8b19810222
PR fortran/29383 gcc/fortran/ * gfortran.h (gfc_simplify_ieee_selected_real_kind): New prototype. * libgfortran.h (GFC_FPE_*): Use simple integer values, valid in both C and Fortran. * expr.c (gfc_check_init_expr): Simplify IEEE_SELECTED_REAL_KIND. * simplify.c (gfc_simplify_ieee_selected_real_kind): New function. * module.c (mio_symbol): Keep track of symbols which came from intrinsic modules. (gfc_use_module): Keep track of the IEEE modules. * trans-decl.c (gfc_get_symbol_decl): Adjust code since we have new intrinsic modules. (gfc_build_builtin_function_decls): Build decls for ieee_procedure_entry and ieee_procedure_exit. (is_from_ieee_module, is_ieee_module_used, save_fp_state, restore_fp_state): New functions. (gfc_generate_function_code): Save and restore floating-point state on procedure entry/exit, when IEEE modules are used. * intrinsic.texi: Document the IEEE modules. libgfortran/ * configure.host: Add checks for IEEE support, rework priorities. * configure.ac: Define IEEE_SUPPORT, check for fpsetsticky and fpresetsticky. * configure: Regenerate. * Makefile.am: Build new ieee files, install IEEE_* modules. * Makefile.in: Regenerate. * gfortran.map (GFORTRAN_1.6): Add new symbols. * libgfortran.h (get_fpu_trap_exceptions, set_fpu_trap_exceptions, support_fpu_trap, set_fpu_except_flags, support_fpu_flag, support_fpu_rounding_mode, get_fpu_state, set_fpu_state): New prototypes. * config/fpu-*.h (get_fpu_trap_exceptions, set_fpu_trap_exceptions, support_fpu_trap, set_fpu_except_flags, support_fpu_flag, support_fpu_rounding_mode, get_fpu_state, set_fpu_state): New functions. * ieee/ieee_features.F90: New file. * ieee/ieee_exceptions.F90: New file. * ieee/ieee_arithmetic.F90: New file. * ieee/ieee_helper.c: New file. gcc/testsuite/ * lib/target-supports.exp (check_effective_target_fortran_ieee): New function. * gfortran.dg/ieee/ieee.exp: New file. * gfortran.dg/ieee/ieee_1.F90: New file. * gfortran.dg/ieee/ieee_2.f90: New file. * gfortran.dg/ieee/ieee_3.f90: New file. * gfortran.dg/ieee/ieee_4.f90: New file. * gfortran.dg/ieee/ieee_5.f90: New file. * gfortran.dg/ieee/ieee_6.f90: New file. * gfortran.dg/ieee/ieee_7.f90: New file. * gfortran.dg/ieee/ieee_rounding_1.f90: New file. From-SVN: r212102
408 lines
10 KiB
C
408 lines
10 KiB
C
/* Helper functions in C for IEEE modules
|
|
Copyright (C) 2013 Free Software Foundation, Inc.
|
|
Contributed by Francois-Xavier Coudert <fxcoudert@gcc.gnu.org>
|
|
|
|
This file is part of the GNU Fortran runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "libgfortran.h"
|
|
|
|
/* Prototypes. */
