23a5b65a92
From-SVN: r206289
832 lines
21 KiB
C
832 lines
21 KiB
C
/* Single entry single exit control flow regions.
|
||
Copyright (C) 2008-2014 Free Software Foundation, Inc.
|
||
Contributed by Jan Sjodin <jan.sjodin@amd.com> and
|
||
Sebastian Pop <sebastian.pop@amd.com>.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "hash-table.h"
|
||
#include "tree.h"
|
||
#include "tree-pretty-print.h"
|
||
#include "basic-block.h"
|
||
#include "tree-ssa-alias.h"
|
||
#include "internal-fn.h"
|
||
#include "gimple-fold.h"
|
||
#include "tree-eh.h"
|
||
#include "gimple-expr.h"
|
||
#include "is-a.h"
|
||
#include "gimple.h"
|
||
#include "gimplify.h"
|
||
#include "gimple-iterator.h"
|
||
#include "gimplify-me.h"
|
||
#include "gimple-ssa.h"
|
||
#include "tree-cfg.h"
|
||
#include "tree-phinodes.h"
|
||
#include "ssa-iterators.h"
|
||
#include "stringpool.h"
|
||
#include "tree-ssanames.h"
|
||
#include "tree-ssa-loop.h"
|
||
#include "tree-into-ssa.h"
|
||
#include "cfgloop.h"
|
||
#include "tree-chrec.h"
|
||
#include "tree-data-ref.h"
|
||
#include "tree-scalar-evolution.h"
|
||
#include "tree-pass.h"
|
||
#include "value-prof.h"
|
||
#include "sese.h"
|
||
#include "tree-ssa-propagate.h"
|
||
|
||
/* Print to stderr the element ELT. */
|
||
|
||
static void
|
||
debug_rename_elt (rename_map_elt elt)
|
||
{
|
||
fprintf (stderr, "(");
|
||
print_generic_expr (stderr, elt->old_name, 0);
|
||
fprintf (stderr, ", ");
|
||
print_generic_expr (stderr, elt->expr, 0);
|
||
fprintf (stderr, ")\n");
|
||
}
|
||
|
||
/* Helper function for debug_rename_map. */
|
||
|
||
int
|
||
debug_rename_map_1 (rename_map_elt_s **slot, void *s ATTRIBUTE_UNUSED)
|
||
{
|
||
struct rename_map_elt_s *entry = *slot;
|
||
debug_rename_elt (entry);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Hashtable helpers. */
|
||
|
||
struct rename_map_hasher : typed_free_remove <rename_map_elt_s>
|
||
{
|
||
typedef rename_map_elt_s value_type;
|
||
typedef rename_map_elt_s compare_type;
|
||
static inline hashval_t hash (const value_type *);
|
||
static inline bool equal (const value_type *, const compare_type *);
|
||
};
|
||
|
||
/* Computes a hash function for database element ELT. */
|
||
|
||
inline hashval_t
|
||
rename_map_hasher::hash (const value_type *elt)
|
||
{
|
||
return SSA_NAME_VERSION (elt->old_name);
|
||
}
|
||
|
||
/* Compares database elements E1 and E2. */
|
||
|
||
inline bool
|
||
rename_map_hasher::equal (const value_type *elt1, const compare_type *elt2)
|
||
{
|
||
return (elt1->old_name == elt2->old_name);
|
||
}
|
||
|
||
typedef hash_table <rename_map_hasher> rename_map_type;
|
||
|
||
|
||
/* Print to stderr all the elements of RENAME_MAP. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_rename_map (rename_map_type rename_map)
|
||
{
|
||
rename_map.traverse <void *, debug_rename_map_1> (NULL);
|
||
}
|
||
|
||
/* Computes a hash function for database element ELT. */
|
||
|
||
hashval_t
|
||
rename_map_elt_info (const void *elt)
|
||
{
|
||
return SSA_NAME_VERSION (((const struct rename_map_elt_s *) elt)->old_name);
|
||
}
|
||
|
||
/* Compares database elements E1 and E2. */
|
||
|
||
int
|
||
eq_rename_map_elts (const void *e1, const void *e2)
|
||
{
|
||
const struct rename_map_elt_s *elt1 = (const struct rename_map_elt_s *) e1;
|
||
