gcc/libgo/runtime/mgc0.c
Ian Lance Taylor d8f412571f Update Go library to last weekly.
From-SVN: r180552
2011-10-26 23:57:58 +00:00

1245 lines
31 KiB
C

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Garbage collector.
#include "runtime.h"
#include "arch.h"
#include "malloc.h"
enum {
Debug = 0,
PtrSize = sizeof(void*),
DebugMark = 0, // run second pass to check mark
// Four bits per word (see #defines below).
wordsPerBitmapWord = sizeof(void*)*8/4,
bitShift = sizeof(void*)*8/4,
};
// Bits in per-word bitmap.
// #defines because enum might not be able to hold the values.
//
// Each word in the bitmap describes wordsPerBitmapWord words
// of heap memory. There are 4 bitmap bits dedicated to each heap word,
// so on a 64-bit system there is one bitmap word per 16 heap words.
// The bits in the word are packed together by type first, then by
// heap location, so each 64-bit bitmap word consists of, from top to bottom,
// the 16 bitSpecial bits for the corresponding heap words, then the 16 bitMarked bits,
// then the 16 bitNoPointers/bitBlockBoundary bits, then the 16 bitAllocated bits.
// This layout makes it easier to iterate over the bits of a given type.
//
// The bitmap starts at mheap.arena_start and extends *backward* from
// there. On a 64-bit system the off'th word in the arena is tracked by
// the off/16+1'th word before mheap.arena_start. (On a 32-bit system,
// the only difference is that the divisor is 8.)
//
// To pull out the bits corresponding to a given pointer p, we use:
//
// off = p - (uintptr*)mheap.arena_start; // word offset
// b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1;
// shift = off % wordsPerBitmapWord
// bits = *b >> shift;
// /* then test bits & bitAllocated, bits & bitMarked, etc. */
//
#define bitAllocated ((uintptr)1<<(bitShift*0))
#define bitNoPointers ((uintptr)1<<(bitShift*1)) /* when bitAllocated is set */
#define bitMarked ((uintptr)1<<(bitShift*2)) /* when bitAllocated is set */
#define bitSpecial ((uintptr)1<<(bitShift*3)) /* when bitAllocated is set - has finalizer or being profiled */
#define bitBlockBoundary ((uintptr)1<<(bitShift*1)) /* when bitAllocated is NOT set */
#define bitMask (bitBlockBoundary | bitAllocated | bitMarked | bitSpecial)
// TODO: Make these per-M.
static uint64 nlookup;
static uint64 nsizelookup;
static uint64 naddrlookup;
static uint64 nhandoff;
static int32 gctrace;
typedef struct Workbuf Workbuf;
struct Workbuf
{
Workbuf *next;
uintptr nobj;
byte *obj[512-2];
};
typedef struct Finalizer Finalizer;
struct Finalizer
{
void (*fn)(void*);
void *arg;
const struct __go_func_type *ft;
};
typedef struct FinBlock FinBlock;
struct FinBlock
{
FinBlock *alllink;
FinBlock *next;
int32 cnt;
int32 cap;
Finalizer fin[1];
};
static bool finstarted;
static pthread_mutex_t finqlock = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t finqcond = PTHREAD_COND_INITIALIZER;
static FinBlock *finq; // list of finalizers that are to be executed
static FinBlock *finc; // cache of free blocks
static FinBlock *allfin; // list of all blocks
static Lock finlock;
static int32 fingwait;
static void runfinq(void*);
static Workbuf* getempty(Workbuf*);
static Workbuf* getfull(Workbuf*);
static void putempty(Workbuf*);
static Workbuf* handoff(Workbuf*);
static struct {
Lock fmu;
Workbuf *full;
Lock emu;
Workbuf *empty;
uint32 nproc;
volatile uint32 nwait;
volatile uint32 ndone;
Note alldone;
Lock markgate;
Lock sweepgate;
MSpan *spans;
Lock;
byte *chunk;
uintptr nchunk;
} work;
// scanblock scans a block of n bytes starting at pointer b for references
// to other objects, scanning any it finds recursively until there are no
// unscanned objects left. Instead of using an explicit recursion, it keeps
// a work list in the Workbuf* structures and loops in the main function
// body. Keeping an explicit work list is easier on the stack allocator and
// more efficient.
