gcc/libgo/go/reflect/value.go
Clément Chigot 72b3833822 reflect: ensure uniqueness of type descriptors on AIX.
On AIX, duplication of type descriptors can occur if one is
declared in the libgo and one in the Go program being compiled.
The AIX linker isn't able to merge them together as Linux one does.
One solution is to always load libgo first but that needs a huge mechanism in
gcc core. Thus, this patch ensures that the duplication isn't visible
for the end user.

In reflect and internal/reflectlite, the comparison of rtypes is made on their
name and not only on their addresses.

In reflect, toType() function is using a canonicalization map to force rtypes
having the same rtype.String() to return the same Type. This can't be made in
internal/reflectlite as it needs sync package. But, for now, it doesn't matter
as internal/reflectlite is not widely used.

Fixes golang/go#39276

Reviewed-on: https://go-review.googlesource.com/c/gofrontend/+/260158
2020-10-13 17:54:37 -07:00

2606 lines
73 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflect
import (
"internal/unsafeheader"
"math"
"runtime"
"unsafe"
)
const ptrSize = 4 << (^uintptr(0) >> 63) // unsafe.Sizeof(uintptr(0)) but an ideal const
// Value is the reflection interface to a Go value.
//
// Not all methods apply to all kinds of values. Restrictions,
// if any, are noted in the documentation for each method.
// Use the Kind method to find out the kind of value before
// calling kind-specific methods. Calling a method
// inappropriate to the kind of type causes a run time panic.
//
// The zero Value represents no value.
// Its IsValid method returns false, its Kind method returns Invalid,
// its String method returns "<invalid Value>", and all other methods panic.
// Most functions and methods never return an invalid value.
// If one does, its documentation states the conditions explicitly.
//
// A Value can be used concurrently by multiple goroutines provided that
// the underlying Go value can be used concurrently for the equivalent
// direct operations.
//
// To compare two Values, compare the results of the Interface method.
// Using == on two Values does not compare the underlying values
// they represent.
type Value struct {
// typ holds the type of the value represented by a Value.
typ *rtype
// Pointer-valued data or, if flagIndir is set, pointer to data.
// Valid when either flagIndir is set or typ.pointers() is true.
ptr unsafe.Pointer
// flag holds metadata about the value.
// The lowest bits are flag bits:
// - flagStickyRO: obtained via unexported not embedded field, so read-only
// - flagEmbedRO: obtained via unexported embedded field, so read-only
// - flagIndir: val holds a pointer to the data
// - flagAddr: v.CanAddr is true (implies flagIndir)
// - flagMethod: v is a method value.
// The next five bits give the Kind of the value.
// This repeats typ.Kind() except for method values.
// The remaining 23+ bits give a method number for method values.
// If flag.kind() != Func, code can assume that flagMethod is unset.
// If ifaceIndir(typ), code can assume that flagIndir is set.
flag
// A method value represents a curried method invocation
// like r.Read for some receiver r. The typ+val+flag bits describe
// the receiver r, but the flag's Kind bits say Func (methods are
// functions), and the top bits of the flag give the method number
// in r's type's method table.
}
type flag uintptr
const (
flagKindWidth = 5 // there are 27 kinds
flagKindMask flag = 1<<flagKindWidth - 1
flagStickyRO flag = 1 << 5
flagEmbedRO flag = 1 << 6
flagIndir flag = 1 << 7
flagAddr flag = 1 << 8
flagMethod flag = 1 << 9
flagMethodFn flag = 1 << 10 // gccgo: first fn parameter is always pointer
flagMethodShift = 11
flagRO flag = flagStickyRO | flagEmbedRO
)
func (f flag) kind() Kind {
return Kind(f & flagKindMask)
}
func (f flag) ro() flag {
if f&flagRO != 0 {
return flagStickyRO
}
return 0
}
// pointer returns the underlying pointer represented by v.
// v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer
func (v Value) pointer() unsafe.Pointer {
if v.typ.size != ptrSize || !v.typ.pointers() {
panic("can't call pointer on a non-pointer Value")
}
if v.flag&flagIndir != 0 {
return *(*unsafe.Pointer)(v.ptr)
}
return v.ptr
}
// packEface converts v to the empty interface.
func packEface(v Value) interface{} {
t := v.typ
var i interface{}
e := (*emptyInterface)(unsafe.Pointer(&i))
// First, fill in the data portion of the interface.
switch {
case ifaceIndir(t):
if v.flag&flagIndir == 0 {
panic("bad indir")
}
// Value is indirect, and so is the interface we're making.
ptr := v.ptr
if v.flag&flagAddr != 0 {
// TODO: pass safe boolean from valueInterface so
// we don't need to copy if safe==true?
c := unsafe_New(t)
typedmemmove(t, c, ptr)
ptr = c
}
e.word = ptr
case v.flag&flagIndir != 0:
// Value is indirect, but interface is direct. We need
// to load the data at v.ptr into the interface data word.
e.word = *(*unsafe.Pointer)(v.ptr)
default:
// Value is direct, and so is the interface.
e.word = v.ptr
}
// Now, fill in the type portion. We're very careful here not
// to have any operation between the e.word and e.typ assignments
// that would let the garbage collector observe the partially-built
// interface value.
e.typ = t
return i
}
// unpackEface converts the empty interface i to a Value.
func unpackEface(i interface{}) Value {
e := (*emptyInterface)(unsafe.Pointer(&i))
// NOTE: don't read e.word until we know whether it is really a pointer or not.
t := e.typ
if t == nil {
return Value{}
}
f := flag(t.Kind())
if ifaceIndir(t) {
f |= flagIndir
}
return Value{t, e.word, f}
}
// A ValueError occurs when a Value method is invoked on
// a Value that does not support it. Such cases are documented
// in the description of each method.
type ValueError struct {
Method string
Kind Kind
}
func (e *ValueError) Error() string {
if e.Kind == 0 {
return "reflect: call of " + e.Method + " on zero Value"
}
return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
}
// methodName returns the name of the calling method,
// assumed to be two stack frames above.
func methodName() string {
pc, _, _, _ := runtime.Caller(2)
f := runtime.FuncForPC(pc)
if f == nil {
return "unknown method"
}
return f.Name()
}
// methodNameSkip is like methodName, but skips another stack frame.
// This is a separate function so that reflect.flag.mustBe will be inlined.
func methodNameSkip() string {
pc, _, _, _ := runtime.Caller(3)
f := runtime.FuncForPC(pc)
if f == nil {
return "unknown method"
}
return f.Name()
}
// emptyInterface is the header for an interface{} value.
type emptyInterface struct {
typ *rtype
word unsafe.Pointer
}
// nonEmptyInterface is the header for an interface value with methods.
type nonEmptyInterface struct {
// see ../runtime/iface.go:/Itab
itab *struct {
typ *rtype // dynamic concrete type
fun [100000]unsafe.Pointer // method table
}
word unsafe.Pointer
}
// mustBe panics if f's kind is not expected.
// Making this a method on flag instead of on Value
// (and embedding flag in Value) means that we can write
// the very clear v.mustBe(Bool) and have it compile into
// v.flag.mustBe(Bool), which will only bother to copy the
// single important word for the receiver.
func (f flag) mustBe(expected Kind) {
// TODO(mvdan): use f.kind() again once mid-stack inlining gets better
if Kind(f&flagKindMask) != expected {
panic(&ValueError{methodName(), f.kind()})
}
}
// mustBeExported panics if f records that the value was obtained using
// an unexported field.
func (f flag) mustBeExported() {
if f == 0 || f&flagRO != 0 {
f.mustBeExportedSlow()
}
}
func (f flag) mustBeExportedSlow() {
if f == 0 {
panic(&ValueError{methodNameSkip(), Invalid})
}
if f&flagRO != 0 {
panic("reflect: " + methodNameSkip() + " using value obtained using unexported field")
}
}
// mustBeAssignable panics if f records that the value is not assignable,
// which is to say that either it was obtained using an unexported field
// or it is not addressable.
func (f flag) mustBeAssignable() {
if f&flagRO != 0 || f&flagAddr == 0 {
f.mustBeAssignableSlow()
}
}
func (f flag) mustBeAssignableSlow() {
if f == 0 {
panic(&ValueError{methodNameSkip(), Invalid})
}
// Assignable if addressable and not read-only.
if f&flagRO != 0 {
panic("reflect: " + methodNameSkip() + " using value obtained using unexported field")
}
if f&flagAddr == 0 {
panic("reflect: " + methodNameSkip() + " using unaddressable value")
}
}
// Addr returns a pointer value representing the address of v.
// It panics if CanAddr() returns false.
// Addr is typically used to obtain a pointer to a struct field
// or slice element in order to call a method that requires a
// pointer receiver.
func (v Value) Addr() Value {
if v.flag&flagAddr == 0 {
panic("reflect.Value.Addr of unaddressable value")
}
// Preserve flagRO instead of using v.flag.ro() so that
// v.Addr().Elem() is equivalent to v (#32772)
fl := v.flag & flagRO
return Value{v.typ.ptrTo(), v.ptr, fl | flag(Ptr)}
}
// Bool returns v's underlying value.
// It panics if v's kind is not Bool.
func (v Value) Bool() bool {
v.mustBe(Bool)
return *(*bool)(v.ptr)
}
// Bytes returns v's underlying value.
// It panics if v's underlying value is not a slice of bytes.
func (v Value) Bytes() []byte {
v.mustBe(Slice)
if v.typ.Elem().Kind() != Uint8 {
panic("reflect.Value.Bytes of non-byte slice")
}
// Slice is always bigger than a word; assume flagIndir.
return *(*[]byte)(v.ptr)
}
// runes returns v's underlying value.