const struct rename_map_elt_s *elt2 = (const struct rename_map_elt_s *) e2;
|
||
|
||
return (elt1->old_name == elt2->old_name);
|
||
}
|
||
|
||
|
||
|
||
/* Record LOOP as occurring in REGION. */
|
||
|
||
static void
|
||
sese_record_loop (sese region, loop_p loop)
|
||
{
|
||
if (sese_contains_loop (region, loop))
|
||
return;
|
||
|
||
bitmap_set_bit (SESE_LOOPS (region), loop->num);
|
||
SESE_LOOP_NEST (region).safe_push (loop);
|
||
}
|
||
|
||
/* Build the loop nests contained in REGION. Returns true when the
|
||
operation was successful. */
|
||
|
||
void
|
||
build_sese_loop_nests (sese region)
|
||
{
|
||
unsigned i;
|
||
basic_block bb;
|
||
struct loop *loop0, *loop1;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
if (bb_in_sese_p (bb, region))
|
||
{
|
||
struct loop *loop = bb->loop_father;
|
||
|
||
/* Only add loops if they are completely contained in the SCoP. */
|
||
if (loop->header == bb
|
||
&& bb_in_sese_p (loop->latch, region))
|
||
sese_record_loop (region, loop);
|
||
}
|
||
|
||
/* Make sure that the loops in the SESE_LOOP_NEST are ordered. It
|
||
can be the case that an inner loop is inserted before an outer
|
||
loop. To avoid this, semi-sort once. */
|
||
FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), i, loop0)
|
||
{
|
||
if (SESE_LOOP_NEST (region).length () == i + 1)
|
||
break;
|
||
|
||
loop1 = SESE_LOOP_NEST (region)[i + 1];
|
||
if (loop0->num > loop1->num)
|
||
{
|
||
SESE_LOOP_NEST (region)[i] = loop1;
|
||
SESE_LOOP_NEST (region)[i + 1] = loop0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* For a USE in BB, if BB is outside REGION, mark the USE in the
|
||
LIVEOUTS set. */
|
||
|
||
static void
|
||
sese_build_liveouts_use (sese region, bitmap liveouts, basic_block bb,
|
||
tree use)
|
||
{
|
||
unsigned ver;
|
||
basic_block def_bb;
|
||
|
||
if (TREE_CODE (use) != SSA_NAME)
|
||
return;
|
||
|
||
ver = SSA_NAME_VERSION (use);
|
||
def_bb = gimple_bb (SSA_NAME_DEF_STMT (use));
|
||
|
||
if (!def_bb
|
||
|| !bb_in_sese_p (def_bb, region)
|
||
|| bb_in_sese_p (bb, region))
|
||
return;
|
||
|
||
bitmap_set_bit (liveouts, ver);
|
||
}
|
||
|
||
/* Marks for rewrite all the SSA_NAMES defined in REGION and that are
|
||
used in BB that is outside of the REGION. */
|
||
|
||
static void
|
||
sese_build_liveouts_bb (sese region, bitmap liveouts, basic_block bb)
|
||
{
|
||
gimple_stmt_iterator bsi;
|
||
edge e;
|
||
edge_iterator ei;
|
||
ssa_op_iter iter;
|
||
use_operand_p use_p;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
for (bsi = gsi_start_phis (e->dest); !gsi_end_p (bsi); gsi_next (&bsi))
|
||
sese_build_liveouts_use (region, liveouts, bb,
|
||
PHI_ARG_DEF_FROM_EDGE (gsi_stmt (bsi), e));
|
||
|
||
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
||
{
|
||
gimple stmt = gsi_stmt (bsi);
|
||
|
||
if (is_gimple_debug (stmt))
|
||
continue;
|
||
|
||
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
|
||
sese_build_liveouts_use (region, liveouts, bb, USE_FROM_PTR (use_p));
|
||
}
|
||
}
|
||
|
||
/* For a USE in BB, return true if BB is outside REGION and it's not
|
||
in the LIVEOUTS set. */
|
||
|
||
static bool
|
||
sese_bad_liveouts_use (sese region, bitmap liveouts, basic_block bb,
|
||
tree use)
|
||
{
|
||
unsigned ver;
|
||
basic_block def_bb;
|
||
|
||
if (TREE_CODE (use) != SSA_NAME)
|
||
return false;
|
||
|
||