static void
scanblock(byte *b, int64 n)
{
byte *obj, *arena_start, *arena_used, *p;
void **vp;
uintptr size, *bitp, bits, shift, i, j, x, xbits, off, nobj, nproc;
MSpan *s;
PageID k;
void **wp;
Workbuf *wbuf;
bool keepworking;
if((int64)(uintptr)n != n || n < 0) {
// runtime_printf("scanblock %p %lld\n", b, (long long)n);
runtime_throw("scanblock");
}
// Memory arena parameters.
arena_start = runtime_mheap.arena_start;
arena_used = runtime_mheap.arena_used;
nproc = work.nproc;
wbuf = nil; // current work buffer
wp = nil; // storage for next queued pointer (write pointer)
nobj = 0; // number of queued objects
// Scanblock helpers pass b==nil.
// The main proc needs to return to make more
// calls to scanblock. But if work.nproc==1 then
// might as well process blocks as soon as we
// have them.
keepworking = b == nil || work.nproc == 1;
// Align b to a word boundary.
off = (uintptr)b & (PtrSize-1);
if(off != 0) {
b += PtrSize - off;
n -= PtrSize - off;
}
for(;;) {
// Each iteration scans the block b of length n, queueing pointers in
// the work buffer.
if(Debug > 1)
runtime_printf("scanblock %p %lld\n", b, (long long) n);
vp = (void**)b;
n >>= (2+PtrSize/8); /* n /= PtrSize (4 or 8) */
for(i=0; i<(uintptr)n; i++) {
obj = (byte*)vp[i];
// Words outside the arena cannot be pointers.
if((byte*)obj < arena_start || (byte*)obj >= arena_used)
continue;
// obj may be a pointer to a live object.
// Try to find the beginning of the object.
// Round down to word boundary.
obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1));
// Find bits for this word.
off = (uintptr*)obj - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
xbits = *bitp;
bits = xbits >> shift;
// Pointing at the beginning of a block?
if((bits & (bitAllocated|bitBlockBoundary)) != 0)
goto found;
// Pointing just past the beginning?
// Scan backward a little to find a block boundary.
for(j=shift; j-->0; ) {
if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) {
obj = (byte*)obj - (shift-j)*PtrSize;
shift = j;
bits = xbits>>shift;
goto found;
}
}
// Otherwise consult span table to find beginning.
// (Manually inlined copy of MHeap_LookupMaybe.)
nlookup++;
naddrlookup++;
k = (uintptr)obj>>PageShift;
x = k;
if(sizeof(void*) == 8)
x -= (uintptr)arena_start>>PageShift;
s = runtime_mheap.map[x];
if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse)
continue;
p = (byte*)((uintptr)s->start<<PageShift);
if(s->sizeclass == 0) {
obj = p;
} else {
if((byte*)obj >= (byte*)s->limit)
continue;
size = runtime_class_to_size[s->sizeclass];
int32 i = ((byte*)obj - p)/size;
obj = p+i*size;
}
// Now that we know the object header, reload bits.
off = (uintptr*)obj - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
xbits = *bitp;
bits = xbits >> shift;
found:
// Now we have bits, bitp, and shift correct for
// obj pointing at the base of the object.
// Only care about allocated and not marked.
if((bits & (bitAllocated|bitMarked)) != bitAllocated)
continue;
if(nproc == 1)
*bitp |= bitMarked<<shift;
else {
for(;;) {
x = *bitp;
if(x & (bitMarked<<shift))
goto continue_obj;
if(runtime_casp((void**)bitp, (void*)x, (void*)(x|(bitMarked<<shift))))
break;
}
}
// If object has no pointers, don't need to scan further.
if((bits & bitNoPointers) != 0)
continue;
// If another proc wants a pointer, give it some.
if(nobj > 4 && work.nwait > 0 && work.full == nil) {
wbuf->nobj = nobj;
wbuf = handoff(wbuf);
nobj = wbuf->nobj;
wp = (void**)(wbuf->obj + nobj);
}
// If buffer is full, get a new one.
if(wbuf == nil || nobj >= nelem(wbuf->obj)) {
if(wbuf != nil)
wbuf->nobj = nobj;
wbuf = getempty(wbuf);
wp = (void**)(wbuf->obj);
nobj = 0;
}
*wp++ = obj;
nobj++;
continue_obj:;
}
// Done scanning [b, b+n). Prepare for the next iteration of
// the loop by setting b and n to the parameters for the next block.