|
|
|
|
extern int ieee_class_helper_4 (GFC_REAL_4 *);
|
|
internal_proto(ieee_class_helper_4);
|
|
|
|
extern int ieee_class_helper_8 (GFC_REAL_8 *);
|
|
internal_proto(ieee_class_helper_8);
|
|
|
|
extern int ieee_is_finite_4_ (GFC_REAL_4 *);
|
|
export_proto(ieee_is_finite_4_);
|
|
|
|
extern int ieee_is_finite_8_ (GFC_REAL_8 *);
|
|
export_proto(ieee_is_finite_8_);
|
|
|
|
extern int ieee_is_nan_4_ (GFC_REAL_4 *);
|
|
export_proto(ieee_is_nan_4_);
|
|
|
|
extern int ieee_is_nan_8_ (GFC_REAL_8 *);
|
|
export_proto(ieee_is_nan_8_);
|
|
|
|
extern int ieee_is_negative_4_ (GFC_REAL_4 *);
|
|
export_proto(ieee_is_negative_4_);
|
|
|
|
extern int ieee_is_negative_8_ (GFC_REAL_8 *);
|
|
export_proto(ieee_is_negative_8_);
|
|
|
|
extern int ieee_is_normal_4_ (GFC_REAL_4 *);
|
|
export_proto(ieee_is_normal_4_);
|
|
|
|
extern int ieee_is_normal_8_ (GFC_REAL_8 *);
|
|
export_proto(ieee_is_normal_8_);
|
|
|
|
|
|
/* Enumeration of the possible floating-point types. These values
|
|
correspond to the hidden arguments of the IEEE_CLASS_TYPE
|
|
derived-type of IEEE_ARITHMETIC. */
|
|
|
|
enum { IEEE_OTHER_VALUE = 0, IEEE_SIGNALING_NAN, IEEE_QUIET_NAN,
|
|
IEEE_NEGATIVE_INF, IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_DENORMAL,
|
|
IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO, IEEE_POSITIVE_DENORMAL,
|
|
IEEE_POSITIVE_NORMAL, IEEE_POSITIVE_INF };
|
|
|
|
#define CLASSMACRO(TYPE) \
|
|
int ieee_class_helper_ ## TYPE (GFC_REAL_ ## TYPE *value) \
|
|
{ \
|
|
int res = __builtin_fpclassify (IEEE_QUIET_NAN, IEEE_POSITIVE_INF, \
|
|
IEEE_POSITIVE_NORMAL, \
|
|
IEEE_POSITIVE_DENORMAL, \
|
|
IEEE_POSITIVE_ZERO, *value); \
|
|
\
|
|
if (__builtin_signbit (*value)) \
|
|
{ \
|
|
if (res == IEEE_POSITIVE_NORMAL) \
|
|
return IEEE_NEGATIVE_NORMAL; \
|
|
else if (res == IEEE_POSITIVE_DENORMAL) \
|
|
return IEEE_NEGATIVE_DENORMAL; \
|
|
else if (res == IEEE_POSITIVE_ZERO) \
|
|
return IEEE_NEGATIVE_ZERO; \
|
|
else if (res == IEEE_POSITIVE_INF) \
|
|
return IEEE_NEGATIVE_INF; \
|
|
} \
|
|
\
|
|
if (res == IEEE_QUIET_NAN) \
|
|
{ \
|
|
/* TODO: Handle signaling NaNs */ \
|
|
return res; \
|
|
} \
|
|
\
|
|
return res; \
|
|
}
|
|
|
|
CLASSMACRO(4)
|
|
CLASSMACRO(8)
|
|
|
|
|
|
/* Testing functions. */
|
|
|
|
int ieee_is_finite_4_ (GFC_REAL_4 *val)
|
|
{
|
|
return __builtin_isfinite(*val) ? 1 : 0;
|
|
}
|
|
|
|
int ieee_is_finite_8_ (GFC_REAL_8 *val)
|
|
{
|
|
return __builtin_isfinite(*val) ? 1 : 0;
|
|
}
|
|
|
|
int ieee_is_nan_4_ (GFC_REAL_4 *val)
|
|
{
|
|
return __builtin_isnan(*val) ? 1 : 0;
|
|
}
|
|
|
|
int ieee_is_nan_8_ (GFC_REAL_8 *val)
