edge_info->rhs = op1;
|
|
}
|
|
|
|
edge_info = allocate_edge_info (false_edge);
|
|
record_conditions (edge_info, inverted, cond);
|
|
|
|
if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
|
|
{
|
|
edge_info->lhs = op0;
|
|
edge_info->rhs = op1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ??? TRUTH_NOT_EXPR can create an equivalence too. */
|
|
}
|
|
}
|
|
|
|
void
|
|
dom_opt_dom_walker::before_dom_children (basic_block bb)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
|
|
|
|
/* Push a marker on the stacks of local information so that we know how
|
|
far to unwind when we finalize this block. */
|
|
avail_exprs_stack.safe_push (NULL);
|
|
const_and_copies_stack.safe_push (NULL_TREE);
|
|
|
|
record_equivalences_from_incoming_edge (bb);
|
|
|
|
/* PHI nodes can create equivalences too. */
|
|
record_equivalences_from_phis (bb);
|
|
|
|
/* Create equivalences from redundant PHIs. PHIs are only truly
|
|
redundant when they exist in the same block, so push another
|
|
marker and unwind right afterwards. */
|
|
avail_exprs_stack.safe_push (NULL);
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
eliminate_redundant_computations (&gsi);
|
|
remove_local_expressions_from_table ();
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
optimize_stmt (bb, gsi);
|
|
|
|
/* Now prepare to process dominated blocks. */
|
|
record_edge_info (bb);
|
|
cprop_into_successor_phis (bb);
|
|
}
|
|
|
|
/* We have finished processing the dominator children of BB, perform
|
|
any finalization actions in preparation for leaving this node in
|
|
the dominator tree. */
|
|
|
|
void
|
|
dom_opt_dom_walker::after_dom_children (basic_block bb)
|
|
{
|
|
gimple last;
|
|
|
|
/* If we have an outgoing edge to a block with multiple incoming and
|
|
outgoing edges, then we may be able to thread the edge, i.e., we
|
|
may be able to statically determine which of the outgoing edges
|
|
will be traversed when the incoming edge from BB is traversed. */
|
|
if (single_succ_p (bb)
|
|
&& (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0
|
|
&& potentially_threadable_block (single_succ (bb)))
|
|
{
|
|
thread_across_edge (single_succ_edge (bb));
|
|
}
|
|
else if ((last = last_stmt (bb))
|
|
&& gimple_code (last) == GIMPLE_COND
|
|
&& EDGE_COUNT (bb->succs) == 2
|
|
&& (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
|
|
&& (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
|
|
{
|
|
edge true_edge, false_edge;
|
|
|
|
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
|
|
|
|
/* Only try to thread the edge if it reaches a target block with
|
|
more than one predecessor and more than one successor. */
|
|
if (potentially_threadable_block (true_edge->dest))
|
|
thread_across_edge (true_edge);
|
|
|
|
/* Similarly for the ELSE arm. */
|
|
if (potentially_threadable_block (false_edge->dest))
|
|
thread_across_edge (false_edge);
|
|
|
|
}
|
|
|
|
/* These remove expressions local to BB from the tables. */
|
|
remove_local_expressions_from_table ();
|
|
restore_vars_to_original_value ();
|
|
}
|
|
|
|
/* Search for redundant computations in STMT. If any are found, then
|
|
replace them with the variable holding the result of the computation.
|
|
|
|
If safe, record this expression into the available expression hash
|
|
table. */
|
|
|
|
static void
|
|
eliminate_redundant_computations (gimple_stmt_iterator* gsi)
|
|
{
|
|
tree expr_type;
|
|
tree cached_lhs;
|
|
tree def;
|
|
bool insert = true;
|
|
bool assigns_var_p = false;
|
|
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
def = gimple_phi_result (stmt);
|
|
else
|
|
def = gimple_get_lhs (stmt);
|
|
|
|
/* Certain expressions on the RHS can be optimized away, but can not
|
|
themselves be entered into the hash tables. */
|
|
if (! def
|
|
|| TREE_CODE (def) != SSA_NAME
|
|
|| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
|
|
|| gimple_vdef (stmt)
|
|
/* Do not record equivalences for increments of ivs. This would create
|
|
overlapping live ranges for a very questionable gain. */
|
|
|| simple_iv_increment_p (stmt))
|
|
insert = false;
|
|
|
|
/* Check if the expression has been computed before. */
|
|
cached_lhs = lookup_avail_expr (stmt, insert);
|
|
|
|
opt_stats.num_exprs_considered++;
|
|
|
|
/* Get the type of the expression we are trying to optimize. */
|
|
if (is_gimple_assign (stmt))
|
|
{
|
|
expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
|
|
assigns_var_p = true;
|
|
}
|
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
|
expr_type = boolean_type_node;
|
|
else if (is_gimple_call (stmt))
|
|
{
|
|
gcc_assert (gimple_call_lhs (stmt));
|
|
expr_type = TREE_TYPE (gimple_call_lhs (stmt));
|
|
assigns_var_p = true;
|
|
}
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
|
expr_type = TREE_TYPE (gimple_switch_index (stmt));
|
|
else if (gimple_code (stmt) == GIMPLE_PHI)
|
|
/* We can't propagate into a phi, so the logic below doesn't apply.
|
|
Instead record an equivalence between the cached LHS and the
|
|
PHI result of this statement, provided they are in the same block.