// Fetch b from the work buffer.
if(nobj == 0) {
if(!keepworking) {
putempty(wbuf);
return;
}
// Emptied our buffer: refill.
wbuf = getfull(wbuf);
if(wbuf == nil)
return;
nobj = wbuf->nobj;
wp = (void**)(wbuf->obj + wbuf->nobj);
}
b = *--wp;
nobj--;
// Figure out n = size of b. Start by loading bits for b.
off = (uintptr*)b - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
xbits = *bitp;
bits = xbits >> shift;
// Might be small; look for nearby block boundary.
// A block boundary is marked by either bitBlockBoundary
// or bitAllocated being set (see notes near their definition).
enum {
boundary = bitBlockBoundary|bitAllocated
};
// Look for a block boundary both after and before b
// in the same bitmap word.
//
// A block boundary j words after b is indicated by
// bits>>j & boundary
// assuming shift+j < bitShift. (If shift+j >= bitShift then
// we'll be bleeding other bit types like bitMarked into our test.)
// Instead of inserting the conditional shift+j < bitShift into the loop,
// we can let j range from 1 to bitShift as long as we first
// apply a mask to keep only the bits corresponding
// to shift+j < bitShift aka j < bitShift-shift.
bits &= (boundary<<(bitShift-shift)) - boundary;
// A block boundary j words before b is indicated by
// xbits>>(shift-j) & boundary
// (assuming shift >= j). There is no cleverness here
// avoid the test, because when j gets too large the shift
// turns negative, which is undefined in C.
for(j=1; j<bitShift; j++) {
if(((bits>>j)&boundary) != 0 || (shift>=j && ((xbits>>(shift-j))&boundary) != 0)) {
n = j*PtrSize;
goto scan;
}
}
// Fall back to asking span about size class.
// (Manually inlined copy of MHeap_Lookup.)
nlookup++;
nsizelookup++;
x = (uintptr)b>>PageShift;
if(sizeof(void*) == 8)
x -= (uintptr)arena_start>>PageShift;
s = runtime_mheap.map[x];
if(s->sizeclass == 0)
n = s->npages<<PageShift;
else
n = runtime_class_to_size[s->sizeclass];
scan:;
}
}
// debug_scanblock is the debug copy of scanblock.
// it is simpler, slower, single-threaded, recursive,
// and uses bitSpecial as the mark bit.
static void
debug_scanblock(byte *b, int64 n)
{
byte *obj, *p;
void **vp;
uintptr size, *bitp, bits, shift, i, xbits, off;
MSpan *s;
if(!DebugMark)
runtime_throw("debug_scanblock without DebugMark");
if((int64)(uintptr)n != n || n < 0) {
//runtime_printf("debug_scanblock %p %D\n", b, n);
runtime_throw("debug_scanblock");
}
// Align b to a word boundary.
off = (uintptr)b & (PtrSize-1);
if(off != 0) {
b += PtrSize - off;
n -= PtrSize - off;
}
vp = (void**)b;
n /= PtrSize;
for(i=0; i<(uintptr)n; i++) {
obj = (byte*)vp[i];
// Words outside the arena cannot be pointers.
if((byte*)obj < runtime_mheap.arena_start || (byte*)obj >= runtime_mheap.arena_used)
continue;
// Round down to word boundary.
obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1));
// Consult span table to find beginning.
s = runtime_MHeap_LookupMaybe(&runtime_mheap, obj);
if(s == nil)
continue;
p = (byte*)((uintptr)s->start<<PageShift);
if(s->sizeclass == 0) {
obj = p;
size = (uintptr)s->npages<<PageShift;
} else {
if((byte*)obj >= (byte*)s->limit)
continue;
size = runtime_class_to_size[s->sizeclass];
int32 i = ((byte*)obj - p)/size;
obj = p+i*size;
}
// Now that we know the object header, reload bits.
off = (uintptr*)obj - (uintptr*)runtime_mheap.arena_start;
bitp = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
xbits = *bitp;
bits = xbits >> shift;
// Now we have bits, bitp, and shift correct for
// obj pointing at the base of the object.