|
|
{
|
|
return __builtin_isnan(*val) ? 1 : 0;
|
|
}
|
|
|
|
int ieee_is_negative_4_ (GFC_REAL_4 *val)
|
|
{
|
|
return (__builtin_signbit(*val) && !__builtin_isnan(*val)) ? 1 : 0;
|
|
}
|
|
|
|
int ieee_is_negative_8_ (GFC_REAL_8 *val)
|
|
{
|
|
return (__builtin_signbit(*val) && !__builtin_isnan(*val)) ? 1 : 0;
|
|
}
|
|
|
|
int ieee_is_normal_4_ (GFC_REAL_4 *val)
|
|
{
|
|
return (__builtin_isnormal(*val) || *val == 0) ? 1 : 0;
|
|
}
|
|
|
|
int ieee_is_normal_8_ (GFC_REAL_8 *val)
|
|
{
|
|
return (__builtin_isnormal(*val) || *val == 0) ? 1 : 0;
|
|
}
|
|
|
|
GFC_REAL_4 ieee_copy_sign_4_4_ (GFC_REAL_4 *, GFC_REAL_4 *);
|
|
export_proto(ieee_copy_sign_4_4_);
|
|
GFC_REAL_4 ieee_copy_sign_4_4_ (GFC_REAL_4 *x, GFC_REAL_4 *y)
|
|
{
|
|
GFC_REAL_4 s = __builtin_signbit(*y) ? -1 : 1;
|
|
return __builtin_copysign(*x, s);
|
|
}
|
|
|
|
GFC_REAL_4 ieee_copy_sign_4_8_ (GFC_REAL_4 *, GFC_REAL_8 *);
|
|
export_proto(ieee_copy_sign_4_8_);
|
|
GFC_REAL_4 ieee_copy_sign_4_8_ (GFC_REAL_4 *x, GFC_REAL_8 *y)
|
|
{
|
|
GFC_REAL_4 s = __builtin_signbit(*y) ? -1 : 1;
|
|
return __builtin_copysign(*x, s);
|
|
}
|
|
|
|
GFC_REAL_8 ieee_copy_sign_8_4_ (GFC_REAL_8 *, GFC_REAL_4 *);
|
|
export_proto(ieee_copy_sign_8_4_);
|
|
GFC_REAL_8 ieee_copy_sign_8_4_ (GFC_REAL_8 *x, GFC_REAL_4 *y)
|
|
{
|
|
GFC_REAL_8 s = __builtin_signbit(*y) ? -1 : 1;
|
|
return __builtin_copysign(*x, s);
|
|
}
|
|
|
|
GFC_REAL_8 ieee_copy_sign_8_8_ (GFC_REAL_8 *, GFC_REAL_8 *);
|
|
export_proto(ieee_copy_sign_8_8_);
|
|
GFC_REAL_8 ieee_copy_sign_8_8_ (GFC_REAL_8 *x, GFC_REAL_8 *y)
|
|
{
|
|
GFC_REAL_8 s = __builtin_signbit(*y) ? -1 : 1;
|
|
return __builtin_copysign(*x, s);
|
|
}
|
|
|
|
int ieee_unordered_4_4_ (GFC_REAL_4 *, GFC_REAL_4 *);
|
|
export_proto(ieee_unordered_4_4_);
|
|
int ieee_unordered_4_4_ (GFC_REAL_4 *x, GFC_REAL_4 *y)
|
|
{
|
|
return __builtin_isunordered(*x, *y);
|
|
}
|
|
|
|
int ieee_unordered_4_8_ (GFC_REAL_4 *, GFC_REAL_8 *);
|
|
export_proto(ieee_unordered_4_8_);
|
|
int ieee_unordered_4_8_ (GFC_REAL_4 *x, GFC_REAL_8 *y)
|
|
{
|
|
return __builtin_isunordered(*x, *y);
|
|
}
|
|
|
|
int ieee_unordered_8_4_ (GFC_REAL_8 *, GFC_REAL_4 *);
|
|
export_proto(ieee_unordered_8_4_);
|
|
int ieee_unordered_8_4_ (GFC_REAL_8 *x, GFC_REAL_4 *y)
|
|
{
|
|
return __builtin_isunordered(*x, *y);
|
|
}
|
|
|
|
int ieee_unordered_8_8_ (GFC_REAL_8 *, GFC_REAL_8 *);
|
|
export_proto(ieee_unordered_8_8_);
|
|
int ieee_unordered_8_8_ (GFC_REAL_8 *x, GFC_REAL_8 *y)
|
|
{
|
|
return __builtin_isunordered(*x, *y);
|
|
}
|
|
|
|
|
|
/* Arithmetic functions (LOGB, NEXT_AFTER, REM, RINT, SCALB). */