// It panics if v's underlying value is not a slice of runes (int32s).
func (v Value) runes() []rune {
v.mustBe(Slice)
if v.typ.Elem().Kind() != Int32 {
panic("reflect.Value.Bytes of non-rune slice")
}
// Slice is always bigger than a word; assume flagIndir.
return *(*[]rune)(v.ptr)
}
// CanAddr reports whether the value's address can be obtained with Addr.
// Such values are called addressable. A value is addressable if it is
// an element of a slice, an element of an addressable array,
// a field of an addressable struct, or the result of dereferencing a pointer.
// If CanAddr returns false, calling Addr will panic.
func (v Value) CanAddr() bool {
return v.flag&flagAddr != 0
}
// CanSet reports whether the value of v can be changed.
// A Value can be changed only if it is addressable and was not
// obtained by the use of unexported struct fields.
// If CanSet returns false, calling Set or any type-specific
// setter (e.g., SetBool, SetInt) will panic.
func (v Value) CanSet() bool {
return v.flag&(flagAddr|flagRO) == flagAddr
}
// Call calls the function v with the input arguments in.
// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
// Call panics if v's Kind is not Func.
// It returns the output results as Values.
// As in Go, each input argument must be assignable to the
// type of the function's corresponding input parameter.
// If v is a variadic function, Call creates the variadic slice parameter
// itself, copying in the corresponding values.
func (v Value) Call(in []Value) []Value {
v.mustBe(Func)
v.mustBeExported()
return v.call("Call", in)
}
// CallSlice calls the variadic function v with the input arguments in,
// assigning the slice in[len(in)-1] to v's final variadic argument.
// For example, if len(in) == 3, v.CallSlice(in) represents the Go call v(in[0], in[1], in[2]...).
// CallSlice panics if v's Kind is not Func or if v is not variadic.
// It returns the output results as Values.
// As in Go, each input argument must be assignable to the
// type of the function's corresponding input parameter.
func (v Value) CallSlice(in []Value) []Value {
v.mustBe(Func)
v.mustBeExported()
return v.call("CallSlice", in)
}
var callGC bool // for testing; see TestCallMethodJump
func (v Value) call(op string, in []Value) []Value {
// Get function pointer, type.
t := (*funcType)(unsafe.Pointer(v.typ))
var (
fn unsafe.Pointer
rcvr Value
)
if v.flag&flagMethod != 0 {
rcvr = v
_, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
} else if v.flag&flagIndir != 0 {
fn = *(*unsafe.Pointer)(v.ptr)
} else {
fn = v.ptr
}
if fn == nil {
panic("reflect.Value.Call: call of nil function")
}
isSlice := op == "CallSlice"
n := t.NumIn()
if isSlice {
if !t.IsVariadic() {
panic("reflect: CallSlice of non-variadic function")
}
if len(in) < n {
panic("reflect: CallSlice with too few input arguments")
}
if len(in) > n {
panic("reflect: CallSlice with too many input arguments")
}
} else {
if t.IsVariadic() {
n--
}
if len(in) < n {
panic("reflect: Call with too few input arguments")
}
if !t.IsVariadic() && len(in) > n {
panic("reflect: Call with too many input arguments")
}
}
for _, x := range in {
if x.Kind() == Invalid {
panic("reflect: " + op + " using zero Value argument")
}
}
for i := 0; i < n; i++ {
if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String())
}
}
if !isSlice && t.IsVariadic() {
// prepare slice for remaining values
m := len(in) - n
slice := MakeSlice(t.In(n), m, m)
elem := t.In(n).Elem()
for i := 0; i < m; i++ {
x := in[n+i]
if xt := x.Type(); !xt.AssignableTo(elem) {
panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
}
slice.Index(i).Set(x)
}
origIn := in
in = make([]Value, n+1)
copy(in[:n], origIn)
in[n] = slice
}
nin := len(in)
if nin != t.NumIn() {
panic("reflect.Value.Call: wrong argument count")
}
nout := t.NumOut()
if v.flag&flagMethod != 0 {
nin++
}
firstPointer := len(in) > 0 && ifaceIndir(t.In(0).common()) && v.flag&flagMethodFn != 0
params := make([]unsafe.Pointer, nin)
off := 0
if v.flag&flagMethod != 0 {
// Hard-wired first argument.
p := new(unsafe.Pointer)
if rcvr.typ.Kind() == Interface {
*p = unsafe.Pointer((*nonEmptyInterface)(v.ptr).word)
} else if rcvr.typ.Kind() == Ptr || rcvr.typ.Kind() == UnsafePointer {
*p = rcvr.pointer()
} else {
*p = rcvr.ptr
}
params[0] = unsafe.Pointer(p)
off = 1
}
for i, pv := range in {
pv.mustBeExported()
targ := t.In(i).(*rtype)
pv = pv.assignTo("reflect.Value.Call", targ, nil)
if pv.flag&flagIndir == 0 {
p := new(unsafe.Pointer)
*p = pv.ptr
params[off] = unsafe.Pointer(p)
} else {
params[off] = pv.ptr
}
if i == 0 && firstPointer {
p := new(unsafe.Pointer)
*p = params[off]
params[off] = unsafe.Pointer(p)
}
off++
}
ret := make([]Value, nout)
results := make([]unsafe.Pointer, nout)
for i := 0; i < nout; i++ {
tv := t.Out(i)
v := New(tv)
results[i] = v.pointer()
fl := flagIndir | flag(tv.Kind())
ret[i] = Value{tv.common(), v.pointer(), fl}
}
var pp *unsafe.Pointer
if len(params) > 0 {
pp = &params[0]
}
var pr *unsafe.Pointer
if len(results) > 0 {
pr = &results[0]
}
call(t, fn, v.flag&flagMethod != 0, firstPointer, pp, pr)
// For testing; see TestCallMethodJump.
if callGC {
runtime.GC()
}
return ret
}
// methodReceiver returns information about the receiver
// described by v. The Value v may or may not have the
// flagMethod bit set, so the kind cached in v.flag should
// not be used.
// The return value rcvrtype gives the method's actual receiver type.
// The return value t gives the method type signature (without the receiver).
// The return value fn is a pointer to the method code.
func methodReceiver(op string, v Value, methodIndex int) (rcvrtype *rtype, t *funcType, fn unsafe.Pointer) {
i := methodIndex
if v.typ.Kind() == Interface {
tt := (*interfaceType)(unsafe.Pointer(v.typ))
if uint(i) >= uint(len(tt.methods)) {
panic("reflect: internal error: invalid method index")
}
m := &tt.methods[i]
if m.pkgPath != nil {
panic("reflect: " + op + " of unexported method")
}
iface := (*nonEmptyInterface)(v.ptr)
if iface.itab == nil {
panic("reflect: " + op + " of method on nil interface value")
}
rcvrtype = iface.itab.typ
fn = unsafe.Pointer(&iface.itab.fun[i])
t = (*funcType)(unsafe.Pointer(m.typ))
} else {
rcvrtype = v.typ
ms := v.typ.exportedMethods()
if uint(i) >= uint(len(ms)) {
panic("reflect: internal error: invalid method index")
}
m := ms[i]
if m.pkgPath != nil {
panic("reflect: " + op + " of unexported method")
}
fn = unsafe.Pointer(&m.tfn)
t = (*funcType)(unsafe.Pointer(m.mtyp))
}
return
}
// v is a method receiver. Store at p the word which is used to
// encode that receiver at the start of the argument list.
// Reflect uses the "interface" calling convention for
// methods, which always uses one word to record the receiver.
func storeRcvr(v Value, p unsafe.Pointer) {
t := v.typ
if t.Kind() == Interface {
// the interface data word becomes the receiver word
iface := (*nonEmptyInterface)(v.ptr)
*(*unsafe.Pointer)(p) = iface.word
} else if v.flag&flagIndir != 0 && !ifaceIndir(t) {
*(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr)
} else {
*(*unsafe.Pointer)(p) = v.ptr
}
}
// align returns the result of rounding x up to a multiple of n.
// n must be a power of two.
func align(x, n uintptr) uintptr {
return (x + n - 1) &^ (n - 1)
}
// funcName returns the name of f, for use in error messages.
func funcName(f func([]Value) []Value) string {
pc := *(*uintptr)(unsafe.Pointer(&f))
rf := runtime.FuncForPC(pc)
if rf != nil {
return rf.Name()
}
return "closure"
}
// Cap returns v's capacity.
// It panics if v's Kind is not Array, Chan, or Slice.
func (v Value) Cap() int {
k := v.kind()
switch k {
case Array:
return v.typ.Len()
case Chan:
return chancap(v.pointer())
case Slice:
// Slice is always bigger than a word; assume flagIndir.
return (*unsafeheader.Slice)(v.ptr).Cap
}
panic(&ValueError{"reflect.Value.Cap", v.kind()})
}
// Close closes the channel v.
// It panics if v's Kind is not Chan.
func (v Value) Close() {
v.mustBe(Chan)
v.mustBeExported()
chanclose(v.pointer())
}
// Complex returns v's underlying value, as a complex128.
// It panics if v's Kind is not Complex64 or Complex128
func (v Value) Complex() complex128 {
k := v.kind()
switch k {
case Complex64:
return complex128(*(*complex64)(v.ptr))
case Complex128:
return *(*complex128)(v.ptr)
}
panic(&ValueError{"reflect.Value.Complex", v.kind()})
}
// Elem returns the value that the interface v contains
// or that the pointer v points to.
// It panics if v's Kind is not Interface or Ptr.