// If not allocated or already marked, done.
if((bits & bitAllocated) == 0 || (bits & bitSpecial) != 0) // NOTE: bitSpecial not bitMarked
continue;
*bitp |= bitSpecial<<shift;
if(!(bits & bitMarked))
runtime_printf("found unmarked block %p in %p\n", obj, vp+i);
// If object has no pointers, don't need to scan further.
if((bits & bitNoPointers) != 0)
continue;
debug_scanblock(obj, size);
}
}
// Get an empty work buffer off the work.empty list,
// allocating new buffers as needed.
static Workbuf*
getempty(Workbuf *b)
{
if(work.nproc == 1) {
// Put b on full list.
if(b != nil) {
b->next = work.full;
work.full = b;
}
// Grab from empty list if possible.
b = work.empty;
if(b != nil) {
work.empty = b->next;
goto haveb;
}
} else {
// Put b on full list.
if(b != nil) {
runtime_lock(&work.fmu);
b->next = work.full;
work.full = b;
runtime_unlock(&work.fmu);
}
// Grab from empty list if possible.
runtime_lock(&work.emu);
b = work.empty;
if(b != nil)
work.empty = b->next;
runtime_unlock(&work.emu);
if(b != nil)
goto haveb;
}
// Need to allocate.
runtime_lock(&work);
if(work.nchunk < sizeof *b) {
work.nchunk = 1<<20;
work.chunk = runtime_SysAlloc(work.nchunk);
}
b = (Workbuf*)work.chunk;
work.chunk += sizeof *b;
work.nchunk -= sizeof *b;
runtime_unlock(&work);
haveb:
b->nobj = 0;
return b;
}
static void
putempty(Workbuf *b)
{
if(b == nil)
return;
if(work.nproc == 1) {
b->next = work.empty;
work.empty = b;
return;
}
runtime_lock(&work.emu);
b->next = work.empty;
work.empty = b;
runtime_unlock(&work.emu);
}
// Get a full work buffer off the work.full list, or return nil.
static Workbuf*
getfull(Workbuf *b)
{
int32 i;
Workbuf *b1;
if(work.nproc == 1) {
// Put b on empty list.
if(b != nil) {
b->next = work.empty;
work.empty = b;
}
// Grab from full list if possible.
// Since work.nproc==1, no one else is
// going to give us work.
b = work.full;
if(b != nil)
work.full = b->next;
return b;
}
putempty(b);
// Grab buffer from full list if possible.
for(;;) {
b1 = work.full;
if(b1 == nil)
break;
runtime_lock(&work.fmu);
if(work.full != nil) {
b1 = work.full;
work.full = b1->next;
runtime_unlock(&work.fmu);
return b1;
}
runtime_unlock(&work.fmu);
}
runtime_xadd(&work.nwait, +1);
for(i=0;; i++) {
b1 = work.full;
if(b1 != nil) {
runtime_lock(&work.fmu);
if(work.full != nil) {
runtime_xadd(&work.nwait, -1);
b1 = work.full;
work.full = b1->next;
runtime_unlock(&work.fmu);
return b1;
}
runtime_unlock(&work.fmu);
continue;
}
if(work.nwait == work.nproc)
return nil;
if(i < 10)
runtime_procyield(20);
else if(i < 20)
runtime_osyield();
else
runtime_usleep(100);
}
}
static Workbuf*
handoff(Workbuf *b)
{
int32 n;
Workbuf *b1;
// Make new buffer with half of b's pointers.
b1 = getempty(nil);
n = b->nobj/2;
b->nobj -= n;
b1->nobj = n;
runtime_memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]);
nhandoff += n;
// Put b on full list - let first half of b get stolen.
runtime_lock(&work.fmu);
b->next = work.full;
work.full = b;
runtime_unlock(&work.fmu);
return b1;
}
// Markfin calls scanblock on the blocks that have finalizers:
// the things pointed at cannot be freed until the finalizers have run.