ver = SSA_NAME_VERSION (use);
|
||
|
||
/* If it's in liveouts, the variable will get a new PHI node, and
|
||
the debug use will be properly adjusted. */
|
||
if (bitmap_bit_p (liveouts, ver))
|
||
return false;
|
||
|
||
def_bb = gimple_bb (SSA_NAME_DEF_STMT (use));
|
||
|
||
if (!def_bb
|
||
|| !bb_in_sese_p (def_bb, region)
|
||
|| bb_in_sese_p (bb, region))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Reset debug stmts that reference SSA_NAMES defined in REGION that
|
||
are not marked as liveouts. */
|
||
|
||
static void
|
||
sese_reset_debug_liveouts_bb (sese region, bitmap liveouts, basic_block bb)
|
||
{
|
||
gimple_stmt_iterator bsi;
|
||
ssa_op_iter iter;
|
||
use_operand_p use_p;
|
||
|
||
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
||
{
|
||
gimple stmt = gsi_stmt (bsi);
|
||
|
||
if (!is_gimple_debug (stmt))
|
||
continue;
|
||
|
||
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
|
||
if (sese_bad_liveouts_use (region, liveouts, bb,
|
||
USE_FROM_PTR (use_p)))
|
||
{
|
||
gimple_debug_bind_reset_value (stmt);
|
||
update_stmt (stmt);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Build the LIVEOUTS of REGION: the set of variables defined inside
|
||
and used outside the REGION. */
|
||
|
||
static void
|
||
sese_build_liveouts (sese region, bitmap liveouts)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
sese_build_liveouts_bb (region, liveouts, bb);
|
||
if (MAY_HAVE_DEBUG_STMTS)
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
sese_reset_debug_liveouts_bb (region, liveouts, bb);
|
||
}
|
||
|
||
/* Builds a new SESE region from edges ENTRY and EXIT. */
|
||
|
||
sese
|
||
new_sese (edge entry, edge exit)
|
||
{
|
||
sese region = XNEW (struct sese_s);
|
||
|
||
SESE_ENTRY (region) = entry;
|
||
SESE_EXIT (region) = exit;
|
||
SESE_LOOPS (region) = BITMAP_ALLOC (NULL);
|
||
SESE_LOOP_NEST (region).create (3);
|
||
SESE_ADD_PARAMS (region) = true;
|
||
SESE_PARAMS (region).create (3);
|
||
|
||
return region;
|
||
}
|
||
|
||
/* Deletes REGION. */
|
||
|
||
void
|
||
free_sese (sese region)
|
||
{
|
||
if (SESE_LOOPS (region))
|
||
SESE_LOOPS (region) = BITMAP_ALLOC (NULL);
|
||
|
||
SESE_PARAMS (region).release ();
|
||
SESE_LOOP_NEST (region).release ();
|
||
|
||
XDELETE (region);
|
||
}
|
||
|
||
/* Add exit phis for USE on EXIT. */
|
||
|
||
static void
|
||
sese_add_exit_phis_edge (basic_block exit, tree use, edge false_e, edge true_e)
|
||
{
|
||
gimple phi = create_phi_node (NULL_TREE, exit);
|
||
create_new_def_for (use, phi, gimple_phi_result_ptr (phi));
|
||
add_phi_arg (phi, use, false_e, UNKNOWN_LOCATION);
|
||
add_phi_arg (phi, use, true_e, UNKNOWN_LOCATION);
|
||
}
|
||
|
||
/* Insert in the block BB phi nodes for variables defined in REGION
|
||
and used outside the REGION. The code generation moves REGION in
|
||
the else clause of an "if (1)" and generates code in the then
|
||
clause that is at this point empty:
|
||
|
||
| if (1)
|
||
| empty;
|
||
| else
|
||
| REGION;
|
||
*/
|
||
|
||
void
|
||
sese_insert_phis_for_liveouts (sese region, basic_block bb,
|
||
edge false_e, edge true_e)
|
||
{
|
||
unsigned i;
|
||
bitmap_iterator bi;
|
||
bitmap liveouts = BITMAP_ALLOC (NULL);
|
||
|
||
update_ssa (TODO_update_ssa);
|
||
|
||
sese_build_liveouts (region, liveouts);
|
||
EXECUTE_IF_SET_IN_BITMAP (liveouts, 0, i, bi)