// It returns the zero Value if v is nil.
func (v Value) Elem() Value {
k := v.kind()
switch k {
case Interface:
var eface interface{}
if v.typ.NumMethod() == 0 {
eface = *(*interface{})(v.ptr)
} else {
eface = (interface{})(*(*interface {
M()
})(v.ptr))
}
x := unpackEface(eface)
if x.flag != 0 {
x.flag |= v.flag.ro()
}
return x
case Ptr:
ptr := v.ptr
if v.flag&flagIndir != 0 {
ptr = *(*unsafe.Pointer)(ptr)
}
// The returned value's address is v's value.
if ptr == nil {
return Value{}
}
tt := (*ptrType)(unsafe.Pointer(v.typ))
typ := tt.elem
fl := v.flag&flagRO | flagIndir | flagAddr
fl |= flag(typ.Kind())
return Value{typ, ptr, fl}
}
panic(&ValueError{"reflect.Value.Elem", v.kind()})
}
// Field returns the i'th field of the struct v.
// It panics if v's Kind is not Struct or i is out of range.
func (v Value) Field(i int) Value {
if v.kind() != Struct {
panic(&ValueError{"reflect.Value.Field", v.kind()})
}
tt := (*structType)(unsafe.Pointer(v.typ))
if uint(i) >= uint(len(tt.fields)) {
panic("reflect: Field index out of range")
}
field := &tt.fields[i]
typ := field.typ
// Inherit permission bits from v, but clear flagEmbedRO.
fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind())
// Using an unexported field forces flagRO.
if field.pkgPath != nil {
if field.embedded() {
fl |= flagEmbedRO
} else {
fl |= flagStickyRO
}
}
// Either flagIndir is set and v.ptr points at struct,
// or flagIndir is not set and v.ptr is the actual struct data.
// In the former case, we want v.ptr + offset.
// In the latter case, we must have field.offset = 0,
// so v.ptr + field.offset is still the correct address.
ptr := add(v.ptr, field.offset(), "same as non-reflect &v.field")
return Value{typ, ptr, fl}
}
// FieldByIndex returns the nested field corresponding to index.
// It panics if v's Kind is not struct.
func (v Value) FieldByIndex(index []int) Value {
if len(index) == 1 {
return v.Field(index[0])
}
v.mustBe(Struct)
for i, x := range index {
if i > 0 {
if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct {
if v.IsNil() {
panic("reflect: indirection through nil pointer to embedded struct")
}
v = v.Elem()
}
}
v = v.Field(x)
}
return v
}
// FieldByName returns the struct field with the given name.
// It returns the zero Value if no field was found.
// It panics if v's Kind is not struct.
func (v Value) FieldByName(name string) Value {
v.mustBe(Struct)
if f, ok := v.typ.FieldByName(name); ok {
return v.FieldByIndex(f.Index)
}
return Value{}
}
// FieldByNameFunc returns the struct field with a name
// that satisfies the match function.
// It panics if v's Kind is not struct.
// It returns the zero Value if no field was found.
func (v Value) FieldByNameFunc(match func(string) bool) Value {
if f, ok := v.typ.FieldByNameFunc(match); ok {
return v.FieldByIndex(f.Index)
}
return Value{}
}
// Float returns v's underlying value, as a float64.
// It panics if v's Kind is not Float32 or Float64
func (v Value) Float() float64 {
k := v.kind()
switch k {
case Float32:
return float64(*(*float32)(v.ptr))
case Float64:
return *(*float64)(v.ptr)
}
panic(&ValueError{"reflect.Value.Float", v.kind()})
}
var uint8Type = TypeOf(uint8(0)).(*rtype)
// Index returns v's i'th element.
// It panics if v's Kind is not Array, Slice, or String or i is out of range.
func (v Value) Index(i int) Value {
switch v.kind() {
case Array:
tt := (*arrayType)(unsafe.Pointer(v.typ))
if uint(i) >= uint(tt.len) {
panic("reflect: array index out of range")
}
typ := tt.elem
offset := uintptr(i) * typ.size
// Either flagIndir is set and v.ptr points at array,
// or flagIndir is not set and v.ptr is the actual array data.
// In the former case, we want v.ptr + offset.
// In the latter case, we must be doing Index(0), so offset = 0,
// so v.ptr + offset is still the correct address.
val := add(v.ptr, offset, "same as &v[i], i < tt.len")
fl := v.flag&(flagIndir|flagAddr) | v.flag.ro() | flag(typ.Kind()) // bits same as overall array
return Value{typ, val, fl}
case Slice:
// Element flag same as Elem of Ptr.
// Addressable, indirect, possibly read-only.
s := (*unsafeheader.Slice)(v.ptr)
if uint(i) >= uint(s.Len) {
panic("reflect: slice index out of range")
}
tt := (*sliceType)(unsafe.Pointer(v.typ))
typ := tt.elem
val := arrayAt(s.Data, i, typ.size, "i < s.Len")
fl := flagAddr | flagIndir | v.flag.ro() | flag(typ.Kind())
return Value{typ, val, fl}
case String:
s := (*unsafeheader.String)(v.ptr)
if uint(i) >= uint(s.Len) {
panic("reflect: string index out of range")
}
p := arrayAt(s.Data, i, 1, "i < s.Len")
fl := v.flag.ro() | flag(Uint8) | flagIndir
return Value{uint8Type, p, fl}
}
panic(&ValueError{"reflect.Value.Index", v.kind()})
}
// Int returns v's underlying value, as an int64.
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
func (v Value) Int() int64 {
k := v.kind()
p := v.ptr
switch k {
case Int:
return int64(*(*int)(p))
case Int8:
return int64(*(*int8)(p))
case Int16:
return int64(*(*int16)(p))
case Int32:
return int64(*(*int32)(p))
case Int64:
return *(*int64)(p)
}
panic(&ValueError{"reflect.Value.Int", v.kind()})
}
// CanInterface reports whether Interface can be used without panicking.
func (v Value) CanInterface() bool {
if v.flag == 0 {
panic(&ValueError{"reflect.Value.CanInterface", Invalid})
}
return v.flag&flagRO == 0
}
// Interface returns v's current value as an interface{}.
// It is equivalent to:
// var i interface{} = (v's underlying value)
// It panics if the Value was obtained by accessing
// unexported struct fields.
func (v Value) Interface() (i interface{}) {
return valueInterface(v, true)
}
func valueInterface(v Value, safe bool) interface{} {
if v.flag == 0 {
panic(&ValueError{"reflect.Value.Interface", Invalid})
}
if safe && v.flag&flagRO != 0 {
// Do not allow access to unexported values via Interface,
// because they might be pointers that should not be
// writable or methods or function that should not be callable.
panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
}
if v.flag&flagMethod != 0 {
v = makeMethodValue("Interface", v)
}
if v.flag&flagMethodFn != 0 {
if v.typ.Kind() != Func {
panic("reflect: MethodFn of non-Func")
}
ft := (*funcType)(unsafe.Pointer(v.typ))
if ft.in[0].Kind() != Ptr {
v = makeValueMethod(v)
}
}
if v.kind() == Interface {
// Special case: return the element inside the interface.
// Empty interface has one layout, all interfaces with
// methods have a second layout.
if v.NumMethod() == 0 {
return *(*interface{})(v.ptr)
}
return *(*interface {
M()
})(v.ptr)
}
// TODO: pass safe to packEface so we don't need to copy if safe==true?
return packEface(v)
}
// InterfaceData returns the interface v's value as a uintptr pair.
// It panics if v's Kind is not Interface.
func (v Value) InterfaceData() [2]uintptr {
// TODO: deprecate this
v.mustBe(Interface)
// We treat this as a read operation, so we allow
// it even for unexported data, because the caller
// has to import "unsafe" to turn it into something
// that can be abused.
// Interface value is always bigger than a word; assume flagIndir.
return *(*[2]uintptr)(v.ptr)
}
// IsNil reports whether its argument v is nil. The argument must be
// a chan, func, interface, map, pointer, or slice value; if it is
// not, IsNil panics. Note that IsNil is not always equivalent to a
// regular comparison with nil in Go. For example, if v was created
// by calling ValueOf with an uninitialized interface variable i,
// i==nil will be true but v.IsNil will panic as v will be the zero
// Value.
func (v Value) IsNil() bool {
k := v.kind()
switch k {
case Chan, Func, Map, Ptr, UnsafePointer:
if v.flag&flagMethod != 0 {
return false
}
ptr := v.ptr
if v.flag&flagIndir != 0 {
ptr = *(*unsafe.Pointer)(ptr)
}
return ptr == nil
case Interface, Slice:
// Both interface and slice are nil if first word is 0.
// Both are always bigger than a word; assume flagIndir.
return *(*unsafe.Pointer)(v.ptr) == nil
}
panic(&ValueError{"reflect.Value.IsNil", v.kind()})
}
// IsValid reports whether v represents a value.
// It returns false if v is the zero Value.
// If IsValid returns false, all other methods except String panic.
// Most functions and methods never return an invalid Value.
// If one does, its documentation states the conditions explicitly.
func (v Value) IsValid() bool {
return v.flag != 0
}
// IsZero reports whether v is the zero value for its type.
// It panics if the argument is invalid.
func (v Value) IsZero() bool {
switch v.kind() {
case Bool:
return !v.Bool()
case Int, Int8, Int16, Int32, Int64:
return v.Int() == 0
case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
return v.Uint() == 0
case Float32, Float64:
return math.Float64bits(v.Float()) == 0
case Complex64, Complex128:
c := v.Complex()
return math.Float64bits(real(c)) == 0 && math.Float64bits(imag(c)) == 0
case Array:
for i := 0; i < v.Len(); i++ {
if !v.Index(i).IsZero() {
return false
}
}
return true
case Chan, Func, Interface, Map, Ptr, Slice, UnsafePointer:
return v.IsNil()
case String:
return v.Len() == 0
case Struct:
for i := 0; i < v.NumField(); i++ {
if !v.Field(i).IsZero() {
return false
}
}
return true
default:
// This should never happens, but will act as a safeguard for
// later, as a default value doesn't makes sense here.
panic(&ValueError{"reflect.Value.IsZero", v.Kind()})
}
}
// Kind returns v's Kind.