static void
markfin(void *v)
{
uintptr size;
size = 0;
if(!runtime_mlookup(v, (byte**)&v, &size, nil) || !runtime_blockspecial(v))
runtime_throw("mark - finalizer inconsistency");
// do not mark the finalizer block itself. just mark the things it points at.
scanblock(v, size);
}
struct root_list {
struct root_list *next;
struct root {
void *decl;
size_t size;
} roots[];
};
static struct root_list* roots;
void
__go_register_gc_roots (struct root_list* r)
{
// FIXME: This needs locking if multiple goroutines can call
// dlopen simultaneously.
r->next = roots;
roots = r;
}
static void
debug_markfin(void *v)
{
uintptr size;
if(!runtime_mlookup(v, (byte**)&v, &size, nil))
runtime_throw("debug_mark - finalizer inconsistency");
debug_scanblock(v, size);
}
// Mark
static void
mark(void (*scan)(byte*, int64))
{
struct root_list *pl;
FinBlock *fb;
for(pl = roots; pl != nil; pl = pl->next) {
struct root* pr = &pl->roots[0];
while(1) {
void *decl = pr->decl;
if(decl == nil)
break;
scanblock(decl, pr->size);
pr++;
}
}
scan((byte*)&m0, sizeof m0);
scan((byte*)&finq, sizeof finq);
runtime_MProf_Mark(scan);
// mark stacks
__go_scanstacks(scan);
// mark things pointed at by objects with finalizers
if(scan == debug_scanblock)
runtime_walkfintab(debug_markfin, scan);
else
runtime_walkfintab(markfin, scan);
for(fb=allfin; fb; fb=fb->alllink)
scanblock((byte*)fb->fin, fb->cnt*sizeof(fb->fin[0]));
// in multiproc mode, join in the queued work.
scan(nil, 0);
}
static bool
handlespecial(byte *p, uintptr size)
{
void (*fn)(void*);
const struct __go_func_type *ft;
FinBlock *block;
Finalizer *f;
if(!runtime_getfinalizer(p, true, &fn, &ft)) {
runtime_setblockspecial(p, false);
runtime_MProf_Free(p, size);
return false;
}
runtime_lock(&finlock);
if(finq == nil || finq->cnt == finq->cap) {
if(finc == nil) {
finc = runtime_SysAlloc(PageSize);
finc->cap = (PageSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1;
finc->alllink = allfin;
allfin = finc;
}
block = finc;
finc = block->next;
block->next = finq;
finq = block;
}
f = &finq->fin[finq->cnt];
finq->cnt++;
f->fn = fn;
f->ft = ft;
f->arg = p;
runtime_unlock(&finlock);
return true;
}
// Sweep frees or collects finalizers for blocks not marked in the mark phase.
// It clears the mark bits in preparation for the next GC round.
static void
sweep(void)
{
MSpan *s;
int32 cl, n, npages;
uintptr size;
byte *p;
MCache *c;
byte *arena_start;
arena_start = runtime_mheap.arena_start;
for(;;) {
s = work.spans;
if(s == nil)
break;
if(!runtime_casp(&work.spans, s, s->allnext))
continue;
if(s->state != MSpanInUse)
continue;
p = (byte*)(s->start << PageShift);
cl = s->sizeclass;
if(cl == 0) {
size = s->npages<<PageShift;
n = 1;
} else {
// Chunk full of small blocks.
size = runtime_class_to_size[cl];
npages = runtime_class_to_allocnpages[cl];
n = (npages << PageShift) / size;
}
// Sweep through n objects of given size starting at p.
// This thread owns the span now, so it can manipulate
// the block bitmap without atomic operations.
for(; n > 0; n--, p += size) {
uintptr off, *bitp, shift, bits;
off = (uintptr*)p - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
bits = *bitp>>shift;
if((bits & bitAllocated) == 0)
continue;
if((bits & bitMarked) != 0) {
if(DebugMark) {
if(!(bits & bitSpecial))
runtime_printf("found spurious mark on %p\n", p);
*bitp &= ~(bitSpecial<<shift);
}
*bitp &= ~(bitMarked<<shift);
continue;
}
// Special means it has a finalizer or is being profiled.
// In DebugMark mode, the bit has been coopted so
// we have to assume all blocks are special.
if(DebugMark || (bits & bitSpecial) != 0) {
if(handlespecial(p, size))
continue;
}
// Mark freed; restore block boundary bit.