|
|
This should be sufficient to kill the redundant phi. */
|
|
{
|
|
if (def && cached_lhs)
|
|
record_const_or_copy (def, cached_lhs);
|
|
return;
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
if (!cached_lhs)
|
|
return;
|
|
|
|
/* It is safe to ignore types here since we have already done
|
|
type checking in the hashing and equality routines. In fact
|
|
type checking here merely gets in the way of constant
|
|
propagation. Also, make sure that it is safe to propagate
|
|
CACHED_LHS into the expression in STMT. */
|
|
if ((TREE_CODE (cached_lhs) != SSA_NAME
|
|
&& (assigns_var_p
|
|
|| useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
|
|
|| may_propagate_copy_into_stmt (stmt, cached_lhs))
|
|
{
|
|
gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
|
|
|| is_gimple_min_invariant (cached_lhs));
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " Replaced redundant expr '");
|
|
print_gimple_expr (dump_file, stmt, 0, dump_flags);
|
|
fprintf (dump_file, "' with '");
|
|
print_generic_expr (dump_file, cached_lhs, dump_flags);
|
|
fprintf (dump_file, "'\n");
|
|
}
|
|
|
|
opt_stats.num_re++;
|
|
|
|
if (assigns_var_p
|
|
&& !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
|
|
cached_lhs = fold_convert (expr_type, cached_lhs);
|
|
|
|
propagate_tree_value_into_stmt (gsi, cached_lhs);
|
|
|
|
/* Since it is always necessary to mark the result as modified,
|
|
perhaps we should move this into propagate_tree_value_into_stmt
|
|
itself. */
|
|
gimple_set_modified (gsi_stmt (*gsi), true);
|
|
}
|
|
}
|
|
|
|
/* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
|
|
the available expressions table or the const_and_copies table.
|
|
Detect and record those equivalences. */
|
|
/* We handle only very simple copy equivalences here. The heavy
|
|
lifing is done by eliminate_redundant_computations. */
|
|
|
|
static void
|
|
record_equivalences_from_stmt (gimple stmt, int may_optimize_p)
|
|
{
|
|
tree lhs;
|
|
enum tree_code lhs_code;
|
|
|
|
gcc_assert (is_gimple_assign (stmt));
|
|
|
|
lhs = gimple_assign_lhs (stmt);
|
|
lhs_code = TREE_CODE (lhs);
|
|
|
|
if (lhs_code == SSA_NAME
|
|
&& gimple_assign_single_p (stmt))
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
|
|
/* If the RHS of the assignment is a constant or another variable that
|
|
may be propagated, register it in the CONST_AND_COPIES table. We
|
|
do not need to record unwind data for this, since this is a true
|
|
assignment and not an equivalence inferred from a comparison. All
|
|
uses of this ssa name are dominated by this assignment, so unwinding
|
|
just costs time and space. */
|
|
if (may_optimize_p
|
|
&& (TREE_CODE (rhs) == SSA_NAME
|
|
|| is_gimple_min_invariant (rhs)))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "==== ASGN ");
|
|
print_generic_expr (dump_file, lhs, 0);
|
|
fprintf (dump_file, " = ");
|
|
print_generic_expr (dump_file, rhs, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
set_ssa_name_value (lhs, rhs);
|
|
}
|
|
}
|
|
|
|
/* A memory store, even an aliased store, creates a useful
|
|
equivalence. By exchanging the LHS and RHS, creating suitable
|
|
vops and recording the result in the available expression table,
|
|
we may be able to expose more redundant loads. */
|
|
if (!gimple_has_volatile_ops (stmt)
|
|
&& gimple_references_memory_p (stmt)
|
|
&& gimple_assign_single_p (stmt)
|
|
&& (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
|
|| is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
|
|
&& !is_gimple_reg (lhs))
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
gimple new_stmt;
|
|
|
|
/* Build a new statement with the RHS and LHS exchanged. */
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
|
{
|
|
/* NOTE tuples. The call to gimple_build_assign below replaced
|
|
a call to build_gimple_modify_stmt, which did not set the
|
|
SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
|
|
may cause an SSA validation failure, as the LHS may be a
|
|
default-initialized name and should have no definition. I'm
|
|
a bit dubious of this, as the artificial statement that we
|
|
generate here may in fact be ill-formed, but it is simply
|
|
used as an internal device in this pass, and never becomes
|
|
part of the CFG. */
|
|
gimple defstmt = SSA_NAME_DEF_STMT (rhs);
|
|
new_stmt = gimple_build_assign (rhs, lhs);
|
|
SSA_NAME_DEF_STMT (rhs) = defstmt;
|
|
}
|
|
else
|
|
new_stmt = gimple_build_assign (rhs, lhs);
|
|
|
|
gimple_set_vuse (new_stmt, gimple_vdef (stmt));
|
|
|
|
/* Finally enter the statement into the available expression
|
|
table. */
|
|
lookup_avail_expr (new_stmt, true);
|
|
}
|
|
}
|
|
|
|
/* Replace *OP_P in STMT with any known equivalent value for *OP_P from
|
|
CONST_AND_COPIES. */
|
|
|
|
static void
|
|
cprop_operand (gimple stmt, use_operand_p op_p)
|
|
{
|
|
tree val;
|
|
tree op = USE_FROM_PTR (op_p);
|
|
|
|
/* If the operand has a known constant value or it is known to be a
|
|
copy of some other variable, use the value or copy stored in
|
|
CONST_AND_COPIES. */
|
|
val = SSA_NAME_VALUE (op);
|
|
if (val && val != op)
|
|
{
|
|
/* Do not replace hard register operands in asm statements. */
|
|
if (gimple_code (stmt) == GIMPLE_ASM
|
|
&& !may_propagate_copy_into_asm (op))
|
|
return;
|
|
|
|
/* Certain operands are not allowed to be copy propagated due
|
|
to their interaction with exception handling and some GCC
|
|
extensions. */
|
|
if (!may_propagate_copy (op, val))
|
|
return;
|
|
|
|
/* Do not propagate addresses that point to volatiles into memory
|
|
stmts without volatile operands. */
|
|
if (POINTER_TYPE_P (TREE_TYPE (val))
|
|
&& TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (val)))
|
|
&& gimple_has_mem_ops (stmt)
|
|
&& !gimple_has_volatile_ops (stmt))
|
|
return;
|
|
|
|
/* Do not propagate copies if the propagated value is at a deeper loop
|
|
depth than the propagatee. Otherwise, this may move loop variant
|
|
variables outside of their loops and prevent coalescing
|
|
opportunities. If the value was loop invariant, it will be hoisted
|
|
by LICM and exposed for copy propagation. */
|
|
if (loop_depth_of_name (val) > loop_depth_of_name (op))
|
|
return;
|
|
|
|
/* Do not propagate copies into simple IV increment statements.