// If v is the zero Value (IsValid returns false), Kind returns Invalid.
func (v Value) Kind() Kind {
return v.kind()
}
// Len returns v's length.
// It panics if v's Kind is not Array, Chan, Map, Slice, or String.
func (v Value) Len() int {
k := v.kind()
switch k {
case Array:
tt := (*arrayType)(unsafe.Pointer(v.typ))
return int(tt.len)
case Chan:
return chanlen(v.pointer())
case Map:
return maplen(v.pointer())
case Slice:
// Slice is bigger than a word; assume flagIndir.
return (*unsafeheader.Slice)(v.ptr).Len
case String:
// String is bigger than a word; assume flagIndir.
return (*unsafeheader.String)(v.ptr).Len
}
panic(&ValueError{"reflect.Value.Len", v.kind()})
}
// MapIndex returns the value associated with key in the map v.
// It panics if v's Kind is not Map.
// It returns the zero Value if key is not found in the map or if v represents a nil map.
// As in Go, the key's value must be assignable to the map's key type.
func (v Value) MapIndex(key Value) Value {
v.mustBe(Map)
tt := (*mapType)(unsafe.Pointer(v.typ))
// Do not require key to be exported, so that DeepEqual
// and other programs can use all the keys returned by
// MapKeys as arguments to MapIndex. If either the map
// or the key is unexported, though, the result will be
// considered unexported. This is consistent with the
// behavior for structs, which allow read but not write
// of unexported fields.
key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
var k unsafe.Pointer
if key.flag&flagIndir != 0 {
k = key.ptr
} else {
k = unsafe.Pointer(&key.ptr)
}
e := mapaccess(v.typ, v.pointer(), k)
if e == nil {
return Value{}
}
typ := tt.elem
fl := (v.flag | key.flag).ro()
fl |= flag(typ.Kind())
return copyVal(typ, fl, e)
}
// MapKeys returns a slice containing all the keys present in the map,
// in unspecified order.
// It panics if v's Kind is not Map.
// It returns an empty slice if v represents a nil map.
func (v Value) MapKeys() []Value {
v.mustBe(Map)
tt := (*mapType)(unsafe.Pointer(v.typ))
keyType := tt.key
fl := v.flag.ro() | flag(keyType.Kind())
m := v.pointer()
mlen := int(0)
if m != nil {
mlen = maplen(m)
}
it := mapiterinit(v.typ, m)
a := make([]Value, mlen)
var i int
for i = 0; i < len(a); i++ {
key := mapiterkey(it)
if key == nil {
// Someone deleted an entry from the map since we
// called maplen above. It's a data race, but nothing
// we can do about it.
break
}
a[i] = copyVal(keyType, fl, key)
mapiternext(it)
}
return a[:i]
}
// A MapIter is an iterator for ranging over a map.
// See Value.MapRange.
type MapIter struct {
m Value
it unsafe.Pointer
}
// Key returns the key of the iterator's current map entry.
func (it *MapIter) Key() Value {
if it.it == nil {
panic("MapIter.Key called before Next")
}
if mapiterkey(it.it) == nil {
panic("MapIter.Key called on exhausted iterator")
}
t := (*mapType)(unsafe.Pointer(it.m.typ))
ktype := t.key
return copyVal(ktype, it.m.flag.ro()|flag(ktype.Kind()), mapiterkey(it.it))
}
// Value returns the value of the iterator's current map entry.
func (it *MapIter) Value() Value {
if it.it == nil {
panic("MapIter.Value called before Next")
}
if mapiterkey(it.it) == nil {
panic("MapIter.Value called on exhausted iterator")
}
t := (*mapType)(unsafe.Pointer(it.m.typ))
vtype := t.elem
return copyVal(vtype, it.m.flag.ro()|flag(vtype.Kind()), mapiterelem(it.it))
}
// Next advances the map iterator and reports whether there is another
// entry. It returns false when the iterator is exhausted; subsequent
// calls to Key, Value, or Next will panic.
func (it *MapIter) Next() bool {
if it.it == nil {
it.it = mapiterinit(it.m.typ, it.m.pointer())
} else {
if mapiterkey(it.it) == nil {
panic("MapIter.Next called on exhausted iterator")
}
mapiternext(it.it)
}
return mapiterkey(it.it) != nil
}
// MapRange returns a range iterator for a map.
// It panics if v's Kind is not Map.
//
// Call Next to advance the iterator, and Key/Value to access each entry.
// Next returns false when the iterator is exhausted.
// MapRange follows the same iteration semantics as a range statement.
//
// Example:
//
// iter := reflect.ValueOf(m).MapRange()
// for iter.Next() {
// k := iter.Key()
// v := iter.Value()
// ...
// }
//
func (v Value) MapRange() *MapIter {
v.mustBe(Map)
return &MapIter{m: v}
}
// copyVal returns a Value containing the map key or value at ptr,
// allocating a new variable as needed.
func copyVal(typ *rtype, fl flag, ptr unsafe.Pointer) Value {
if ifaceIndir(typ) {
// Copy result so future changes to the map
// won't change the underlying value.
c := unsafe_New(typ)
typedmemmove(typ, c, ptr)
return Value{typ, c, fl | flagIndir}
}
return Value{typ, *(*unsafe.Pointer)(ptr), fl}
}
// Method returns a function value corresponding to v's i'th method.
// The arguments to a Call on the returned function should not include
// a receiver; the returned function will always use v as the receiver.
// Method panics if i is out of range or if v is a nil interface value.
func (v Value) Method(i int) Value {
if v.typ == nil {
panic(&ValueError{"reflect.Value.Method", Invalid})
}
if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) {
panic("reflect: Method index out of range")
}
if v.typ.Kind() == Interface && v.IsNil() {
panic("reflect: Method on nil interface value")
}
fl := v.flag.ro() | (v.flag & flagIndir)
fl |= flag(Func)
fl |= flag(i)<<flagMethodShift | flagMethod
return Value{v.typ, v.ptr, fl}
}
// NumMethod returns the number of exported methods in the value's method set.
func (v Value) NumMethod() int {
if v.typ == nil {
panic(&ValueError{"reflect.Value.NumMethod", Invalid})
}
if v.flag&flagMethod != 0 {
return 0
}
return v.typ.NumMethod()
}
// MethodByName returns a function value corresponding to the method
// of v with the given name.
// The arguments to a Call on the returned function should not include
// a receiver; the returned function will always use v as the receiver.
// It returns the zero Value if no method was found.
func (v Value) MethodByName(name string) Value {
if v.typ == nil {
panic(&ValueError{"reflect.Value.MethodByName", Invalid})
}
if v.flag&flagMethod != 0 {
return Value{}
}
m, ok := v.typ.MethodByName(name)
if !ok {
return Value{}
}
return v.Method(m.Index)
}
// NumField returns the number of fields in the struct v.
// It panics if v's Kind is not Struct.
func (v Value) NumField() int {
v.mustBe(Struct)
tt := (*structType)(unsafe.Pointer(v.typ))
return len(tt.fields)
}
// OverflowComplex reports whether the complex128 x cannot be represented by v's type.
// It panics if v's Kind is not Complex64 or Complex128.
func (v Value) OverflowComplex(x complex128) bool {
k := v.kind()
switch k {
case Complex64:
return overflowFloat32(real(x)) || overflowFloat32(imag(x))
case Complex128:
return false
}
panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()})
}
// OverflowFloat reports whether the float64 x cannot be represented by v's type.
// It panics if v's Kind is not Float32 or Float64.
func (v Value) OverflowFloat(x float64) bool {
k := v.kind()
switch k {
case Float32:
return overflowFloat32(x)
case Float64:
return false
}
panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()})
}
func overflowFloat32(x float64) bool {
if x < 0 {
x = -x
}
return math.MaxFloat32 < x && x <= math.MaxFloat64
}
// OverflowInt reports whether the int64 x cannot be represented by v's type.
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
func (v Value) OverflowInt(x int64) bool {
k := v.kind()
switch k {
case Int, Int8, Int16, Int32, Int64:
bitSize := v.typ.size * 8
trunc := (x << (64 - bitSize)) >> (64 - bitSize)
return x != trunc
}
panic(&ValueError{"reflect.Value.OverflowInt", v.kind()})
}
// OverflowUint reports whether the uint64 x cannot be represented by v's type.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
func (v Value) OverflowUint(x uint64) bool {
k := v.kind()
switch k {
case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
bitSize := v.typ.size * 8
trunc := (x << (64 - bitSize)) >> (64 - bitSize)
return x != trunc
}
panic(&ValueError{"reflect.Value.OverflowUint", v.kind()})
}
//go:nocheckptr
// This prevents inlining Value.Pointer when -d=checkptr is enabled,
// which ensures cmd/compile can recognize unsafe.Pointer(v.Pointer())
// and make an exception.
// Pointer returns v's value as a uintptr.
// It returns uintptr instead of unsafe.Pointer so that
// code using reflect cannot obtain unsafe.Pointers
// without importing the unsafe package explicitly.
// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
//
// If v's Kind is Func, the returned pointer is an underlying
// code pointer, but not necessarily enough to identify a
// single function uniquely. The only guarantee is that the
// result is zero if and only if v is a nil func Value.
//
// If v's Kind is Slice, the returned pointer is to the first
// element of the slice. If the slice is nil the returned value
// is 0. If the slice is empty but non-nil the return value is non-zero.
func (v Value) Pointer() uintptr {
// TODO: deprecate
k := v.kind()
switch k {
case Chan, Map, Ptr, UnsafePointer:
return uintptr(v.pointer())
case Func:
p := v.pointer()
// Non-nil func value points at data block.