*bitp = (*bitp & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);
c = m->mcache;
if(s->sizeclass == 0) {
// Free large span.
runtime_unmarkspan(p, 1<<PageShift);
*(uintptr*)p = 1; // needs zeroing
runtime_MHeap_Free(&runtime_mheap, s, 1);
} else {
// Free small object.
if(size > sizeof(uintptr))
((uintptr*)p)[1] = 1; // mark as "needs to be zeroed"
c->local_by_size[s->sizeclass].nfree++;
runtime_MCache_Free(c, p, s->sizeclass, size);
}
c->local_alloc -= size;
c->local_nfree++;
}
}
}
static pthread_mutex_t gcsema = PTHREAD_MUTEX_INITIALIZER;
void
runtime_gchelper(void)
{
// Wait until main proc is ready for mark help.
runtime_lock(&work.markgate);
runtime_unlock(&work.markgate);
scanblock(nil, 0);
// Wait until main proc is ready for sweep help.
runtime_lock(&work.sweepgate);
runtime_unlock(&work.sweepgate);
sweep();
if(runtime_xadd(&work.ndone, +1) == work.nproc-1)
runtime_notewakeup(&work.alldone);
}
// Initialized from $GOGC. GOGC=off means no gc.
//
// Next gc is after we've allocated an extra amount of
// memory proportional to the amount already in use.
// If gcpercent=100 and we're using 4M, we'll gc again
// when we get to 8M. This keeps the gc cost in linear
// proportion to the allocation cost. Adjusting gcpercent
// just changes the linear constant (and also the amount of
// extra memory used).
static int32 gcpercent = -2;
void
runtime_gc(int32 force __attribute__ ((unused)))
{
int64 t0, t1, t2, t3;
uint64 heap0, heap1, obj0, obj1;
char *p;
bool extra;
// The gc is turned off (via enablegc) until
// the bootstrap has completed.
// Also, malloc gets called in the guts
// of a number of libraries that might be
// holding locks. To avoid priority inversion
// problems, don't bother trying to run gc
// while holding a lock. The next mallocgc
// without a lock will do the gc instead.
if(!mstats.enablegc || m->locks > 0 /* || runtime_panicking */)
return;
if(gcpercent == -2) { // first time through
p = runtime_getenv("GOGC");
if(p == nil || p[0] == '\0')
gcpercent = 100;
else if(runtime_strcmp(p, "off") == 0)
gcpercent = -1;
else
gcpercent = runtime_atoi(p);
p = runtime_getenv("GOGCTRACE");
if(p != nil)
gctrace = runtime_atoi(p);
runtime_initlock(&work.fmu);
runtime_initlock(&work.emu);
runtime_initlock(&work.markgate);
runtime_initlock(&work.sweepgate);
runtime_initlock(&work.Lock);
}
if(gcpercent < 0)
return;
pthread_mutex_lock(&finqlock);
pthread_mutex_lock(&gcsema);
if(!force && mstats.heap_alloc < mstats.next_gc) {
pthread_mutex_unlock(&gcsema);
pthread_mutex_unlock(&finqlock);
return;
}
t0 = runtime_nanotime();
nlookup = 0;
nsizelookup = 0;
naddrlookup = 0;
nhandoff = 0;
m->gcing = 1;
runtime_stoptheworld();
__go_cachestats();
heap0 = mstats.heap_alloc;
obj0 = mstats.nmalloc - mstats.nfree;
runtime_lock(&work.markgate);
runtime_lock(&work.sweepgate);
extra = false;
work.nproc = 1;
#if 0
if(runtime_gomaxprocs > 1 && runtime_ncpu > 1) {
runtime_noteclear(&work.alldone);
work.nproc += runtime_helpgc(&extra);
}
#endif
work.nwait = 0;
work.ndone = 0;
runtime_unlock(&work.markgate); // let the helpers in
mark(scanblock);
if(DebugMark)
mark(debug_scanblock);
t1 = runtime_nanotime();
work.spans = runtime_mheap.allspans;
