7a15726687
Using pointer sized variables (e.g. size_t / ptrdiff_t) when the variables are used as array indices allows accessing larger arrays, and can be a slight performance improvement due to no need for sign or zero extending, or masking. Regtested on x86_64-pc-linux-gnu. libgfortran/ChangeLog: 2018-01-31 Janne Blomqvist <jb@gcc.gnu.org> * generated/cshift1_16.c (cshift1): Regenerated. * generated/cshift1_4.c (cshift1): Regenerated. * generated/cshift1_8.c (cshift1): Regenerated. * generated/eoshift1_16.c (eoshift1): Regenerated. * generated/eoshift1_4.c (eoshift1): Regenerated. * generated/eoshift1_8.c (eoshift1): Regenerated. * generated/eoshift3_16.c (eoshift3): Regenerated. * generated/eoshift3_4.c (eoshift3): Regenerated. * generated/eoshift3_8.c (eoshift3): Regenerated. * generated/in_pack_c10.c (internal_pack_c10): Regenerated. * generated/in_pack_c16.c (internal_pack_c16): Regenerated. * generated/in_pack_c4.c (internal_pack_c4): Regenerated. * generated/in_pack_c8.c (internal_pack_c8): Regenerated. * generated/in_pack_i1.c (internal_pack_1): Regenerated. * generated/in_pack_i16.c (internal_pack_16): Regenerated. * generated/in_pack_i2.c (internal_pack_2): Regenerated. * generated/in_pack_i4.c (internal_pack_4): Regenerated. * generated/in_pack_i8.c (internal_pack_8): Regenerated. * generated/in_pack_r10.c (internal_pack_r10): Regenerated. * generated/in_pack_r16.c (internal_pack_r16): Regenerated. * generated/in_pack_r4.c (internal_pack_r4): Regenerated. * generated/in_pack_r8.c (internal_pack_r8): Regenerated. * generated/in_unpack_c10.c (internal_unpack_c10): Regenerated. * generated/in_unpack_c16.c (internal_unpack_c16): Regenerated. * generated/in_unpack_c4.c (internal_unpack_c4): Regenerated. * generated/in_unpack_c8.c (internal_unpack_c8): Regenerated. * generated/in_unpack_i1.c (internal_unpack_1): Regenerated. * generated/in_unpack_i16.c (internal_unpack_16): Regenerated. * generated/in_unpack_i2.c (internal_unpack_2): Regenerated. * generated/in_unpack_i4.c (internal_unpack_4): Regenerated. * generated/in_unpack_i8.c (internal_unpack_8): Regenerated. * generated/in_unpack_r10.c (internal_unpack_r10): Regenerated. * generated/in_unpack_r16.c (internal_unpack_r16): Regenerated. * generated/in_unpack_r4.c (internal_unpack_r4): Regenerated. * generated/in_unpack_r8.c (internal_unpack_r8): Regenerated. * generated/reshape_c10.c (reshape_c10): Regenerated. * generated/reshape_c16.c (reshape_c16): Regenerated. * generated/reshape_c4.c (reshape_c4): Regenerated. * generated/reshape_c8.c (reshape_c8): Regenerated. * generated/reshape_i16.c (reshape_16): Regenerated. * generated/reshape_i4.c (reshape_4): Regenerated. * generated/reshape_i8.c (reshape_8): Regenerated. * generated/reshape_r10.c (reshape_r10): Regenerated. * generated/reshape_r16.c (reshape_r16): Regenerated. * generated/reshape_r4.c (reshape_r4): Regenerated. * generated/reshape_r8.c (reshape_r8): Regenerated. * generated/shape_i1.c (shape_1): Regenerated. * generated/shape_i16.c (shape_16): Regenerated. * generated/shape_i2.c (shape_2): Regenerated. * generated/shape_i4.c (shape_4): Regenerated. * generated/shape_i8.c (shape_8): Regenerated. * generated/spread_c10.c (spread_scalar_c10): Regenerated. * generated/spread_c16.c (spread_scalar_c16): Regenerated. * generated/spread_c4.c (spread_scalar_c4): Regenerated. * generated/spread_c8.c (spread_scalar_c8): Regenerated. * generated/spread_i1.c (spread_scalar_i1): Regenerated. * generated/spread_i16.c (spread_scalar_i16): Regenerated. * generated/spread_i2.c (spread_scalar_i2): Regenerated. * generated/spread_i4.c (spread_scalar_i4): Regenerated. * generated/spread_i8.c (spread_scalar_i8): Regenerated. * generated/spread_r10.c (spread_scalar_r10): Regenerated. * generated/spread_r16.c (spread_scalar_r16): Regenerated. * generated/spread_r4.c (spread_scalar_r4): Regenerated. * generated/spread_r8.c (spread_scalar_r8): Regenerated. * intrinsics/random.c (jump): Use size_t for array index in loop. (getosrandom): Likewise. (arandom_r4): Make n an index_type. (arandom_r8): Likewise. (arandom_r10): Likewise. (arandom_r16): Likewise. (scramble_seed): Use size_t for array index in loop. * m4/cshift1.m4: Make i an index_type. * m4/eoshift1.m4: Likewise. * m4/eoshift3.m4: Likewise. * m4/in_pack.m4: Make n an index_type. * m4/in_unpack.m4: Likewise. * m4/reshape.m4: Make n and dim index_type's. * m4/shape.m4: Make n an index_type. * m4/spread.m4: Likewise, use index_type argument rather than copying to int. * runtime/bounds.c (bounds_ifunction_return): Make n an index_type. * runtime/in_pack_generic.c (internal_pack): Likewise. * runtime/in_unpack_generic.c (internal_unpack): Make n and size index_type's. From-SVN: r257234
270 lines
6.8 KiB
C
270 lines
6.8 KiB
C
/* Copyright (C) 2009-2018 Free Software Foundation, Inc.