// First word of data block is actual code.
if p != nil {
p = *(*unsafe.Pointer)(p)
}
return uintptr(p)
case Slice:
return (*SliceHeader)(v.ptr).Data
}
panic(&ValueError{"reflect.Value.Pointer", v.kind()})
}
// Recv receives and returns a value from the channel v.
// It panics if v's Kind is not Chan.
// The receive blocks until a value is ready.
// The boolean value ok is true if the value x corresponds to a send
// on the channel, false if it is a zero value received because the channel is closed.
func (v Value) Recv() (x Value, ok bool) {
v.mustBe(Chan)
v.mustBeExported()
return v.recv(false)
}
// internal recv, possibly non-blocking (nb).
// v is known to be a channel.
func (v Value) recv(nb bool) (val Value, ok bool) {
tt := (*chanType)(unsafe.Pointer(v.typ))
if ChanDir(tt.dir)&RecvDir == 0 {
panic("reflect: recv on send-only channel")
}
t := tt.elem
val = Value{t, nil, flag(t.Kind())}
var p unsafe.Pointer
if ifaceIndir(t) {
p = unsafe_New(t)
val.ptr = p
val.flag |= flagIndir
} else {
p = unsafe.Pointer(&val.ptr)
}
selected, ok := chanrecv(v.pointer(), nb, p)
if !selected {
val = Value{}
}
return
}
// Send sends x on the channel v.
// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
// As in Go, x's value must be assignable to the channel's element type.
func (v Value) Send(x Value) {
v.mustBe(Chan)
v.mustBeExported()
v.send(x, false)
}
// internal send, possibly non-blocking.
// v is known to be a channel.
func (v Value) send(x Value, nb bool) (selected bool) {
tt := (*chanType)(unsafe.Pointer(v.typ))
if ChanDir(tt.dir)&SendDir == 0 {
panic("reflect: send on recv-only channel")
}
x.mustBeExported()
x = x.assignTo("reflect.Value.Send", tt.elem, nil)
var p unsafe.Pointer
if x.flag&flagIndir != 0 {
p = x.ptr
} else {
p = unsafe.Pointer(&x.ptr)
}
return chansend(v.pointer(), p, nb)
}
// Set assigns x to the value v.
// It panics if CanSet returns false.
// As in Go, x's value must be assignable to v's type.
func (v Value) Set(x Value) {
v.mustBeAssignable()
x.mustBeExported() // do not let unexported x leak
var target unsafe.Pointer
if v.kind() == Interface {
target = v.ptr
}
x = x.assignTo("reflect.Set", v.typ, target)
if x.flag&flagIndir != 0 {
typedmemmove(v.typ, v.ptr, x.ptr)
} else {
*(*unsafe.Pointer)(v.ptr) = x.ptr
}
}
// SetBool sets v's underlying value.
// It panics if v's Kind is not Bool or if CanSet() is false.
func (v Value) SetBool(x bool) {
v.mustBeAssignable()
v.mustBe(Bool)
*(*bool)(v.ptr) = x
}
// SetBytes sets v's underlying value.
// It panics if v's underlying value is not a slice of bytes.
func (v Value) SetBytes(x []byte) {
v.mustBeAssignable()
v.mustBe(Slice)
if v.typ.Elem().Kind() != Uint8 {
panic("reflect.Value.SetBytes of non-byte slice")
}
*(*[]byte)(v.ptr) = x
}
// setRunes sets v's underlying value.
// It panics if v's underlying value is not a slice of runes (int32s).
func (v Value) setRunes(x []rune) {
v.mustBeAssignable()
v.mustBe(Slice)
if v.typ.Elem().Kind() != Int32 {
panic("reflect.Value.setRunes of non-rune slice")
}
*(*[]rune)(v.ptr) = x
}
// SetComplex sets v's underlying value to x.
// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
func (v Value) SetComplex(x complex128) {
v.mustBeAssignable()
switch k := v.kind(); k {
default:
panic(&ValueError{"reflect.Value.SetComplex", v.kind()})
case Complex64:
*(*complex64)(v.ptr) = complex64(x)
case Complex128:
*(*complex128)(v.ptr) = x
}
}
// SetFloat sets v's underlying value to x.
// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
func (v Value) SetFloat(x float64) {
v.mustBeAssignable()
switch k := v.kind(); k {
default:
panic(&ValueError{"reflect.Value.SetFloat", v.kind()})
case Float32:
*(*float32)(v.ptr) = float32(x)
case Float64:
*(*float64)(v.ptr) = x
}
}
// SetInt sets v's underlying value to x.
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
func (v Value) SetInt(x int64) {
v.mustBeAssignable()
switch k := v.kind(); k {
default:
panic(&ValueError{"reflect.Value.SetInt", v.kind()})
case Int:
*(*int)(v.ptr) = int(x)
case Int8:
*(*int8)(v.ptr) = int8(x)
case Int16:
*(*int16)(v.ptr) = int16(x)
case Int32:
*(*int32)(v.ptr) = int32(x)
case Int64:
*(*int64)(v.ptr) = x
}
}
// SetLen sets v's length to n.
// It panics if v's Kind is not Slice or if n is negative or
// greater than the capacity of the slice.
func (v Value) SetLen(n int) {
v.mustBeAssignable()
v.mustBe(Slice)
s := (*unsafeheader.Slice)(v.ptr)
if uint(n) > uint(s.Cap) {
panic("reflect: slice length out of range in SetLen")
}
s.Len = n
}
// SetCap sets v's capacity to n.
// It panics if v's Kind is not Slice or if n is smaller than the length or
// greater than the capacity of the slice.
func (v Value) SetCap(n int) {
v.mustBeAssignable()
v.mustBe(Slice)
s := (*unsafeheader.Slice)(v.ptr)
if n < s.Len || n > s.Cap {
panic("reflect: slice capacity out of range in SetCap")
}
s.Cap = n
}
// SetMapIndex sets the element associated with key in the map v to elem.
// It panics if v's Kind is not Map.
// If elem is the zero Value, SetMapIndex deletes the key from the map.
// Otherwise if v holds a nil map, SetMapIndex will panic.
// As in Go, key's elem must be assignable to the map's key type,
// and elem's value must be assignable to the map's elem type.
func (v Value) SetMapIndex(key, elem Value) {
v.mustBe(Map)
v.mustBeExported()
key.mustBeExported()
tt := (*mapType)(unsafe.Pointer(v.typ))
key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
var k unsafe.Pointer
if key.flag&flagIndir != 0 {
k = key.ptr
} else {
k = unsafe.Pointer(&key.ptr)
}
if elem.typ == nil {
mapdelete(v.typ, v.pointer(), k)
return
}
elem.mustBeExported()
elem = elem.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
var e unsafe.Pointer
if elem.flag&flagIndir != 0 {
e = elem.ptr
} else {
e = unsafe.Pointer(&elem.ptr)
}
mapassign(v.typ, v.pointer(), k, e)
}
// SetUint sets v's underlying value to x.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
func (v Value) SetUint(x uint64) {
v.mustBeAssignable()
switch k := v.kind(); k {
default:
panic(&ValueError{"reflect.Value.SetUint", v.kind()})
case Uint:
*(*uint)(v.ptr) = uint(x)
case Uint8:
*(*uint8)(v.ptr) = uint8(x)
case Uint16:
*(*uint16)(v.ptr) = uint16(x)
case Uint32:
*(*uint32)(v.ptr) = uint32(x)
case Uint64:
*(*uint64)(v.ptr) = x
case Uintptr:
*(*uintptr)(v.ptr) = uintptr(x)
}
}
// SetPointer sets the unsafe.Pointer value v to x.
// It panics if v's Kind is not UnsafePointer.
func (v Value) SetPointer(x unsafe.Pointer) {
v.mustBeAssignable()
v.mustBe(UnsafePointer)
*(*unsafe.Pointer)(v.ptr) = x
}
// SetString sets v's underlying value to x.
// It panics if v's Kind is not String or if CanSet() is false.
func (v Value) SetString(x string) {
v.mustBeAssignable()
v.mustBe(String)
*(*string)(v.ptr) = x
}
// Slice returns v[i:j].
// It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
// or if the indexes are out of bounds.
func (v Value) Slice(i, j int) Value {
var (
cap int
typ *sliceType
base unsafe.Pointer
)
switch kind := v.kind(); kind {
default:
panic(&ValueError{"reflect.Value.Slice", v.kind()})
case Array:
if v.flag&flagAddr == 0 {
panic("reflect.Value.Slice: slice of unaddressable array")
}
tt := (*arrayType)(unsafe.Pointer(v.typ))
cap = int(tt.len)
typ = (*sliceType)(unsafe.Pointer(tt.slice))
base = v.ptr
case Slice:
typ = (*sliceType)(unsafe.Pointer(v.typ))
s := (*unsafeheader.Slice)(v.ptr)
base = s.Data
cap = s.Cap
case String:
s := (*unsafeheader.String)(v.ptr)
if i < 0 || j < i || j > s.Len {
panic("reflect.Value.Slice: string slice index out of bounds")
}
var t unsafeheader.String
if i < s.Len {
t = unsafeheader.String{Data: arrayAt(s.Data, i, 1, "i < s.Len"), Len: j - i}
}
return Value{v.typ, unsafe.Pointer(&t), v.flag}
}
if i < 0 || j < i || j > cap {
panic("reflect.Value.Slice: slice index out of bounds")
}
// Declare slice so that gc can see the base pointer in it.
var x []unsafe.Pointer
// Reinterpret as *unsafeheader.Slice to edit.