runtime_unlock(&work.sweepgate); // let the helpers in
sweep();
if(work.nproc > 1)
runtime_notesleep(&work.alldone);
t2 = runtime_nanotime();
__go_stealcache();
__go_cachestats();
mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100;
m->gcing = 0;
m->locks++; // disable gc during the mallocs in newproc
heap1 = mstats.heap_alloc;
obj1 = mstats.nmalloc - mstats.nfree;
t3 = runtime_nanotime();
mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t3 - t0;
mstats.pause_total_ns += t3 - t0;
mstats.numgc++;
if(mstats.debuggc)
runtime_printf("pause %llu\n", (unsigned long long)t3-t0);
if(gctrace) {
runtime_printf("gc%d: %llu+%llu+%llu ms %llu -> %llu MB %llu -> %llu (%llu-%llu) objects %llu pointer lookups (%llu size, %llu addr) %llu handoff\n",
mstats.numgc, (unsigned long long)(t1-t0)/1000000, (unsigned long long)(t2-t1)/1000000, (unsigned long long)(t3-t2)/1000000,
(unsigned long long)heap0>>20, (unsigned long long)heap1>>20, (unsigned long long)obj0, (unsigned long long)obj1,
(unsigned long long)mstats.nmalloc, (unsigned long long)mstats.nfree,
(unsigned long long)nlookup, (unsigned long long)nsizelookup, (unsigned long long)naddrlookup, (unsigned long long) nhandoff);
}
pthread_mutex_unlock(&gcsema);
// If we could have used another helper proc, start one now,
// in the hope that it will be available next time.
// It would have been even better to start it before the collection,
// but doing so requires allocating memory, so it's tricky to
// coordinate. This lazy approach works out in practice:
// we don't mind if the first couple gc rounds don't have quite
// the maximum number of procs.
runtime_starttheworld(extra);
// finqlock is still held.
if(finq != nil) {
// kick off or wake up goroutine to run queued finalizers
if(!finstarted) {
__go_go(runfinq, nil);
finstarted = 1;
}
else if(fingwait) {
fingwait = 0;
pthread_cond_signal(&finqcond);
}
}
m->locks--;
pthread_mutex_unlock(&finqlock);
if(gctrace > 1 && !force)
runtime_gc(1);
}
void runtime_UpdateMemStats(void)
__asm__("libgo_runtime.runtime.UpdateMemStats");
void
runtime_UpdateMemStats(void)
{
// Have to acquire gcsema to stop the world,
// because stoptheworld can only be used by
// one goroutine at a time, and there might be
// a pending garbage collection already calling it.
pthread_mutex_lock(&gcsema);
m->gcing = 1;
runtime_stoptheworld();
__go_cachestats();
m->gcing = 0;
pthread_mutex_unlock(&gcsema);
runtime_starttheworld(false);
}
static void
runfinq(void* dummy)
{
Finalizer *f;
FinBlock *fb, *next;
uint32 i;
USED(dummy);
for(;;) {
pthread_mutex_lock(&finqlock);
fb = finq;
finq = nil;
if(fb == nil) {
fingwait = 1;
pthread_cond_wait(&finqcond, &finqlock);
pthread_mutex_unlock(&finqlock);
continue;
}
pthread_mutex_unlock(&finqlock);
for(; fb; fb=next) {
next = fb->next;
for(i=0; i<(uint32)fb->cnt; i++) {
void *params[1];
f = &fb->fin[i];
params[0] = &f->arg;
runtime_setblockspecial(f->arg, false);
reflect_call(f->ft, (void*)f->fn, 0, 0, params, nil);
f->fn = nil;
f->arg = nil;
}
fb->cnt = 0;
fb->next = finc;
finc = fb;
}
runtime_gc(1); // trigger another gc to clean up the finalized objects, if possible
}
}
#define runtime_singleproc 0
// mark the block at v of size n as allocated.