|
|
Contributed by Thomas Koenig
|
|
|
|
This file is part of the GNU Fortran runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "libgfortran.h"
|
|
#include <assert.h>
|
|
|
|
/* Auxiliary functions for bounds checking, mostly to reduce library size. */
|
|
|
|
/* Bounds checking for the return values of the iforeach functions (such
|
|
as maxloc and minloc). The extent of ret_array must
|
|
must match the rank of array. */
|
|
|
|
void
|
|
bounds_iforeach_return (array_t *retarray, array_t *array, const char *name)
|
|
{
|
|
index_type rank;
|
|
index_type ret_rank;
|
|
index_type ret_extent;
|
|
|
|
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
|
|
|
/* ret_rank should always be 1, otherwise there is an internal error */
|
|
GFC_ASSERT(ret_rank == 1);
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (array);
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
|
if (ret_extent != rank)
|
|
runtime_error ("Incorrect extent in return value of"
|
|
" %s intrinsic: is %ld, should be %ld",
|
|
name, (long int) ret_extent, (long int) rank);
|
|
|
|
}
|
|
|
|
/* Check the return of functions generated from ifunction.m4.
|
|
We check the array descriptor "a" against the extents precomputed
|
|
from ifunction.m4, and complain about the argument a_name in the
|
|
intrinsic function. */
|
|
|
|
void
|
|
bounds_ifunction_return (array_t * a, const index_type * extent,
|
|
const char * a_name, const char * intrinsic)
|
|
{
|
|
int empty;
|
|
int rank;
|
|
index_type a_size;
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (a);
|
|
a_size = size0 (a);
|
|
|
|
empty = 0;
|
|
for (index_type n = 0; n < rank; n++)
|
|
{
|
|
if (extent[n] == 0)
|
|
empty = 1;
|
|
}
|
|
if (empty)
|
|
{
|
|
if (a_size != 0)
|
|
runtime_error ("Incorrect size in %s of %s"
|
|
" intrinsic: should be zero-sized",
|
|
a_name, intrinsic);
|
|
}
|
|
else
|
|
{
|
|
if (a_size == 0)
|
|
runtime_error ("Incorrect size of %s in %s"
|
|
" intrinsic: should not be zero-sized",
|
|
a_name, intrinsic);
|
|
|
|
for (index_type n = 0; n < rank; n++)
|
|
{
|
|
index_type a_extent;
|
|
a_extent = GFC_DESCRIPTOR_EXTENT(a, n);
|
|
if (a_extent != extent[n])
|
|
runtime_error("Incorrect extent in %s of %s"
|
|
" intrinsic in dimension %ld: is %ld,"
|
|
" should be %ld", a_name, intrinsic, (long int) n + 1,
|
|
(long int) a_extent, (long int) extent[n]);
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check that two arrays have equal extents, or are both zero-sized. Abort
|
|
with a runtime error if this is not the case. Complain that a has the
|
|
wrong size. */
|
|
|
|
void
|
|
bounds_equal_extents (array_t *a, array_t *b, const char *a_name,
|
|
const char *intrinsic)
|
|
{
|
|
index_type a_size, b_size, n;
|
|
|
|
assert (GFC_DESCRIPTOR_RANK(a) == GFC_DESCRIPTOR_RANK(b));
|
|
|
|
a_size = size0 (a);
|
|
b_size = size0 (b);
|
|
|
|
if (b_size == 0)
|
|
{
|
|
if (a_size != 0)
|
|
runtime_error ("Incorrect size of %s in %s"
|
|
" intrinsic: should be zero-sized",
|
|
a_name, intrinsic);
|
|
}
|
|
else
|
|
{
|
|
if (a_size == 0)
|
|
runtime_error ("Incorrect size of %s of %s"
|
|
" intrinsic: Should not be zero-sized",