|
|
See PR23821 for how this can disturb IV analysis. */
|
|
if (TREE_CODE (val) != INTEGER_CST
|
|
&& simple_iv_increment_p (stmt))
|
|
return;
|
|
|
|
/* Dump details. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " Replaced '");
|
|
print_generic_expr (dump_file, op, dump_flags);
|
|
fprintf (dump_file, "' with %s '",
|
|
(TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
|
|
print_generic_expr (dump_file, val, dump_flags);
|
|
fprintf (dump_file, "'\n");
|
|
}
|
|
|
|
if (TREE_CODE (val) != SSA_NAME)
|
|
opt_stats.num_const_prop++;
|
|
else
|
|
opt_stats.num_copy_prop++;
|
|
|
|
propagate_value (op_p, val);
|
|
|
|
/* And note that we modified this statement. This is now
|
|
safe, even if we changed virtual operands since we will
|
|
rescan the statement and rewrite its operands again. */
|
|
gimple_set_modified (stmt, true);
|
|
}
|
|
}
|
|
|
|
/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
|
|
known value for that SSA_NAME (or NULL if no value is known).
|
|
|
|
Propagate values from CONST_AND_COPIES into the uses, vuses and
|
|
vdef_ops of STMT. */
|
|
|
|
static void
|
|
cprop_into_stmt (gimple stmt)
|
|
{
|
|
use_operand_p op_p;
|
|
ssa_op_iter iter;
|
|
|
|
FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
|
|
cprop_operand (stmt, op_p);
|
|
}
|
|
|
|
/* Optimize the statement pointed to by iterator SI.
|
|
|
|
We try to perform some simplistic global redundancy elimination and
|
|
constant propagation:
|
|
|
|
1- To detect global redundancy, we keep track of expressions that have
|
|
been computed in this block and its dominators. If we find that the
|
|
same expression is computed more than once, we eliminate repeated
|
|
computations by using the target of the first one.
|
|
|
|
2- Constant values and copy assignments. This is used to do very
|
|
simplistic constant and copy propagation. When a constant or copy
|
|
assignment is found, we map the value on the RHS of the assignment to
|
|
the variable in the LHS in the CONST_AND_COPIES table. */
|
|
|
|
static void
|
|
optimize_stmt (basic_block bb, gimple_stmt_iterator si)
|
|
{
|
|
gimple stmt, old_stmt;
|
|
bool may_optimize_p;
|
|
bool modified_p = false;
|
|
|
|
old_stmt = stmt = gsi_stmt (si);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Optimizing statement ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
|
canonicalize_comparison (stmt);
|
|
|
|
update_stmt_if_modified (stmt);
|
|
opt_stats.num_stmts++;
|
|
|
|
/* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
|
|
cprop_into_stmt (stmt);
|
|
|
|
/* If the statement has been modified with constant replacements,
|
|
fold its RHS before checking for redundant computations. */
|
|
if (gimple_modified_p (stmt))
|
|
{
|
|
tree rhs = NULL;
|
|
|
|
/* Try to fold the statement making sure that STMT is kept
|
|
up to date. */
|
|
if (fold_stmt (&si))
|
|
{
|
|
stmt = gsi_stmt (si);
|
|
gimple_set_modified (stmt, true);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " Folded to: ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
}
|
|
}
|
|
|
|
/* We only need to consider cases that can yield a gimple operand. */
|
|
if (gimple_assign_single_p (stmt))
|
|
rhs = gimple_assign_rhs1 (stmt);
|
|
else if (gimple_code (stmt) == GIMPLE_GOTO)
|
|
rhs = gimple_goto_dest (stmt);
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
|
/* This should never be an ADDR_EXPR. */
|
|
rhs = gimple_switch_index (stmt);
|
|
|
|
if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
|
|
recompute_tree_invariant_for_addr_expr (rhs);
|
|
|
|
/* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
|
|
even if fold_stmt updated the stmt already and thus cleared
|
|
gimple_modified_p flag on it. */
|
|
modified_p = true;
|
|
}
|
|
|
|
/* Check for redundant computations. Do this optimization only
|
|
for assignments that have no volatile ops and conditionals. */
|
|
may_optimize_p = (!gimple_has_side_effects (stmt)
|
|
&& (is_gimple_assign (stmt)
|
|
|| (is_gimple_call (stmt)
|
|
&& gimple_call_lhs (stmt) != NULL_TREE)
|
|
|| gimple_code (stmt) == GIMPLE_COND
|
|
|| gimple_code (stmt) == GIMPLE_SWITCH));
|
|
|
|
if (may_optimize_p)
|
|
{
|
|
if (gimple_code (stmt) == GIMPLE_CALL)
|
|
{
|
|
/* Resolve __builtin_constant_p. If it hasn't been
|
|
folded to integer_one_node by now, it's fairly
|
|
certain that the value simply isn't constant. */
|
|
tree callee = gimple_call_fndecl (stmt);
|
|
if (callee
|
|
&& DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
|
|
&& DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P)
|
|
{
|
|
propagate_tree_value_into_stmt (&si, integer_zero_node);
|
|
stmt = gsi_stmt (si);
|
|
}
|
|
}
|
|
|
|
update_stmt_if_modified (stmt);
|
|
eliminate_redundant_computations (&si);
|
|
stmt = gsi_stmt (si);
|
|
|
|
/* Perform simple redundant store elimination. */
|
|
if (gimple_assign_single_p (stmt)
|
|
&& TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
tree cached_lhs;
|
|
gimple new_stmt;
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
|
{
|
|
tree tem = SSA_NAME_VALUE (rhs);
|
|
if (tem)
|
|
rhs = tem;
|
|
}
|
|
/* Build a new statement with the RHS and LHS exchanged. */
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
|
{
|
|
gimple defstmt = SSA_NAME_DEF_STMT (rhs);
|
|
new_stmt = gimple_build_assign (rhs, lhs);
|
|
SSA_NAME_DEF_STMT (rhs) = defstmt;
|
|
}
|
|
else
|
|
new_stmt = gimple_build_assign (rhs, lhs);
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
|
cached_lhs = lookup_avail_expr (new_stmt, false);
|
|
if (cached_lhs
|
|
&& rhs == cached_lhs)
|
|
{
|
|
basic_block bb = gimple_bb (stmt);
|
|
unlink_stmt_vdef (stmt);
|
|
if (gsi_remove (&si, true))
|
|
{
|
|
bitmap_set_bit (need_eh_cleanup, bb->index);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " Flagged to clear EH edges.\n");
|
|
}
|
|
release_defs (stmt);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Record any additional equivalences created by this statement. */
|
|
if (is_gimple_assign (stmt))
|
|
record_equivalences_from_stmt (stmt, may_optimize_p);
|
|
|
|
/* If STMT is a COND_EXPR and it was modified, then we may know
|
|
where it goes. If that is the case, then mark the CFG as altered.
|
|
|
|
This will cause us to later call remove_unreachable_blocks and
|
|
cleanup_tree_cfg when it is safe to do so. It is not safe to
|
|
clean things up here since removal of edges and such can trigger
|
|
the removal of PHI nodes, which in turn can release SSA_NAMEs to
|
|
the manager.
|
|
|
|
That's all fine and good, except that once SSA_NAMEs are released
|
|
to the manager, we must not call create_ssa_name until all references
|
|
to released SSA_NAMEs have been eliminated.
|
|
|
|
All references to the deleted SSA_NAMEs can not be eliminated until
|
|
we remove unreachable blocks.
|
|
|
|
We can not remove unreachable blocks until after we have completed
|
|
any queued jump threading.
|
|
|
|
We can not complete any queued jump threads until we have taken
|
|
appropriate variables out of SSA form. Taking variables out of
|
|
SSA form can call create_ssa_name and thus we lose.
|
|
|
|
Ultimately I suspect we're going to need to change the interface
|
|
into the SSA_NAME manager. */
|
|
if (gimple_modified_p (stmt) || modified_p)
|
|
{
|
|
tree val = NULL;
|
|
|
|
update_stmt_if_modified (stmt);
|
|
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
|
val = fold_binary_loc (gimple_location (stmt),
|
|
gimple_cond_code (stmt), boolean_type_node,
|
|
gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
|
val = gimple_switch_index (stmt);
|
|
|
|
if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
|
|
cfg_altered = true;
|
|
|
|
/* If we simplified a statement in such a way as to be shown that it
|
|
cannot trap, update the eh information and the cfg to match. */
|
|
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
|
|
{
|
|
bitmap_set_bit (need_eh_cleanup, bb->index);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " Flagged to clear EH edges.\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Search for an existing instance of STMT in the AVAIL_EXPRS table.
|
|
If found, return its LHS. Otherwise insert STMT in the table and
|
|
return NULL_TREE.
|
|
|
|
Also, when an expression is first inserted in the table, it is also
|
|
is also added to AVAIL_EXPRS_STACK, so that it can be removed when
|
|
we finish processing this block and its children. */
|
|
|
|
static tree
|
|
lookup_avail_expr (gimple stmt, bool insert)
|
|
{
|
|
expr_hash_elt **slot;
|
|
tree lhs;
|
|
tree temp;
|
|
struct expr_hash_elt element;
|
|
|
|
/* Get LHS of phi, assignment, or call; else NULL_TREE. */
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
lhs = gimple_phi_result (stmt);
|
|
else
|
|
lhs = gimple_get_lhs (stmt);
|
|
|
|
initialize_hash_element (stmt, lhs, &element);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "LKUP ");
|
|
print_expr_hash_elt (dump_file, &element);
|
|
}
|
|
|
|
/* Don't bother remembering constant assignments and copy operations.