|
||
sese_add_exit_phis_edge (bb, ssa_name (i), false_e, true_e);
|
||
BITMAP_FREE (liveouts);
|
||
|
||
update_ssa (TODO_update_ssa);
|
||
}
|
||
|
||
/* Returns the first successor edge of BB with EDGE_TRUE_VALUE flag set. */
|
||
|
||
edge
|
||
get_true_edge_from_guard_bb (basic_block bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (e->flags & EDGE_TRUE_VALUE)
|
||
return e;
|
||
|
||
gcc_unreachable ();
|
||
return NULL;
|
||
}
|
||
|
||
/* Returns the first successor edge of BB with EDGE_TRUE_VALUE flag cleared. */
|
||
|
||
edge
|
||
get_false_edge_from_guard_bb (basic_block bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (!(e->flags & EDGE_TRUE_VALUE))
|
||
return e;
|
||
|
||
gcc_unreachable ();
|
||
return NULL;
|
||
}
|
||
|
||
/* Returns the expression associated to OLD_NAME in RENAME_MAP. */
|
||
|
||
static tree
|
||
get_rename (rename_map_type rename_map, tree old_name)
|
||
{
|
||
struct rename_map_elt_s tmp;
|
||
rename_map_elt_s **slot;
|
||
|
||
gcc_assert (TREE_CODE (old_name) == SSA_NAME);
|
||
tmp.old_name = old_name;
|
||
slot = rename_map.find_slot (&tmp, NO_INSERT);
|
||
|
||
if (slot && *slot)
|
||
return (*slot)->expr;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Register in RENAME_MAP the rename tuple (OLD_NAME, EXPR). */
|
||
|
||
static void
|
||
set_rename (rename_map_type rename_map, tree old_name, tree expr)
|
||
{
|
||
struct rename_map_elt_s tmp;
|
||
rename_map_elt_s **slot;
|
||
|
||
if (old_name == expr)
|
||
return;
|
||
|
||
tmp.old_name = old_name;
|
||
slot = rename_map.find_slot (&tmp, INSERT);
|
||
|
||
if (!slot)
|
||
return;
|
||
|
||
free (*slot);
|
||
|
||
*slot = new_rename_map_elt (old_name, expr);
|
||
}
|
||
|
||
/* Renames the scalar uses of the statement COPY, using the
|
||
substitution map RENAME_MAP, inserting the gimplification code at
|
||
GSI_TGT, for the translation REGION, with the original copied
|
||
statement in LOOP, and using the induction variable renaming map
|
||
IV_MAP. Returns true when something has been renamed. GLOOG_ERROR
|
||
is set when the code generation cannot continue. */
|
||
|
||
static bool
|
||
rename_uses (gimple copy, rename_map_type rename_map,
|
||
gimple_stmt_iterator *gsi_tgt,
|
||
sese region, loop_p loop, vec<tree> iv_map,
|
||
bool *gloog_error)
|
||
{
|
||
use_operand_p use_p;
|
||
ssa_op_iter op_iter;
|
||
bool changed = false;
|
||
|
||
if (is_gimple_debug (copy))
|
||
{
|
||
if (gimple_debug_bind_p (copy))
|
||
gimple_debug_bind_reset_value (copy);
|
||
else if (gimple_debug_source_bind_p (copy))
|
||
return false;
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
return false;
|
||
}
|
||
|
||
FOR_EACH_SSA_USE_OPERAND (use_p, copy, op_iter, SSA_OP_USE)
|
||
{
|
||
tree old_name = USE_FROM_PTR (use_p);
|
||
tree new_expr, scev;
|
||
gimple_seq stmts;
|
||
|
||
if (TREE_CODE (old_name) != SSA_NAME
|
||
|| SSA_NAME_IS_DEFAULT_DEF (old_name))
|
||
continue;
|
||
|
||
changed = true;
|
||
new_expr = get_rename (rename_map, old_name);
|
||
if (new_expr)
|
||
{
|
||
tree type_old_name = TREE_TYPE (old_name);
|
||
tree type_new_expr = TREE_TYPE (new_expr);
|
||
|
||
if (type_old_name != type_new_expr
|
||
|| TREE_CODE (new_expr) != SSA_NAME)
|
||
{
|
||
tree var = create_tmp_var (type_old_name, "var");
|
||
|
||