|
|
a_name, intrinsic);
|
|
|
|
for (n = 0; n < GFC_DESCRIPTOR_RANK (b); n++)
|
|
{
|
|
index_type a_extent, b_extent;
|
|
|
|
a_extent = GFC_DESCRIPTOR_EXTENT(a, n);
|
|
b_extent = GFC_DESCRIPTOR_EXTENT(b, n);
|
|
if (a_extent != b_extent)
|
|
runtime_error("Incorrect extent in %s of %s"
|
|
" intrinsic in dimension %ld: is %ld,"
|
|
" should be %ld", a_name, intrinsic, (long int) n + 1,
|
|
(long int) a_extent, (long int) b_extent);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check that the extents of a and b agree, except that a has a missing
|
|
dimension in argument which. Complain about a if anything is wrong. */
|
|
|
|
void
|
|
bounds_reduced_extents (array_t *a, array_t *b, int which, const char *a_name,
|
|
const char *intrinsic)
|
|
{
|
|
|
|
index_type i, n, a_size, b_size;
|
|
|
|
assert (GFC_DESCRIPTOR_RANK(a) == GFC_DESCRIPTOR_RANK(b) - 1);
|
|
|
|
a_size = size0 (a);
|
|
b_size = size0 (b);
|
|
|
|
if (b_size == 0)
|
|
{
|
|
if (a_size != 0)
|
|
runtime_error ("Incorrect size in %s of %s"
|
|
" intrinsic: should not be zero-sized",
|
|
a_name, intrinsic);
|
|
}
|
|
else
|
|
{
|
|
if (a_size == 0)
|
|
runtime_error ("Incorrect size of %s of %s"
|
|
" intrinsic: should be zero-sized",
|
|
a_name, intrinsic);
|
|
|
|
i = 0;
|
|
for (n = 0; n < GFC_DESCRIPTOR_RANK (b); n++)
|
|
{
|
|
index_type a_extent, b_extent;
|
|
|
|
if (n != which)
|
|
{
|
|
a_extent = GFC_DESCRIPTOR_EXTENT(a, i);
|
|
b_extent = GFC_DESCRIPTOR_EXTENT(b, n);
|
|
if (a_extent != b_extent)
|
|
runtime_error("Incorrect extent in %s of %s"
|
|
" intrinsic in dimension %ld: is %ld,"
|
|
" should be %ld", a_name, intrinsic, (long int) i + 1,
|
|
(long int) a_extent, (long int) b_extent);
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* count_0 - count all the true elements in an array. The front
|
|
end usually inlines this, we need this for bounds checking
|
|
for unpack. */
|
|
|
|
index_type count_0 (const gfc_array_l1 * array)
|
|
{
|
|
const GFC_LOGICAL_1 * restrict base;
|
|
index_type rank;
|
|
int kind;
|
|
int continue_loop;
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type result;
|
|
index_type n;
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (array);
|
|
kind = GFC_DESCRIPTOR_SIZE (array);
|
|
|
|
base = array->base_addr;
|
|
|
|
if (kind == 1 || kind == 2 || kind == 4 || kind == 8
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
|
|| kind == 16
|
|
#endif
|
|
)
|
|
{
|
|
if (base)
|
|
base = GFOR_POINTER_TO_L1 (base, kind);
|
|
}
|
|
else
|
|
internal_error (NULL, "Funny sized logical array in count_0");
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
count[n] = 0;
|
|
|
|
if (extent[n] <= 0)
|
|
return 0;
|
|
}
|
|
|
|
result = 0;
|
|
continue_loop = 1;
|
|
while (continue_loop)
|
|
{
|
|
if (*base)
|
|
result ++;
|
|
|
|
count[0]++;
|
|
base += sstride[0];
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
count[n] = 0;
|
|
base -= sstride[n] * extent[n];
|
|
n++;
|
|
if (n == rank)
|
|
{
|
|
continue_loop = 0;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
base += sstride[n];
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|