|
|
Constants and copy operations are handled by the constant/copy propagator
|
|
in optimize_stmt. */
|
|
if (element.expr.kind == EXPR_SINGLE
|
|
&& (TREE_CODE (element.expr.ops.single.rhs) == SSA_NAME
|
|
|| is_gimple_min_invariant (element.expr.ops.single.rhs)))
|
|
return NULL_TREE;
|
|
|
|
/* Finally try to find the expression in the main expression hash table. */
|
|
slot = avail_exprs.find_slot_with_hash (&element, element.hash,
|
|
(insert ? INSERT : NO_INSERT));
|
|
if (slot == NULL)
|
|
{
|
|
free_expr_hash_elt_contents (&element);
|
|
return NULL_TREE;
|
|
}
|
|
else if (*slot == NULL)
|
|
{
|
|
struct expr_hash_elt *element2 = XNEW (struct expr_hash_elt);
|
|
*element2 = element;
|
|
element2->stamp = element2;
|
|
*slot = element2;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "2>>> ");
|
|
print_expr_hash_elt (dump_file, element2);
|
|
}
|
|
|
|
avail_exprs_stack.safe_push (element2);
|
|
return NULL_TREE;
|
|
}
|
|
else
|
|
free_expr_hash_elt_contents (&element);
|
|
|
|
/* Extract the LHS of the assignment so that it can be used as the current
|
|
definition of another variable. */
|
|
lhs = ((struct expr_hash_elt *)*slot)->lhs;
|
|
|
|
/* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
|
|
use the value from the const_and_copies table. */
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
|
{
|
|
temp = SSA_NAME_VALUE (lhs);
|
|
if (temp)
|
|
lhs = temp;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "FIND: ");
|
|
print_generic_expr (dump_file, lhs, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
return lhs;
|
|
}
|
|
|
|
/* Hashing and equality functions for AVAIL_EXPRS. We compute a value number
|
|
for expressions using the code of the expression and the SSA numbers of
|
|
its operands. */
|
|
|
|
static hashval_t
|
|
avail_expr_hash (const void *p)
|
|
{
|
|
gimple stmt = ((const struct expr_hash_elt *)p)->stmt;
|
|
const struct hashable_expr *expr = &((const struct expr_hash_elt *)p)->expr;
|
|
tree vuse;
|
|
hashval_t val = 0;
|
|
|
|
val = iterative_hash_hashable_expr (expr, val);
|
|
|
|
/* If the hash table entry is not associated with a statement, then we
|
|
can just hash the expression and not worry about virtual operands
|
|
and such. */
|
|
if (!stmt)
|
|
return val;
|
|
|
|
/* Add the SSA version numbers of the vuse operand. This is important
|
|
because compound variables like arrays are not renamed in the
|
|
operands. Rather, the rename is done on the virtual variable
|
|
representing all the elements of the array. */
|
|
if ((vuse = gimple_vuse (stmt)))
|
|
val = iterative_hash_expr (vuse, val);
|
|
|
|
return val;
|
|
}
|
|
|
|
/* PHI-ONLY copy and constant propagation. This pass is meant to clean
|
|
up degenerate PHIs created by or exposed by jump threading. */
|
|
|
|
/* Given a statement STMT, which is either a PHI node or an assignment,
|
|
remove it from the IL. */
|
|
|
|
static void
|
|
remove_stmt_or_phi (gimple stmt)
|
|
{
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
|
|
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
remove_phi_node (&gsi, true);
|
|
else
|
|
{
|
|
gsi_remove (&gsi, true);
|
|
release_defs (stmt);
|
|
}
|
|
}
|
|
|
|
/* Given a statement STMT, which is either a PHI node or an assignment,
|
|
return the "rhs" of the node, in the case of a non-degenerate
|
|
phi, NULL is returned. */
|
|
|
|
static tree
|
|
get_rhs_or_phi_arg (gimple stmt)
|
|
{
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
return degenerate_phi_result (stmt);
|
|
else if (gimple_assign_single_p (stmt))
|
|
return gimple_assign_rhs1 (stmt);
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
|
|
/* Given a statement STMT, which is either a PHI node or an assignment,
|
|
return the "lhs" of the node. */
|
|
|
|
static tree
|
|
get_lhs_or_phi_result (gimple stmt)
|
|
{
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
return gimple_phi_result (stmt);
|
|
else if (is_gimple_assign (stmt))
|
|
return gimple_assign_lhs (stmt);
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Propagate RHS into all uses of LHS (when possible).
|
|
|
|
RHS and LHS are derived from STMT, which is passed in solely so
|
|
that we can remove it if propagation is successful.