s := (*unsafeheader.Slice)(unsafe.Pointer(&x))
s.Len = j - i
s.Cap = cap - i
if cap-i > 0 {
s.Data = arrayAt(base, i, typ.elem.Size(), "i < cap")
} else {
// do not advance pointer, to avoid pointing beyond end of slice
s.Data = base
}
fl := v.flag.ro() | flagIndir | flag(Slice)
return Value{typ.common(), unsafe.Pointer(&x), fl}
}
// Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
// It panics if v's Kind is not Array or Slice, or if v is an unaddressable array,
// or if the indexes are out of bounds.
func (v Value) Slice3(i, j, k int) Value {
var (
cap int
typ *sliceType
base unsafe.Pointer
)
switch kind := v.kind(); kind {
default:
panic(&ValueError{"reflect.Value.Slice3", v.kind()})
case Array:
if v.flag&flagAddr == 0 {
panic("reflect.Value.Slice3: slice of unaddressable array")
}
tt := (*arrayType)(unsafe.Pointer(v.typ))
cap = int(tt.len)
typ = (*sliceType)(unsafe.Pointer(tt.slice))
base = v.ptr
case Slice:
typ = (*sliceType)(unsafe.Pointer(v.typ))
s := (*unsafeheader.Slice)(v.ptr)
base = s.Data
cap = s.Cap
}
if i < 0 || j < i || k < j || k > cap {
panic("reflect.Value.Slice3: slice index out of bounds")
}
// Declare slice so that the garbage collector
// can see the base pointer in it.
var x []unsafe.Pointer
// Reinterpret as *unsafeheader.Slice to edit.
s := (*unsafeheader.Slice)(unsafe.Pointer(&x))
s.Len = j - i
s.Cap = k - i
if k-i > 0 {
s.Data = arrayAt(base, i, typ.elem.Size(), "i < k <= cap")
} else {
// do not advance pointer, to avoid pointing beyond end of slice
s.Data = base
}
fl := v.flag.ro() | flagIndir | flag(Slice)
return Value{typ.common(), unsafe.Pointer(&x), fl}
}
// String returns the string v's underlying value, as a string.
// String is a special case because of Go's String method convention.
// Unlike the other getters, it does not panic if v's Kind is not String.
// Instead, it returns a string of the form "<T value>" where T is v's type.
// The fmt package treats Values specially. It does not call their String
// method implicitly but instead prints the concrete values they hold.
func (v Value) String() string {
switch k := v.kind(); k {
case Invalid:
return "<invalid Value>"
case String:
return *(*string)(v.ptr)
}
// If you call String on a reflect.Value of other type, it's better to
// print something than to panic. Useful in debugging.
return "<" + v.Type().String() + " Value>"
}
// TryRecv attempts to receive a value from the channel v but will not block.
// It panics if v's Kind is not Chan.
// If the receive delivers a value, x is the transferred value and ok is true.
// If the receive cannot finish without blocking, x is the zero Value and ok is false.
// If the channel is closed, x is the zero value for the channel's element type and ok is false.
func (v Value) TryRecv() (x Value, ok bool) {
v.mustBe(Chan)
v.mustBeExported()
return v.recv(true)
}
// TrySend attempts to send x on the channel v but will not block.
// It panics if v's Kind is not Chan.
// It reports whether the value was sent.
// As in Go, x's value must be assignable to the channel's element type.
func (v Value) TrySend(x Value) bool {
v.mustBe(Chan)
v.mustBeExported()
return v.send(x, true)
}
// Type returns v's type.
func (v Value) Type() Type {
f := v.flag
if f == 0 {
panic(&ValueError{"reflect.Value.Type", Invalid})
}
if f&flagMethod == 0 {
// Easy case
return toType(v.typ)
}
// Method value.
// v.typ describes the receiver, not the method type.
i := int(v.flag) >> flagMethodShift
if v.typ.Kind() == Interface {
// Method on interface.
tt := (*interfaceType)(unsafe.Pointer(v.typ))
if uint(i) >= uint(len(tt.methods)) {
panic("reflect: internal error: invalid method index")
}
m := &tt.methods[i]
return toType(m.typ)
}
// Method on concrete type.
ms := v.typ.exportedMethods()
if uint(i) >= uint(len(ms)) {
panic("reflect: internal error: invalid method index")
}
m := ms[i]
return toType(m.mtyp)
}
// Uint returns v's underlying value, as a uint64.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
func (v Value) Uint() uint64 {
k := v.kind()
p := v.ptr
switch k {
case Uint:
return uint64(*(*uint)(p))
case Uint8:
return uint64(*(*uint8)(p))
case Uint16:
return uint64(*(*uint16)(p))
case Uint32:
return uint64(*(*uint32)(p))
case Uint64:
return *(*uint64)(p)
case Uintptr:
return uint64(*(*uintptr)(p))
}
panic(&ValueError{"reflect.Value.Uint", v.kind()})
}
//go:nocheckptr
// This prevents inlining Value.UnsafeAddr when -d=checkptr is enabled,
// which ensures cmd/compile can recognize unsafe.Pointer(v.UnsafeAddr())
// and make an exception.
// UnsafeAddr returns a pointer to v's data.
// It is for advanced clients that also import the "unsafe" package.
// It panics if v is not addressable.
func (v Value) UnsafeAddr() uintptr {
// TODO: deprecate
if v.typ == nil {
panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
}
if v.flag&flagAddr == 0 {
panic("reflect.Value.UnsafeAddr of unaddressable value")
}
return uintptr(v.ptr)
}
// StringHeader is the runtime representation of a string.
// It cannot be used safely or portably and its representation may
// change in a later release.
// Moreover, the Data field is not sufficient to guarantee the data
// it references will not be garbage collected, so programs must keep
// a separate, correctly typed pointer to the underlying data.
type StringHeader struct {
Data uintptr
Len int
}
// SliceHeader is the runtime representation of a slice.
// It cannot be used safely or portably and its representation may
// change in a later release.
// Moreover, the Data field is not sufficient to guarantee the data
// it references will not be garbage collected, so programs must keep
// a separate, correctly typed pointer to the underlying data.
type SliceHeader struct {
Data uintptr
Len int
Cap int
}
func typesMustMatch(what string, t1, t2 Type) {
if !typeEqual(t1, t2) {
panic(what + ": " + t1.String() + " != " + t2.String())
}
}
// arrayAt returns the i-th element of p,
// an array whose elements are eltSize bytes wide.
// The array pointed at by p must have at least i+1 elements:
// it is invalid (but impossible to check here) to pass i >= len,
// because then the result will point outside the array.
// whySafe must explain why i < len. (Passing "i < len" is fine;
// the benefit is to surface this assumption at the call site.)
func arrayAt(p unsafe.Pointer, i int, eltSize uintptr, whySafe string) unsafe.Pointer {
return add(p, uintptr(i)*eltSize, "i < len")
}
// grow grows the slice s so that it can hold extra more values, allocating
// more capacity if needed. It also returns the old and new slice lengths.
func grow(s Value, extra int) (Value, int, int) {
i0 := s.Len()
i1 := i0 + extra
if i1 < i0 {
panic("reflect.Append: slice overflow")
}
m := s.Cap()
if i1 <= m {
return s.Slice(0, i1), i0, i1
}
if m == 0 {
m = extra
} else {
for m < i1 {
if i0 < 1024 {
m += m
} else {
m += m / 4
}
}
}
t := MakeSlice(s.Type(), i1, m)
Copy(t, s)
return t, i0, i1
}
// Append appends the values x to a slice s and returns the resulting slice.
// As in Go, each x's value must be assignable to the slice's element type.
func Append(s Value, x ...Value) Value {
s.mustBe(Slice)
s, i0, i1 := grow(s, len(x))
for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
s.Index(i).Set(x[j])
}
return s
}
// AppendSlice appends a slice t to a slice s and returns the resulting slice.
// The slices s and t must have the same element type.
func AppendSlice(s, t Value) Value {
s.mustBe(Slice)
t.mustBe(Slice)
typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
s, i0, i1 := grow(s, t.Len())
Copy(s.Slice(i0, i1), t)
return s
}
// Copy copies the contents of src into dst until either
// dst has been filled or src has been exhausted.
// It returns the number of elements copied.
// Dst and src each must have kind Slice or Array, and
// dst and src must have the same element type.
//
// As a special case, src can have kind String if the element type of dst is kind Uint8.
func Copy(dst, src Value) int {
dk := dst.kind()
if dk != Array && dk != Slice {
panic(&ValueError{"reflect.Copy", dk})
}
if dk == Array {
dst.mustBeAssignable()
}
dst.mustBeExported()
sk := src.kind()
var stringCopy bool
if sk != Array && sk != Slice {
stringCopy = sk == String && dst.typ.Elem().Kind() == Uint8
if !stringCopy {
panic(&ValueError{"reflect.Copy", sk})
}
}
src.mustBeExported()
de := dst.typ.Elem()
if !stringCopy {
se := src.typ.Elem()
typesMustMatch("reflect.Copy", de, se)
}
var ds, ss unsafeheader.Slice
if dk == Array {
ds.Data = dst.ptr
ds.Len = dst.Len()
ds.Cap = ds.Len
} else {
ds = *(*unsafeheader.Slice)(dst.ptr)
}
if sk == Array {
ss.Data = src.ptr
ss.Len = src.Len()
ss.Cap = ss.Len
} else if sk == Slice {
ss = *(*unsafeheader.Slice)(src.ptr)
} else {
sh := *(*unsafeheader.String)(src.ptr)
ss.Data = sh.Data
ss.Len = sh.Len
ss.Cap = sh.Len
}
return typedslicecopy(de.common(), ds, ss)
}
// A runtimeSelect is a single case passed to rselect.
// This must match ../runtime/select.go:/runtimeSelect
type runtimeSelect struct {
dir SelectDir // SelectSend, SelectRecv or SelectDefault
typ *rtype // channel type
ch unsafe.Pointer // channel
val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
}
// rselect runs a select. It returns the index of the chosen case.