if (!useless_type_conversion_p (type_old_name, type_new_expr))
|
||
new_expr = fold_convert (type_old_name, new_expr);
|
||
|
||
new_expr = force_gimple_operand (new_expr, &stmts, true, var);
|
||
gsi_insert_seq_before (gsi_tgt, stmts, GSI_SAME_STMT);
|
||
}
|
||
|
||
replace_exp (use_p, new_expr);
|
||
continue;
|
||
}
|
||
|
||
scev = scalar_evolution_in_region (region, loop, old_name);
|
||
|
||
/* At this point we should know the exact scev for each
|
||
scalar SSA_NAME used in the scop: all the other scalar
|
||
SSA_NAMEs should have been translated out of SSA using
|
||
arrays with one element. */
|
||
if (chrec_contains_undetermined (scev))
|
||
{
|
||
*gloog_error = true;
|
||
new_expr = build_zero_cst (TREE_TYPE (old_name));
|
||
}
|
||
else
|
||
new_expr = chrec_apply_map (scev, iv_map);
|
||
|
||
/* The apply should produce an expression tree containing
|
||
the uses of the new induction variables. We should be
|
||
able to use new_expr instead of the old_name in the newly
|
||
generated loop nest. */
|
||
if (chrec_contains_undetermined (new_expr)
|
||
|| tree_contains_chrecs (new_expr, NULL))
|
||
{
|
||
*gloog_error = true;
|
||
new_expr = build_zero_cst (TREE_TYPE (old_name));
|
||
}
|
||
else
|
||
/* Replace the old_name with the new_expr. */
|
||
new_expr = force_gimple_operand (unshare_expr (new_expr), &stmts,
|
||
true, NULL_TREE);
|
||
|
||
gsi_insert_seq_before (gsi_tgt, stmts, GSI_SAME_STMT);
|
||
replace_exp (use_p, new_expr);
|
||
|
||
if (TREE_CODE (new_expr) == INTEGER_CST
|
||
&& is_gimple_assign (copy))
|
||
{
|
||
tree rhs = gimple_assign_rhs1 (copy);
|
||
|
||
if (TREE_CODE (rhs) == ADDR_EXPR)
|
||
recompute_tree_invariant_for_addr_expr (rhs);
|
||
}
|
||
|
||
set_rename (rename_map, old_name, new_expr);
|
||
}
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Duplicates the statements of basic block BB into basic block NEW_BB
|
||
and compute the new induction variables according to the IV_MAP.
|
||
GLOOG_ERROR is set when the code generation cannot continue. */
|
||
|
||
static void
|
||
graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb,
|
||
rename_map_type rename_map,
|
||
vec<tree> iv_map, sese region,
|
||
bool *gloog_error)
|
||
{
|
||
gimple_stmt_iterator gsi, gsi_tgt;
|
||
loop_p loop = bb->loop_father;
|
||
|
||
gsi_tgt = gsi_start_bb (new_bb);
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
def_operand_p def_p;
|
||
ssa_op_iter op_iter;
|
||
gimple stmt = gsi_stmt (gsi);
|
||
gimple copy;
|
||
tree lhs;
|
||
|
||
/* Do not copy labels or conditions. */
|
||
if (gimple_code (stmt) == GIMPLE_LABEL
|
||
|| gimple_code (stmt) == GIMPLE_COND)
|
||
continue;
|
||
|
||
/* Do not copy induction variables. */
|
||
if (is_gimple_assign (stmt)
|
||
&& (lhs = gimple_assign_lhs (stmt))
|
||
&& TREE_CODE (lhs) == SSA_NAME
|
||
&& is_gimple_reg (lhs)
|
||
&& scev_analyzable_p (lhs, region))
|
||
continue;
|
||
|
||
/* Create a new copy of STMT and duplicate STMT's virtual
|
||
operands. */
|
||
copy = gimple_copy (stmt);
|
||
gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
|
||
|
||
maybe_duplicate_eh_stmt (copy, stmt);
|
||
gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
|
||
|
||
/* Create new names for all the definitions created by COPY and
|
||
add replacement mappings for each new name. */
|
||
FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