|
|
|
|
GFC_REAL_4 ieee_logb_4_ (GFC_REAL_4 *);
|
|
export_proto(ieee_logb_4_);
|
|
|
|
GFC_REAL_4 ieee_logb_4_ (GFC_REAL_4 *x)
|
|
{
|
|
GFC_REAL_4 res;
|
|
char buffer[GFC_FPE_STATE_BUFFER_SIZE];
|
|
|
|
get_fpu_state (buffer);
|
|
res = __builtin_logb (*x);
|
|
set_fpu_state (buffer);
|
|
return res;
|
|
}
|
|
|
|
GFC_REAL_8 ieee_logb_8_ (GFC_REAL_8 *);
|
|
export_proto(ieee_logb_8_);
|
|
|
|
GFC_REAL_8 ieee_logb_8_ (GFC_REAL_8 *x)
|
|
{
|
|
GFC_REAL_8 res;
|
|
char buffer[GFC_FPE_STATE_BUFFER_SIZE];
|
|
|
|
get_fpu_state (buffer);
|
|
res = __builtin_logb (*x);
|
|
set_fpu_state (buffer);
|
|
return res;
|
|
}
|
|
|
|
GFC_REAL_4 ieee_next_after_4_4_ (GFC_REAL_4 *, GFC_REAL_4 *);
|
|
export_proto(ieee_next_after_4_4_);
|
|
|
|
GFC_REAL_4 ieee_next_after_4_4_ (GFC_REAL_4 *x, GFC_REAL_4 *y)
|
|
{
|
|
return __builtin_nextafterf (*x, *y);
|
|
}
|
|
|
|
GFC_REAL_4 ieee_next_after_4_8_ (GFC_REAL_4 *, GFC_REAL_8 *);
|
|
export_proto(ieee_next_after_4_8_);
|
|
|
|
GFC_REAL_4 ieee_next_after_4_8_ (GFC_REAL_4 *x, GFC_REAL_8 *y)
|
|
{
|
|
return __builtin_nextafterf (*x, *y);
|
|
}
|
|
|
|
GFC_REAL_8 ieee_next_after_8_4_ (GFC_REAL_8 *, GFC_REAL_4 *);
|
|
export_proto(ieee_next_after_8_4_);
|
|
|
|
GFC_REAL_8 ieee_next_after_8_4_ (GFC_REAL_8 *x, GFC_REAL_4 *y)
|
|
{
|
|
return __builtin_nextafter (*x, *y);
|
|
}
|
|
|
|
GFC_REAL_8 ieee_next_after_8_8_ (GFC_REAL_8 *, GFC_REAL_8 *);
|
|
export_proto(ieee_next_after_8_8_);
|
|
|
|
GFC_REAL_8 ieee_next_after_8_8_ (GFC_REAL_8 *x, GFC_REAL_8 *y)
|
|
{
|
|
return __builtin_nextafter (*x, *y);
|
|
}
|
|
|
|
GFC_REAL_4 ieee_rem_4_4_ (GFC_REAL_4 *, GFC_REAL_4 *);
|
|
export_proto(ieee_rem_4_4_);
|
|
|
|
GFC_REAL_4 ieee_rem_4_4_ (GFC_REAL_4 *x, GFC_REAL_4 *y)
|
|
{
|
|
GFC_REAL_4 res;
|
|
char buffer[GFC_FPE_STATE_BUFFER_SIZE];
|
|
|
|
get_fpu_state (buffer);
|
|
res = __builtin_remainderf (*x, *y);
|
|
set_fpu_state (buffer);
|
|
return res;
|
|
}
|
|
|
|
GFC_REAL_8 ieee_rem_4_8_ (GFC_REAL_4 *, GFC_REAL_8 *);
|
|
export_proto(ieee_rem_4_8_);
|
|
|
|
GFC_REAL_8 ieee_rem_4_8_ (GFC_REAL_4 *x, GFC_REAL_8 *y)
|
|
{
|
|
GFC_REAL_8 res;
|
|
char buffer[GFC_FPE_STATE_BUFFER_SIZE];
|
|
|
|
get_fpu_state (buffer);
|
|
res = __builtin_remainder (*x, *y);
|
|
set_fpu_state (buffer);
|
|
return res;
|
|
}
|
|
|
|
GFC_REAL_8 ieee_rem_8_4_ (GFC_REAL_8 *, GFC_REAL_4 *);
|
|
export_proto(ieee_rem_8_4_);
|
|
|
|
GFC_REAL_8 ieee_rem_8_4_ (GFC_REAL_8 *x, GFC_REAL_4 *y)
|
|
{
|
|
GFC_REAL_8 res;
|
|
char buffer[GFC_FPE_STATE_BUFFER_SIZE];
|
|
|
|
get_fpu_state (buffer);
|
|
res = __builtin_remainder (*x, *y);
|
|
set_fpu_state (buffer);