// If the case was a receive, val is filled in with the received value.
// The conventional OK bool indicates whether the receive corresponds
// to a sent value.
//go:noescape
func rselect([]runtimeSelect) (chosen int, recvOK bool)
// A SelectDir describes the communication direction of a select case.
type SelectDir int
// NOTE: These values must match ../runtime/select.go:/selectDir.
const (
_ SelectDir = iota
SelectSend // case Chan <- Send
SelectRecv // case <-Chan:
SelectDefault // default
)
// A SelectCase describes a single case in a select operation.
// The kind of case depends on Dir, the communication direction.
//
// If Dir is SelectDefault, the case represents a default case.
// Chan and Send must be zero Values.
//
// If Dir is SelectSend, the case represents a send operation.
// Normally Chan's underlying value must be a channel, and Send's underlying value must be
// assignable to the channel's element type. As a special case, if Chan is a zero Value,
// then the case is ignored, and the field Send will also be ignored and may be either zero
// or non-zero.
//
// If Dir is SelectRecv, the case represents a receive operation.
// Normally Chan's underlying value must be a channel and Send must be a zero Value.
// If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
// When a receive operation is selected, the received Value is returned by Select.
//
type SelectCase struct {
Dir SelectDir // direction of case
Chan Value // channel to use (for send or receive)
Send Value // value to send (for send)
}
// Select executes a select operation described by the list of cases.
// Like the Go select statement, it blocks until at least one of the cases
// can proceed, makes a uniform pseudo-random choice,
// and then executes that case. It returns the index of the chosen case
// and, if that case was a receive operation, the value received and a
// boolean indicating whether the value corresponds to a send on the channel
// (as opposed to a zero value received because the channel is closed).
// Select supports a maximum of 65536 cases.
func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
if len(cases) > 65536 {
panic("reflect.Select: too many cases (max 65536)")
}
// NOTE: Do not trust that caller is not modifying cases data underfoot.
// The range is safe because the caller cannot modify our copy of the len
// and each iteration makes its own copy of the value c.
var runcases []runtimeSelect
if len(cases) > 4 {
// Slice is heap allocated due to runtime dependent capacity.
runcases = make([]runtimeSelect, len(cases))
} else {
// Slice can be stack allocated due to constant capacity.
runcases = make([]runtimeSelect, len(cases), 4)
}
haveDefault := false
for i, c := range cases {
rc := &runcases[i]
rc.dir = c.Dir
switch c.Dir {
default:
panic("reflect.Select: invalid Dir")
case SelectDefault: // default
if haveDefault {
panic("reflect.Select: multiple default cases")
}
haveDefault = true
if c.Chan.IsValid() {
panic("reflect.Select: default case has Chan value")
}
if c.Send.IsValid() {
panic("reflect.Select: default case has Send value")
}
case SelectSend:
ch := c.Chan
if !ch.IsValid() {
break
}
ch.mustBe(Chan)
ch.mustBeExported()
tt := (*chanType)(unsafe.Pointer(ch.typ))
if ChanDir(tt.dir)&SendDir == 0 {
panic("reflect.Select: SendDir case using recv-only channel")
}
rc.ch = ch.pointer()
rc.typ = &tt.rtype
v := c.Send
if !v.IsValid() {
panic("reflect.Select: SendDir case missing Send value")
}
v.mustBeExported()
v = v.assignTo("reflect.Select", tt.elem, nil)
if v.flag&flagIndir != 0 {
rc.val = v.ptr
} else {
rc.val = unsafe.Pointer(&v.ptr)
}
case SelectRecv:
if c.Send.IsValid() {
panic("reflect.Select: RecvDir case has Send value")
}
ch := c.Chan
if !ch.IsValid() {
break
}
ch.mustBe(Chan)
ch.mustBeExported()
tt := (*chanType)(unsafe.Pointer(ch.typ))
if ChanDir(tt.dir)&RecvDir == 0 {
panic("reflect.Select: RecvDir case using send-only channel")
}
rc.ch = ch.pointer()
rc.typ = &tt.rtype
rc.val = unsafe_New(tt.elem)
}
}
chosen, recvOK = rselect(runcases)
if runcases[chosen].dir == SelectRecv {
tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
t := tt.elem
p := runcases[chosen].val
fl := flag(t.Kind())
if ifaceIndir(t) {
recv = Value{t, p, fl | flagIndir}
} else {
recv = Value{t, *(*unsafe.Pointer)(p), fl}
}
}
return chosen, recv, recvOK
}
/*
* constructors
*/
// implemented in package runtime
func unsafe_New(*rtype) unsafe.Pointer
func unsafe_NewArray(*rtype, int) unsafe.Pointer
// MakeSlice creates a new zero-initialized slice value
// for the specified slice type, length, and capacity.
func MakeSlice(typ Type, len, cap int) Value {
if typ.Kind() != Slice {
panic("reflect.MakeSlice of non-slice type")
}
if len < 0 {
panic("reflect.MakeSlice: negative len")
}
if cap < 0 {
panic("reflect.MakeSlice: negative cap")
}
if len > cap {
panic("reflect.MakeSlice: len > cap")
}
s := unsafeheader.Slice{Data: unsafe_NewArray(typ.Elem().(*rtype), cap), Len: len, Cap: cap}
return Value{typ.(*rtype), unsafe.Pointer(&s), flagIndir | flag(Slice)}
}
// MakeChan creates a new channel with the specified type and buffer size.
func MakeChan(typ Type, buffer int) Value {
if typ.Kind() != Chan {
panic("reflect.MakeChan of non-chan type")
}
if buffer < 0 {
panic("reflect.MakeChan: negative buffer size")
}
if typ.ChanDir() != BothDir {
panic("reflect.MakeChan: unidirectional channel type")
}
t := typ.(*rtype)
ch := makechan(t, buffer)
return Value{t, unsafe.Pointer(&ch), flag(Chan) | flagIndir}
}
// MakeMap creates a new map with the specified type.
func MakeMap(typ Type) Value {
return MakeMapWithSize(typ, 0)
}
// MakeMapWithSize creates a new map with the specified type
// and initial space for approximately n elements.
func MakeMapWithSize(typ Type, n int) Value {
if typ.Kind() != Map {
panic("reflect.MakeMapWithSize of non-map type")
}
t := typ.(*rtype)
m := makemap(t, n)
return Value{t, unsafe.Pointer(&m), flag(Map) | flagIndir}
}
// Indirect returns the value that v points to.
// If v is a nil pointer, Indirect returns a zero Value.
// If v is not a pointer, Indirect returns v.
func Indirect(v Value) Value {
if v.Kind() != Ptr {
return v
}
return v.Elem()
}
// ValueOf returns a new Value initialized to the concrete value
// stored in the interface i. ValueOf(nil) returns the zero Value.
func ValueOf(i interface{}) Value {
if i == nil {
return Value{}
}
// TODO: Maybe allow contents of a Value to live on the stack.
// For now we make the contents always escape to the heap. It
// makes life easier in a few places (see chanrecv/mapassign
// comment below).
escapes(i)
return unpackEface(i)
}
// Zero returns a Value representing the zero value for the specified type.
// The result is different from the zero value of the Value struct,
// which represents no value at all.
// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
// The returned value is neither addressable nor settable.
func Zero(typ Type) Value {
if typ == nil {
panic("reflect: Zero(nil)")
}
t := typ.(*rtype)
fl := flag(t.Kind())
if ifaceIndir(t) {
return Value{t, unsafe_New(t), fl | flagIndir}
}
return Value{t, nil, fl}
}
// New returns a Value representing a pointer to a new zero value
// for the specified type. That is, the returned Value's Type is PtrTo(typ).
func New(typ Type) Value {
if typ == nil {
panic("reflect: New(nil)")
}
t := typ.(*rtype)
ptr := unsafe_New(t)
fl := flag(Ptr)
return Value{t.ptrTo(), ptr, fl}
}
// NewAt returns a Value representing a pointer to a value of the
// specified type, using p as that pointer.
func NewAt(typ Type, p unsafe.Pointer) Value {
fl := flag(Ptr)
t := typ.(*rtype)
return Value{t.ptrTo(), p, fl}
}
// assignTo returns a value v that can be assigned directly to typ.
// It panics if v is not assignable to typ.
// For a conversion to an interface type, target is a suggested scratch space to use.
// target must be initialized memory (or nil).
func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value {
if v.flag&flagMethod != 0 {
v = makeMethodValue(context, v)
}
switch {
case directlyAssignable(dst, v.typ):
// Overwrite type so that they match.
// Same memory layout, so no harm done.
fl := v.flag&(flagAddr|flagIndir) | v.flag.ro()
fl |= flag(dst.Kind())
return Value{dst, v.ptr, fl}
case implements(dst, v.typ):
if target == nil {
target = unsafe_New(dst)
}
if v.Kind() == Interface && v.IsNil() {
// A nil ReadWriter passed to nil Reader is OK,
// but using ifaceE2I below will panic.
// Avoid the panic by returning a nil dst (e.g., Reader) explicitly.
return Value{dst, nil, flag(Interface)}
}
x := valueInterface(v, false)
if dst.NumMethod() == 0 {
*(*interface{})(target) = x
} else {
ifaceE2I(dst, x, target)
}
return Value{dst, target, flagIndir | flag(Interface)}
}
// Failed.
panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
}
// Convert returns the value v converted to type t.