|
|
|
|
When propagating into a PHI node or into a statement which turns
|
|
into a trivial copy or constant initialization, set the
|
|
appropriate bit in INTERESTING_NAMEs so that we will visit those
|
|
nodes as well in an effort to pick up secondary optimization
|
|
opportunities. */
|
|
|
|
static void
|
|
propagate_rhs_into_lhs (gimple stmt, tree lhs, tree rhs, bitmap interesting_names)
|
|
{
|
|
/* First verify that propagation is valid and isn't going to move a
|
|
loop variant variable outside its loop. */
|
|
if (! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
|
|
&& (TREE_CODE (rhs) != SSA_NAME
|
|
|| ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs))
|
|
&& may_propagate_copy (lhs, rhs)
|
|
&& loop_depth_of_name (lhs) >= loop_depth_of_name (rhs))
|
|
{
|
|
use_operand_p use_p;
|
|
imm_use_iterator iter;
|
|
gimple use_stmt;
|
|
bool all = true;
|
|
|
|
/* Dump details. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " Replacing '");
|
|
print_generic_expr (dump_file, lhs, dump_flags);
|
|
fprintf (dump_file, "' with %s '",
|
|
(TREE_CODE (rhs) != SSA_NAME ? "constant" : "variable"));
|
|
print_generic_expr (dump_file, rhs, dump_flags);
|
|
fprintf (dump_file, "'\n");
|
|
}
|
|
|
|
/* Walk over every use of LHS and try to replace the use with RHS.
|
|
At this point the only reason why such a propagation would not
|
|
be successful would be if the use occurs in an ASM_EXPR. */
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
|
|
{
|
|
/* Leave debug stmts alone. If we succeed in propagating
|
|
all non-debug uses, we'll drop the DEF, and propagation
|
|
into debug stmts will occur then. */
|
|
if (gimple_debug_bind_p (use_stmt))
|
|
continue;
|
|
|
|
/* It's not always safe to propagate into an ASM_EXPR. */
|
|
if (gimple_code (use_stmt) == GIMPLE_ASM
|
|
&& ! may_propagate_copy_into_asm (lhs))
|
|
{
|
|
all = false;
|
|
continue;
|
|
}
|
|
|
|
/* It's not ok to propagate into the definition stmt of RHS.
|
|
<bb 9>:
|
|
# prephitmp.12_36 = PHI <g_67.1_6(9)>
|
|
g_67.1_6 = prephitmp.12_36;
|
|
goto <bb 9>;
|
|
While this is strictly all dead code we do not want to
|
|
deal with this here. */
|
|
if (TREE_CODE (rhs) == SSA_NAME
|
|
&& SSA_NAME_DEF_STMT (rhs) == use_stmt)
|
|
{
|
|
all = false;
|
|
continue;
|
|
}
|
|
|
|
/* Dump details. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " Original statement:");
|
|
print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
|
|
}
|
|
|
|
/* Propagate the RHS into this use of the LHS. */
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
|
propagate_value (use_p, rhs);
|
|
|
|
/* Special cases to avoid useless calls into the folding
|
|
routines, operand scanning, etc.
|
|
|
|
Propagation into a PHI may cause the PHI to become
|
|
a degenerate, so mark the PHI as interesting. No other
|
|
actions are necessary. */
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI)
|
|
{
|
|
tree result;
|
|
|
|
/* Dump details. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " Updated statement:");
|
|
print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
|
|
}
|
|
|
|
result = get_lhs_or_phi_result (use_stmt);
|
|
bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
|
|
continue;
|
|
}
|
|
|
|
/* From this point onward we are propagating into a
|
|
real statement. Folding may (or may not) be possible,
|
|
we may expose new operands, expose dead EH edges,
|
|
etc. */
|
|
/* NOTE tuples. In the tuples world, fold_stmt_inplace
|
|
cannot fold a call that simplifies to a constant,
|
|
because the GIMPLE_CALL must be replaced by a
|
|
GIMPLE_ASSIGN, and there is no way to effect such a
|
|
transformation in-place. We might want to consider
|
|
using the more general fold_stmt here. */
|
|
{
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
|
|
fold_stmt_inplace (&gsi);
|
|
}
|
|
|
|
/* Sometimes propagation can expose new operands to the
|
|
renamer. */
|
|
update_stmt (use_stmt);
|
|
|
|
/* Dump details. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " Updated statement:");
|
|
print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
|
|
}
|
|
|
|
/* If we replaced a variable index with a constant, then
|
|
we would need to update the invariant flag for ADDR_EXPRs. */
|
|
if (gimple_assign_single_p (use_stmt)
|
|
&& TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ADDR_EXPR)
|
|
recompute_tree_invariant_for_addr_expr
|
|
(gimple_assign_rhs1 (use_stmt));
|
|
|
|
/* If we cleaned up EH information from the statement,
|
|
mark its containing block as needing EH cleanups. */
|
|
if (maybe_clean_or_replace_eh_stmt (use_stmt, use_stmt))
|
|
{
|
|
bitmap_set_bit (need_eh_cleanup, gimple_bb (use_stmt)->index);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " Flagged to clear EH edges.\n");
|
|
}
|
|
|
|
/* Propagation may expose new trivial copy/constant propagation
|
|
opportunities. */
|
|
if (gimple_assign_single_p (use_stmt)
|
|
&& TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
|
|
&& (TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME
|
|
|| is_gimple_min_invariant (gimple_assign_rhs1 (use_stmt))))
|
|
{
|
|
tree result = get_lhs_or_phi_result (use_stmt);