|
||
{
|
||
tree old_name = DEF_FROM_PTR (def_p);
|
||
tree new_name = create_new_def_for (old_name, copy, def_p);
|
||
set_rename (rename_map, old_name, new_name);
|
||
}
|
||
|
||
if (rename_uses (copy, rename_map, &gsi_tgt, region, loop, iv_map,
|
||
gloog_error))
|
||
{
|
||
gcc_assert (gsi_stmt (gsi_tgt) == copy);
|
||
fold_stmt_inplace (&gsi_tgt);
|
||
}
|
||
|
||
update_stmt (copy);
|
||
}
|
||
}
|
||
|
||
/* Copies BB and includes in the copied BB all the statements that can
|
||
be reached following the use-def chains from the memory accesses,
|
||
and returns the next edge following this new block. GLOOG_ERROR is
|
||
set when the code generation cannot continue. */
|
||
|
||
edge
|
||
copy_bb_and_scalar_dependences (basic_block bb, sese region,
|
||
edge next_e, vec<tree> iv_map,
|
||
bool *gloog_error)
|
||
{
|
||
basic_block new_bb = split_edge (next_e);
|
||
rename_map_type rename_map;
|
||
rename_map.create (10);
|
||
|
||
next_e = single_succ_edge (new_bb);
|
||
graphite_copy_stmts_from_block (bb, new_bb, rename_map, iv_map, region,
|
||
gloog_error);
|
||
remove_phi_nodes (new_bb);
|
||
rename_map.dispose ();
|
||
|
||
return next_e;
|
||
}
|
||
|
||
/* Returns the outermost loop in SCOP that contains BB. */
|
||
|
||
struct loop *
|
||
outermost_loop_in_sese (sese region, basic_block bb)
|
||
{
|
||
struct loop *nest;
|
||
|
||
nest = bb->loop_father;
|
||
while (loop_outer (nest)
|
||
&& loop_in_sese_p (loop_outer (nest), region))
|
||
nest = loop_outer (nest);
|
||
|
||
return nest;
|
||
}
|
||
|
||
/* Sets the false region of an IF_REGION to REGION. */
|
||
|
||
void
|
||
if_region_set_false_region (ifsese if_region, sese region)
|
||
{
|
||
basic_block condition = if_region_get_condition_block (if_region);
|
||
edge false_edge = get_false_edge_from_guard_bb (condition);
|
||
basic_block dummy = false_edge->dest;
|
||
edge entry_region = SESE_ENTRY (region);
|
||
edge exit_region = SESE_EXIT (region);
|
||
basic_block before_region = entry_region->src;
|
||
basic_block last_in_region = exit_region->src;
|
||
void **slot = htab_find_slot_with_hash (current_loops->exits, exit_region,
|
||
htab_hash_pointer (exit_region),
|
||
NO_INSERT);
|
||
|
||
entry_region->flags = false_edge->flags;
|
||
false_edge->flags = exit_region->flags;
|
||
|
||
redirect_edge_pred (entry_region, condition);
|
||
redirect_edge_pred (exit_region, before_region);
|
||
redirect_edge_pred (false_edge, last_in_region);
|
||
redirect_edge_succ (false_edge, single_succ (dummy));
|
||
delete_basic_block (dummy);
|
||
|
||
exit_region->flags = EDGE_FALLTHRU;
|
||
recompute_all_dominators ();
|
||
|
||
SESE_EXIT (region) = false_edge;
|
||
|
||
free (if_region->false_region);
|
||
if_region->false_region = region;
|
||
|
||
if (slot)
|
||
{
|
||
struct loop_exit *loop_exit = ggc_alloc_cleared_loop_exit ();
|
||
|
||
memcpy (loop_exit, *((struct loop_exit **) slot), sizeof (struct loop_exit));
|
||
htab_clear_slot (current_loops->exits, slot);
|
||
|
||
slot = htab_find_slot_with_hash (current_loops->exits, false_edge,
|
||
htab_hash_pointer (false_edge),
|
||
INSERT);
|
||
loop_exit->e = false_edge;
|
||
*slot = loop_exit;
|
||
false_edge->src->loop_father->exits->next = loop_exit;
|
||
}
|
||
}
|
||
|
||
/* Creates an IFSESE with CONDITION on edge ENTRY. */
|
||
|
||