// If the usual Go conversion rules do not allow conversion
// of the value v to type t, Convert panics.
func (v Value) Convert(t Type) Value {
if v.flag&flagMethod != 0 {
v = makeMethodValue("Convert", v)
}
op := convertOp(t.common(), v.typ)
if op == nil {
panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
}
return op(v, t)
}
// convertOp returns the function to convert a value of type src
// to a value of type dst. If the conversion is illegal, convertOp returns nil.
func convertOp(dst, src *rtype) func(Value, Type) Value {
switch src.Kind() {
case Int, Int8, Int16, Int32, Int64:
switch dst.Kind() {
case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
return cvtInt
case Float32, Float64:
return cvtIntFloat
case String:
return cvtIntString
}
case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
switch dst.Kind() {
case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
return cvtUint
case Float32, Float64:
return cvtUintFloat
case String:
return cvtUintString
}
case Float32, Float64:
switch dst.Kind() {
case Int, Int8, Int16, Int32, Int64:
return cvtFloatInt
case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
return cvtFloatUint
case Float32, Float64:
return cvtFloat
}
case Complex64, Complex128:
switch dst.Kind() {
case Complex64, Complex128:
return cvtComplex
}
case String:
if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
switch dst.Elem().Kind() {
case Uint8:
return cvtStringBytes
case Int32:
return cvtStringRunes
}
}
case Slice:
if dst.Kind() == String && src.Elem().PkgPath() == "" {
switch src.Elem().Kind() {
case Uint8:
return cvtBytesString
case Int32:
return cvtRunesString
}
}
case Chan:
if dst.Kind() == Chan && specialChannelAssignability(dst, src) {
return cvtDirect
}
}
// dst and src have same underlying type.
if haveIdenticalUnderlyingType(dst, src, false) {
return cvtDirect
}
// dst and src are non-defined pointer types with same underlying base type.
if dst.Kind() == Ptr && dst.Name() == "" &&
src.Kind() == Ptr && src.Name() == "" &&
haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common(), false) {
return cvtDirect
}
if implements(dst, src) {
if src.Kind() == Interface {
return cvtI2I
}
return cvtT2I
}
return nil
}
// makeInt returns a Value of type t equal to bits (possibly truncated),
// where t is a signed or unsigned int type.
func makeInt(f flag, bits uint64, t Type) Value {
typ := t.common()
ptr := unsafe_New(typ)
switch typ.size {
case 1:
*(*uint8)(ptr) = uint8(bits)
case 2:
*(*uint16)(ptr) = uint16(bits)
case 4:
*(*uint32)(ptr) = uint32(bits)
case 8:
*(*uint64)(ptr) = bits
}
return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
}
// makeFloat returns a Value of type t equal to v (possibly truncated to float32),
// where t is a float32 or float64 type.
func makeFloat(f flag, v float64, t Type) Value {
typ := t.common()
ptr := unsafe_New(typ)
switch typ.size {
case 4:
*(*float32)(ptr) = float32(v)
case 8:
*(*float64)(ptr) = v
}
return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
}
// makeFloat returns a Value of type t equal to v, where t is a float32 type.
func makeFloat32(f flag, v float32, t Type) Value {
typ := t.common()
ptr := unsafe_New(typ)
*(*float32)(ptr) = v
return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
}
// makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
// where t is a complex64 or complex128 type.
func makeComplex(f flag, v complex128, t Type) Value {
typ := t.common()
ptr := unsafe_New(typ)
switch typ.size {
case 8:
*(*complex64)(ptr) = complex64(v)
case 16:
*(*complex128)(ptr) = v
}
return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
}
func makeString(f flag, v string, t Type) Value {
ret := New(t).Elem()
ret.SetString(v)
ret.flag = ret.flag&^flagAddr | f
return ret
}
func makeBytes(f flag, v []byte, t Type) Value {
ret := New(t).Elem()
ret.SetBytes(v)
ret.flag = ret.flag&^flagAddr | f
return ret
}
func makeRunes(f flag, v []rune, t Type) Value {
ret := New(t).Elem()
ret.setRunes(v)
ret.flag = ret.flag&^flagAddr | f
return ret
}
// These conversion functions are returned by convertOp
// for classes of conversions. For example, the first function, cvtInt,
// takes any value v of signed int type and returns the value converted
// to type t, where t is any signed or unsigned int type.
// convertOp: intXX -> [u]intXX
func cvtInt(v Value, t Type) Value {
return makeInt(v.flag.ro(), uint64(v.Int()), t)
}
// convertOp: uintXX -> [u]intXX
func cvtUint(v Value, t Type) Value {
return makeInt(v.flag.ro(), v.Uint(), t)
}
// convertOp: floatXX -> intXX
func cvtFloatInt(v Value, t Type) Value {
return makeInt(v.flag.ro(), uint64(int64(v.Float())), t)
}
// convertOp: floatXX -> uintXX
func cvtFloatUint(v Value, t Type) Value {
return makeInt(v.flag.ro(), uint64(v.Float()), t)
}
// convertOp: intXX -> floatXX
func cvtIntFloat(v Value, t Type) Value {
return makeFloat(v.flag.ro(), float64(v.Int()), t)
}
// convertOp: uintXX -> floatXX
func cvtUintFloat(v Value, t Type) Value {
return makeFloat(v.flag.ro(), float64(v.Uint()), t)
}
// convertOp: floatXX -> floatXX
func cvtFloat(v Value, t Type) Value {
if v.Type().Kind() == Float32 && t.Kind() == Float32 {
// Don't do any conversion if both types have underlying type float32.
// This avoids converting to float64 and back, which will
// convert a signaling NaN to a quiet NaN. See issue 36400.
return makeFloat32(v.flag.ro(), *(*float32)(v.ptr), t)
}
return makeFloat(v.flag.ro(), v.Float(), t)
}
// convertOp: complexXX -> complexXX
func cvtComplex(v Value, t Type) Value {
return makeComplex(v.flag.ro(), v.Complex(), t)
}
// convertOp: intXX -> string
func cvtIntString(v Value, t Type) Value {
return makeString(v.flag.ro(), string(rune(v.Int())), t)
}
// convertOp: uintXX -> string
func cvtUintString(v Value, t Type) Value {
return makeString(v.flag.ro(), string(rune(v.Uint())), t)
}
// convertOp: []byte -> string
func cvtBytesString(v Value, t Type) Value {
return makeString(v.flag.ro(), string(v.Bytes()), t)
}
// convertOp: string -> []byte
func cvtStringBytes(v Value, t Type) Value {
return makeBytes(v.flag.ro(), []byte(v.String()), t)
}
// convertOp: []rune -> string
func cvtRunesString(v Value, t Type) Value {
return makeString(v.flag.ro(), string(v.runes()), t)
}
// convertOp: string -> []rune
func cvtStringRunes(v Value, t Type) Value {
return makeRunes(v.flag.ro(), []rune(v.String()), t)
}
// convertOp: direct copy
func cvtDirect(v Value, typ Type) Value {
f := v.flag
t := typ.common()
ptr := v.ptr
if f&flagAddr != 0 {
// indirect, mutable word - make a copy
c := unsafe_New(t)
typedmemmove(t, c, ptr)
ptr = c
f &^= flagAddr
}
return Value{t, ptr, v.flag.ro() | f} // v.flag.ro()|f == f?
}
// convertOp: concrete -> interface
func cvtT2I(v Value, typ Type) Value {
target := unsafe_New(typ.common())
x := valueInterface(v, false)
if typ.NumMethod() == 0 {
*(*interface{})(target) = x
} else {
ifaceE2I(typ.(*rtype), x, target)
}
return Value{typ.common(), target, v.flag.ro() | flagIndir | flag(Interface)}
}
// convertOp: interface -> interface
func cvtI2I(v Value, typ Type) Value {
if v.IsNil() {
ret := Zero(typ)
ret.flag |= v.flag.ro()
return ret
}
return cvtT2I(v.Elem(), typ)
}
// implemented in ../runtime
func chancap(ch unsafe.Pointer) int
func chanclose(ch unsafe.Pointer)
func chanlen(ch unsafe.Pointer) int
// Note: some of the noescape annotations below are technically a lie,
// but safe in the context of this package. Functions like chansend
// and mapassign don't escape the referent, but may escape anything
// the referent points to (they do shallow copies of the referent).
// It is safe in this package because the referent may only point
// to something a Value may point to, and that is always in the heap
// (due to the escapes() call in ValueOf).
//go:noescape
func chanrecv(ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool)
//go:noescape
func chansend(ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool
func makechan(typ *rtype, size int) (ch unsafe.Pointer)
func makemap(t *rtype, cap int) (m unsafe.Pointer)
//go:noescape
func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)
//go:noescape
func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer)
//go:noescape
func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer)
// m escapes into the return value, but the caller of mapiterinit
// doesn't let the return value escape.
//go:noescape
func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer
//go:noescape
func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer)
//go:noescape
func mapiterelem(it unsafe.Pointer) (elem unsafe.Pointer)
//go:noescape
func mapiternext(it unsafe.Pointer)
//go:noescape
func maplen(m unsafe.Pointer) int
//go:linkname call runtime.reflectcall
func call(typ *funcType, fnaddr unsafe.Pointer, isInterface bool, isMethod bool, params *unsafe.Pointer, results *unsafe.Pointer)
func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
// memmove copies size bytes to dst from src. No write barriers are used.
//go:noescape
func memmove(dst, src unsafe.Pointer, size uintptr)
// typedmemmove copies a value of type t to dst from src.
//go:noescape
func typedmemmove(t *rtype, dst, src unsafe.Pointer)
// typedslicecopy copies a slice of elemType values from src to dst,
// returning the number of elements copied.
//go:noescape
func typedslicecopy(elemType *rtype, dst, src unsafeheader.Slice) int
//go:noescape
func typehash(t *rtype, p unsafe.Pointer, h uintptr) uintptr
// Dummy annotation marking that the value x escapes,
// for use in cases where the reflect code is so clever that
// the compiler cannot follow.
func escapes(x interface{}) {
if dummy.b {
dummy.x = x
}
}
var dummy struct {
b bool
x interface{}
}