|
|
return res;
|
|
}
|
|
|
|
GFC_REAL_8 ieee_rem_8_8_ (GFC_REAL_8 *, GFC_REAL_8 *);
|
|
export_proto(ieee_rem_8_8_);
|
|
|
|
GFC_REAL_8 ieee_rem_8_8_ (GFC_REAL_8 *x, GFC_REAL_8 *y)
|
|
{
|
|
GFC_REAL_8 res;
|
|
char buffer[GFC_FPE_STATE_BUFFER_SIZE];
|
|
|
|
get_fpu_state (buffer);
|
|
res = __builtin_remainder (*x, *y);
|
|
set_fpu_state (buffer);
|
|
return res;
|
|
}
|
|
|
|
GFC_REAL_4 ieee_rint_4_ (GFC_REAL_4 *);
|
|
export_proto(ieee_rint_4_);
|
|
|
|
GFC_REAL_4 ieee_rint_4_ (GFC_REAL_4 *x)
|
|
{
|
|
GFC_REAL_4 res;
|
|
char buffer[GFC_FPE_STATE_BUFFER_SIZE];
|
|
|
|
get_fpu_state (buffer);
|
|
res = __builtin_rint (*x);
|
|
set_fpu_state (buffer);
|
|
return res;
|
|
}
|
|
|
|
GFC_REAL_8 ieee_rint_8_ (GFC_REAL_8 *);
|
|
export_proto(ieee_rint_8_);
|
|
|
|
GFC_REAL_8 ieee_rint_8_ (GFC_REAL_8 *x)
|
|
{
|
|
GFC_REAL_8 res;
|
|
char buffer[GFC_FPE_STATE_BUFFER_SIZE];
|
|
|
|
get_fpu_state (buffer);
|
|
res = __builtin_rint (*x);
|
|
set_fpu_state (buffer);
|
|
return res;
|
|
}
|
|
|
|
GFC_REAL_4 ieee_scalb_4_ (GFC_REAL_4 *, int *);
|
|
export_proto(ieee_scalb_4_);
|
|
|
|
GFC_REAL_4 ieee_scalb_4_ (GFC_REAL_4 *x, int *i)
|
|
{
|
|
return __builtin_scalbnf (*x, *i);
|
|
}
|
|
|
|
GFC_REAL_8 ieee_scalb_8_ (GFC_REAL_8 *, int *);
|
|
export_proto(ieee_scalb_8_);
|
|
|
|
GFC_REAL_8 ieee_scalb_8_ (GFC_REAL_8 *x, int *i)
|
|
{
|
|
return __builtin_scalbn (*x, *i);
|
|
}
|
|
|
|
|
|
#define GFC_FPE_ALL (GFC_FPE_INVALID | GFC_FPE_DENORMAL | \
|
|
GFC_FPE_ZERO | GFC_FPE_OVERFLOW | \
|
|
GFC_FPE_UNDERFLOW | GFC_FPE_INEXACT)
|
|
|
|
/* Functions to save and restore floating-point state, clear and restore
|
|
exceptions on procedure entry/exit. The rules we follow are set
|
|
in Fortran 2008's 14.3 paragraph 3, note 14.4, 14.4 paragraph 4,
|
|
14.5 paragraph 2, and 14.6 paragraph 1. */
|
|
|
|
void ieee_procedure_entry (void *);
|
|
export_proto(ieee_procedure_entry);
|
|
|
|
void
|
|
ieee_procedure_entry (void *state)
|
|
{
|
|
/* Save the floating-point state in the space provided by the caller. */
|
|
get_fpu_state (state);
|
|
|
|
/* Clear the floating-point exceptions. */
|
|
set_fpu_except_flags (0, GFC_FPE_ALL);
|
|
}
|
|
|
|
|
|
void ieee_procedure_exit (void *);
|
|
export_proto(ieee_procedure_exit);
|
|
|
|
void
|
|
ieee_procedure_exit (void *state)
|
|
{
|
|
/* Get the flags currently signaling. */
|
|
int flags = get_fpu_except_flags ();
|
|
|
|
/* Restore the floating-point state we had on entry. */
|
|
set_fpu_state (state);
|
|
|
|
/* And re-raised the flags that were raised since entry. */
|
|
set_fpu_except_flags (flags, 0);
|
|
}
|
|
|