|
|
bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
|
|
}
|
|
|
|
/* Propagation into these nodes may make certain edges in
|
|
the CFG unexecutable. We want to identify them as PHI nodes
|
|
at the destination of those unexecutable edges may become
|
|
degenerates. */
|
|
else if (gimple_code (use_stmt) == GIMPLE_COND
|
|
|| gimple_code (use_stmt) == GIMPLE_SWITCH
|
|
|| gimple_code (use_stmt) == GIMPLE_GOTO)
|
|
{
|
|
tree val;
|
|
|
|
if (gimple_code (use_stmt) == GIMPLE_COND)
|
|
val = fold_binary_loc (gimple_location (use_stmt),
|
|
gimple_cond_code (use_stmt),
|
|
boolean_type_node,
|
|
gimple_cond_lhs (use_stmt),
|
|
gimple_cond_rhs (use_stmt));
|
|
else if (gimple_code (use_stmt) == GIMPLE_SWITCH)
|
|
val = gimple_switch_index (use_stmt);
|
|
else
|
|
val = gimple_goto_dest (use_stmt);
|
|
|
|
if (val && is_gimple_min_invariant (val))
|
|
{
|
|
basic_block bb = gimple_bb (use_stmt);
|
|
edge te = find_taken_edge (bb, val);
|
|
edge_iterator ei;
|
|
edge e;
|
|
gimple_stmt_iterator gsi, psi;
|
|
|
|
/* Remove all outgoing edges except TE. */
|
|
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei));)
|
|
{
|
|
if (e != te)
|
|
{
|
|
/* Mark all the PHI nodes at the destination of
|
|
the unexecutable edge as interesting. */
|
|
for (psi = gsi_start_phis (e->dest);
|
|
!gsi_end_p (psi);
|
|
gsi_next (&psi))
|
|
{
|
|
gimple phi = gsi_stmt (psi);
|
|
|
|
tree result = gimple_phi_result (phi);
|
|
int version = SSA_NAME_VERSION (result);
|
|
|
|
bitmap_set_bit (interesting_names, version);
|
|
}
|
|
|
|
te->probability += e->probability;
|
|
|
|
te->count += e->count;
|
|
remove_edge (e);
|
|
cfg_altered = true;
|
|
}
|
|
else
|
|
ei_next (&ei);
|
|
}
|
|
|
|
gsi = gsi_last_bb (gimple_bb (use_stmt));
|
|
gsi_remove (&gsi, true);
|
|
|
|
/* And fixup the flags on the single remaining edge. */
|
|
te->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
|
|
te->flags &= ~EDGE_ABNORMAL;
|
|
te->flags |= EDGE_FALLTHRU;
|
|
if (te->probability > REG_BR_PROB_BASE)
|
|
te->probability = REG_BR_PROB_BASE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Ensure there is nothing else to do. */
|
|
gcc_assert (!all || has_zero_uses (lhs));
|
|
|
|
/* If we were able to propagate away all uses of LHS, then
|
|
we can remove STMT. */
|
|
if (all)
|
|
remove_stmt_or_phi (stmt);
|
|
}
|
|
}
|
|
|
|
/* STMT is either a PHI node (potentially a degenerate PHI node) or
|
|
a statement that is a trivial copy or constant initialization.
|
|
|
|
Attempt to eliminate T by propagating its RHS into all uses of
|
|
its LHS. This may in turn set new bits in INTERESTING_NAMES
|
|
for nodes we want to revisit later.
|
|
|
|
All exit paths should clear INTERESTING_NAMES for the result
|
|
of STMT. */
|
|
|
|
static void
|
|
eliminate_const_or_copy (gimple stmt, bitmap interesting_names)
|
|
{
|
|
tree lhs = get_lhs_or_phi_result (stmt);
|
|
tree rhs;
|
|
int version = SSA_NAME_VERSION (lhs);
|
|
|
|
/* If the LHS of this statement or PHI has no uses, then we can
|
|
just eliminate it. This can occur if, for example, the PHI
|
|
was created by block duplication due to threading and its only
|
|
use was in the conditional at the end of the block which was
|
|
deleted. */
|
|
if (has_zero_uses (lhs))
|
|
{
|
|
bitmap_clear_bit (interesting_names, version);
|
|
remove_stmt_or_phi (stmt);
|
|
return;
|
|
}
|
|
|
|
/* Get the RHS of the assignment or PHI node if the PHI is a
|
|
degenerate. */
|
|
rhs = get_rhs_or_phi_arg (stmt);
|
|
if (!rhs)
|
|
{
|
|
bitmap_clear_bit (interesting_names, version);
|
|
return;
|
|
}
|
|
|
|
if (!virtual_operand_p (lhs))
|
|
propagate_rhs_into_lhs (stmt, lhs, rhs, interesting_names);
|
|
else
|
|
{
|
|
gimple use_stmt;
|
|
imm_use_iterator iter;
|
|
use_operand_p use_p;
|
|
/* For virtual operands we have to propagate into all uses as
|
|
otherwise we will create overlapping life-ranges. */
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
|
SET_USE (use_p, rhs);
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
|
|
remove_stmt_or_phi (stmt);
|
|
}
|
|
|
|
/* Note that STMT may well have been deleted by now, so do
|
|
not access it, instead use the saved version # to clear
|
|
T's entry in the worklist. */
|
|
bitmap_clear_bit (interesting_names, version);
|
|
}
|
|
|
|
/* The first phase in degenerate PHI elimination.
|
|
|
|
Eliminate the degenerate PHIs in BB, then recurse on the
|
|
dominator children of BB. */
|
|
|
|
static void
|
|
eliminate_degenerate_phis_1 (basic_block bb, bitmap interesting_names)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
basic_block son;
|
|
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple phi = gsi_stmt (gsi);
|
|
|
|
eliminate_const_or_copy (phi, interesting_names);
|
|
}
|
|
|
|
/* Recurse into the dominator children of BB. */
|
|
for (son = first_dom_son (CDI_DOMINATORS, bb);
|
|
son;
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
|
eliminate_degenerate_phis_1 (son, interesting_names);
|
|
}
|
|
|
|
|
|
/* A very simple pass to eliminate degenerate PHI nodes from the
|
|
IL. This is meant to be fast enough to be able to be run several
|
|
times in the optimization pipeline.