// If noptr is true, mark it as having no pointers.
void
runtime_markallocated(void *v, uintptr n, bool noptr)
{
uintptr *b, obits, bits, off, shift;
// if(0)
// runtime_printf("markallocated %p+%p\n", v, n);
if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start)
runtime_throw("markallocated: bad pointer");
off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset
b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
for(;;) {
obits = *b;
bits = (obits & ~(bitMask<<shift)) | (bitAllocated<<shift);
if(noptr)
bits |= bitNoPointers<<shift;
if(runtime_singleproc) {
*b = bits;
break;
} else {
// more than one goroutine is potentially running: use atomic op
if(runtime_casp((void**)b, (void*)obits, (void*)bits))
break;
}
}
}
// mark the block at v of size n as freed.
void
runtime_markfreed(void *v, uintptr n)
{
uintptr *b, obits, bits, off, shift;
// if(0)
// runtime_printf("markallocated %p+%p\n", v, n);
if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start)
runtime_throw("markallocated: bad pointer");
off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset
b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
for(;;) {
obits = *b;
bits = (obits & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);
if(runtime_singleproc) {
*b = bits;
break;
} else {
// more than one goroutine is potentially running: use atomic op
if(runtime_casp((void**)b, (void*)obits, (void*)bits))
break;
}
}
}
// check that the block at v of size n is marked freed.
void
runtime_checkfreed(void *v, uintptr n)
{
uintptr *b, bits, off, shift;
if(!runtime_checking)
return;
if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start)
return; // not allocated, so okay
off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset
b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
bits = *b>>shift;
if((bits & bitAllocated) != 0) {
runtime_printf("checkfreed %p+%p: off=%p have=%p\n",
v, (void*)n, (void*)off, (void*)(bits & bitMask));
runtime_throw("checkfreed: not freed");
}
}
// mark the span of memory at v as having n blocks of the given size.
// if leftover is true, there is left over space at the end of the span.
void
runtime_markspan(void *v, uintptr size, uintptr n, bool leftover)
{
uintptr *b, off, shift;
byte *p;
if((byte*)v+size*n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start)
runtime_throw("markspan: bad pointer");
p = v;
if(leftover) // mark a boundary just past end of last block too
n++;
for(; n-- > 0; p += size) {
// Okay to use non-atomic ops here, because we control
// the entire span, and each bitmap word has bits for only
// one span, so no other goroutines are changing these
// bitmap words.
off = (uintptr*)p - (uintptr*)runtime_mheap.arena_start; // word offset
b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
*b = (*b & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);
}
}
// unmark the span of memory at v of length n bytes.
void
runtime_unmarkspan(void *v, uintptr n)
{
uintptr *p, *b, off;
if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start)
runtime_throw("markspan: bad pointer");
p = v;
off = p - (uintptr*)runtime_mheap.arena_start; // word offset
if(off % wordsPerBitmapWord != 0)
runtime_throw("markspan: unaligned pointer");
b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
n /= PtrSize;
if(n%wordsPerBitmapWord != 0)
runtime_throw("unmarkspan: unaligned length");
// Okay to use non-atomic ops here, because we control
// the entire span, and each bitmap word has bits for only
// one span, so no other goroutines are changing these
// bitmap words.
n /= wordsPerBitmapWord;
while(n-- > 0)
*b-- = 0;
}
bool
runtime_blockspecial(void *v)
{
uintptr *b, off, shift;
if(DebugMark)
return true;
off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start;
b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
return (*b & (bitSpecial<<shift)) != 0;
}
void
runtime_setblockspecial(void *v, bool s)
{
uintptr *b, off, shift, bits, obits;
if(DebugMark)
return;
off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start;
b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
for(;;) {
obits = *b;
if(s)
bits = obits | (bitSpecial<<shift);
else
bits = obits & ~(bitSpecial<<shift);
if(runtime_singleproc) {
*b = bits;
break;
} else {
// more than one goroutine is potentially running: use atomic op
if(runtime_casp((void**)b, (void*)obits, (void*)bits))
break;
}
}
}
void
runtime_MHeap_MapBits(MHeap *h)
{
// Caller has added extra mappings to the arena.
// Add extra mappings of bitmap words as needed.
// We allocate extra bitmap pieces in chunks of bitmapChunk.
enum {
bitmapChunk = 8192
};
uintptr n;
n = (h->arena_used - h->arena_start) / wordsPerBitmapWord;
n = (n+bitmapChunk-1) & ~(bitmapChunk-1);
if(h->bitmap_mapped >= n)
return;
runtime_SysMap(h->arena_start - n, n - h->bitmap_mapped);
h->bitmap_mapped = n;
}
void
__go_enable_gc()
{
mstats.enablegc = 1;
}