static ifsese
|
||
create_if_region_on_edge (edge entry, tree condition)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
sese sese_region = XNEW (struct sese_s);
|
||
sese true_region = XNEW (struct sese_s);
|
||
sese false_region = XNEW (struct sese_s);
|
||
ifsese if_region = XNEW (struct ifsese_s);
|
||
edge exit = create_empty_if_region_on_edge (entry, condition);
|
||
|
||
if_region->region = sese_region;
|
||
if_region->region->entry = entry;
|
||
if_region->region->exit = exit;
|
||
|
||
FOR_EACH_EDGE (e, ei, entry->dest->succs)
|
||
{
|
||
if (e->flags & EDGE_TRUE_VALUE)
|
||
{
|
||
true_region->entry = e;
|
||
true_region->exit = single_succ_edge (e->dest);
|
||
if_region->true_region = true_region;
|
||
}
|
||
else if (e->flags & EDGE_FALSE_VALUE)
|
||
{
|
||
false_region->entry = e;
|
||
false_region->exit = single_succ_edge (e->dest);
|
||
if_region->false_region = false_region;
|
||
}
|
||
}
|
||
|
||
return if_region;
|
||
}
|
||
|
||
/* Moves REGION in a condition expression:
|
||
| if (1)
|
||
| ;
|
||
| else
|
||
| REGION;
|
||
*/
|
||
|
||
ifsese
|
||
move_sese_in_condition (sese region)
|
||
{
|
||
basic_block pred_block = split_edge (SESE_ENTRY (region));
|
||
ifsese if_region;
|
||
|
||
SESE_ENTRY (region) = single_succ_edge (pred_block);
|
||
if_region = create_if_region_on_edge (single_pred_edge (pred_block), integer_one_node);
|
||
if_region_set_false_region (if_region, region);
|
||
|
||
return if_region;
|
||
}
|
||
|
||
/* Replaces the condition of the IF_REGION with CONDITION:
|
||
| if (CONDITION)
|
||
| true_region;
|
||
| else
|
||
| false_region;
|
||
*/
|
||
|
||
void
|
||
set_ifsese_condition (ifsese if_region, tree condition)
|
||
{
|
||
sese region = if_region->region;
|
||
edge entry = region->entry;
|
||
basic_block bb = entry->dest;
|
||
gimple last = last_stmt (bb);
|
||
gimple_stmt_iterator gsi = gsi_last_bb (bb);
|
||
gimple cond_stmt;
|
||
|
||
gcc_assert (gimple_code (last) == GIMPLE_COND);
|
||
|
||
gsi_remove (&gsi, true);
|
||
gsi = gsi_last_bb (bb);
|
||
condition = force_gimple_operand_gsi (&gsi, condition, true, NULL,
|
||
false, GSI_NEW_STMT);
|
||
cond_stmt = gimple_build_cond_from_tree (condition, NULL_TREE, NULL_TREE);
|
||
gsi = gsi_last_bb (bb);
|
||
gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
|
||
}
|
||
|
||
/* Returns the scalar evolution of T in REGION. Every variable that
|
||
is not defined in the REGION is considered a parameter. */
|
||
|
||
tree
|
||
scalar_evolution_in_region (sese region, loop_p loop, tree t)
|
||
{
|
||
gimple def;
|
||
struct loop *def_loop;
|
||
basic_block before = block_before_sese (region);
|
||
|
||
/* SCOP parameters. */
|
||
if (TREE_CODE (t) == SSA_NAME
|
||
&& !defined_in_sese_p (t, region))
|
||
return t;
|
||
|
||
if (TREE_CODE (t) != SSA_NAME
|
||
|| loop_in_sese_p (loop, region))
|
||
return instantiate_scev (before, loop,
|
||
analyze_scalar_evolution (loop, t));
|
||
|
||
def = SSA_NAME_DEF_STMT (t);
|
||
def_loop = loop_containing_stmt (def);
|
||
|
||
if (loop_in_sese_p (def_loop, region))
|
||
{
|
||
t = analyze_scalar_evolution (def_loop, t);
|
||
def_loop = superloop_at_depth (def_loop, loop_depth (loop) + 1);
|
||
t = compute_overall_effect_of_inner_loop (def_loop, t);
|
||
return t;
|
||
}
|
||
else
|
||
return instantiate_scev (before, loop, t);
|
||
}
|