|
|
|
|
Certain optimizations, particularly those which duplicate blocks
|
|
or remove edges from the CFG can create or expose PHIs which are
|
|
trivial copies or constant initializations.
|
|
|
|
While we could pick up these optimizations in DOM or with the
|
|
combination of copy-prop and CCP, those solutions are far too
|
|
heavy-weight for our needs.
|
|
|
|
This implementation has two phases so that we can efficiently
|
|
eliminate the first order degenerate PHIs and second order
|
|
degenerate PHIs.
|
|
|
|
The first phase performs a dominator walk to identify and eliminate
|
|
the vast majority of the degenerate PHIs. When a degenerate PHI
|
|
is identified and eliminated any affected statements or PHIs
|
|
are put on a worklist.
|
|
|
|
The second phase eliminates degenerate PHIs and trivial copies
|
|
or constant initializations using the worklist. This is how we
|
|
pick up the secondary optimization opportunities with minimal
|
|
cost. */
|
|
|
|
static unsigned int
|
|
eliminate_degenerate_phis (void)
|
|
{
|
|
bitmap interesting_names;
|
|
bitmap interesting_names1;
|
|
|
|
/* Bitmap of blocks which need EH information updated. We can not
|
|
update it on-the-fly as doing so invalidates the dominator tree. */
|
|
need_eh_cleanup = BITMAP_ALLOC (NULL);
|
|
|
|
/* INTERESTING_NAMES is effectively our worklist, indexed by
|
|
SSA_NAME_VERSION.
|
|
|
|
A set bit indicates that the statement or PHI node which
|
|
defines the SSA_NAME should be (re)examined to determine if
|
|
it has become a degenerate PHI or trivial const/copy propagation
|
|
opportunity.
|
|
|
|
Experiments have show we generally get better compilation
|
|
time behavior with bitmaps rather than sbitmaps. */
|
|
interesting_names = BITMAP_ALLOC (NULL);
|
|
interesting_names1 = BITMAP_ALLOC (NULL);
|
|
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
cfg_altered = false;
|
|
|
|
/* First phase. Eliminate degenerate PHIs via a dominator
|
|
walk of the CFG.
|
|
|
|
Experiments have indicated that we generally get better
|
|
compile-time behavior by visiting blocks in the first
|
|
phase in dominator order. Presumably this is because walking
|
|
in dominator order leaves fewer PHIs for later examination
|
|
by the worklist phase. */
|
|
eliminate_degenerate_phis_1 (ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
|
interesting_names);
|
|
|
|
/* Second phase. Eliminate second order degenerate PHIs as well
|
|
as trivial copies or constant initializations identified by
|
|
the first phase or this phase. Basically we keep iterating
|
|
until our set of INTERESTING_NAMEs is empty. */
|
|
while (!bitmap_empty_p (interesting_names))
|
|
{
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
|
|
/* EXECUTE_IF_SET_IN_BITMAP does not like its bitmap
|
|
changed during the loop. Copy it to another bitmap and
|
|
use that. */
|
|
bitmap_copy (interesting_names1, interesting_names);
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (interesting_names1, 0, i, bi)
|
|
{
|
|
tree name = ssa_name (i);
|
|
|
|
/* Ignore SSA_NAMEs that have been released because
|
|
their defining statement was deleted (unreachable). */
|
|
if (name)
|
|
eliminate_const_or_copy (SSA_NAME_DEF_STMT (ssa_name (i)),
|
|
interesting_names);
|
|
}
|
|
}
|
|
|
|
if (cfg_altered)
|
|
{
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
/* If we changed the CFG schedule loops for fixup by cfgcleanup. */
|
|
if (current_loops)
|
|
loops_state_set (LOOPS_NEED_FIXUP);
|
|
}
|
|
|
|
/* Propagation of const and copies may make some EH edges dead. Purge
|
|
such edges from the CFG as needed. */
|
|
if (!bitmap_empty_p (need_eh_cleanup))
|
|
{
|
|
gimple_purge_all_dead_eh_edges (need_eh_cleanup);
|
|
BITMAP_FREE (need_eh_cleanup);
|
|
}
|
|
|
|
BITMAP_FREE (interesting_names);
|
|
BITMAP_FREE (interesting_names1);
|
|
return 0;
|
|
}
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_phi_only_cprop =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"phicprop", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
true, /* has_gate */
|
|
true, /* has_execute */
|
|
TV_TREE_PHI_CPROP, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
( TODO_cleanup_cfg | TODO_verify_ssa
|
|
| TODO_verify_stmts
|
|
| TODO_update_ssa ), /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_phi_only_cprop : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_phi_only_cprop (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_phi_only_cprop, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
opt_pass * clone () { return new pass_phi_only_cprop (m_ctxt); }
|
|
bool gate () { return gate_dominator (); }
|
|
unsigned int execute () { return eliminate_degenerate_phis (); }
|
|
|
|
}; // class pass_phi_only_cprop
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_phi_only_cprop (gcc::context *ctxt)
|
|
{
|
|
return new pass_phi_only_cprop (ctxt);
|
|
}
|