gcc/gcc/graphite-clast-to-gimple.c

1705 lines
46 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Translation of CLAST (CLooG AST) to Gimple.
Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "diagnostic-core.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "sese.h"
#ifdef HAVE_cloog
#include "cloog/cloog.h"
#include "ppl_c.h"
#include "graphite-cloog-util.h"
#include "graphite-ppl.h"
#include "graphite-poly.h"
#include "graphite-clast-to-gimple.h"
#include "graphite-dependences.h"
#include "graphite-cloog-compat.h"
#ifndef CLOOG_LANGUAGE_C
#define CLOOG_LANGUAGE_C LANGUAGE_C
#endif
/* This flag is set when an error occurred during the translation of
CLAST to Gimple. */
static bool gloog_error;
/* Verifies properties that GRAPHITE should maintain during translation. */
static inline void
graphite_verify (void)
{
#ifdef ENABLE_CHECKING
verify_loop_structure ();
verify_dominators (CDI_DOMINATORS);
verify_loop_closed_ssa (true);
#endif
}
/* Stores the INDEX in a vector and the loop nesting LEVEL for a given
clast NAME. BOUND_ONE and BOUND_TWO represent the exact lower and
upper bounds that can be inferred from the polyhedral representation. */
typedef struct clast_name_index {
int index;
int level;
mpz_t bound_one, bound_two;
const char *name;
} *clast_name_index_p;
/* Returns a pointer to a new element of type clast_name_index_p built
from NAME, INDEX, LEVEL, BOUND_ONE, and BOUND_TWO. */
static inline clast_name_index_p
new_clast_name_index (const char *name, int index, int level,
mpz_t bound_one, mpz_t bound_two)
{
clast_name_index_p res = XNEW (struct clast_name_index);
res->name = name;
res->level = level;
res->index = index;
mpz_init (res->bound_one);
mpz_init (res->bound_two);
mpz_set (res->bound_one, bound_one);
mpz_set (res->bound_two, bound_two);
return res;
}
/* Free the memory taken by a clast_name_index struct. */
static void
free_clast_name_index (void *ptr)
{
struct clast_name_index *c = (struct clast_name_index *) ptr;
mpz_clear (c->bound_one);
mpz_clear (c->bound_two);
free (ptr);
}
/* For a given clast NAME, returns -1 if NAME is not in the
INDEX_TABLE, otherwise returns the loop level for the induction
variable NAME, or if it is a parameter, the parameter number in the
vector of parameters. */
static inline int
clast_name_to_level (clast_name_p name, htab_t index_table)
{
struct clast_name_index tmp;
PTR *slot;
#ifdef CLOOG_ORG
gcc_assert (name->type == clast_expr_name);
tmp.name = ((const struct clast_name *) name)->name;
#else
tmp.name = name;
#endif
slot = htab_find_slot (index_table, &tmp, NO_INSERT);
if (slot && *slot)
return ((struct clast_name_index *) *slot)->level;
return -1;
}
/* For a given clast NAME, returns -1 if it does not correspond to any
parameter, or otherwise, returns the index in the PARAMS or
SCATTERING_DIMENSIONS vector. */
static inline int
clast_name_to_index (clast_name_p name, htab_t index_table)
{
struct clast_name_index tmp;
PTR *slot;
#ifdef CLOOG_ORG
gcc_assert (name->type == clast_expr_name);
tmp.name = ((const struct clast_name *) name)->name;
#else
tmp.name = name;
#endif
slot = htab_find_slot (index_table, &tmp, NO_INSERT);
if (slot && *slot)
return ((struct clast_name_index *) *slot)->index;
return -1;
}
/* For a given clast NAME, initializes the lower and upper bounds BOUND_ONE
and BOUND_TWO stored in the INDEX_TABLE. Returns true when NAME has been
found in the INDEX_TABLE, false otherwise. */
static inline bool
clast_name_to_lb_ub (clast_name_p name, htab_t index_table, mpz_t bound_one,
mpz_t bound_two)
{
struct clast_name_index tmp;
PTR *slot;
#ifdef CLOOG_ORG
gcc_assert (name->type == clast_expr_name);
tmp.name = ((const struct clast_name *) name)->name;
#else
tmp.name = name;
#endif
slot = htab_find_slot (index_table, &tmp, NO_INSERT);
if (slot && *slot)
{
mpz_set (bound_one, ((struct clast_name_index *) *slot)->bound_one);
mpz_set (bound_two, ((struct clast_name_index *) *slot)->bound_two);
return true;
}
return false;
}
/* Records in INDEX_TABLE the INDEX and LEVEL for NAME. */
static inline void
save_clast_name_index (htab_t index_table, const char *name,
int index, int level, mpz_t bound_one, mpz_t bound_two)
{
struct clast_name_index tmp;
PTR *slot;
tmp.name = name;
slot = htab_find_slot (index_table, &tmp, INSERT);
if (slot)
{
free (*slot);
*slot = new_clast_name_index (name, index, level, bound_one, bound_two);
}
}
/* Computes a hash function for database element ELT. */
static inline hashval_t
clast_name_index_elt_info (const void *elt)
{
return htab_hash_pointer (((const struct clast_name_index *) elt)->name);
}
/* Compares database elements E1 and E2. */
static inline int
eq_clast_name_indexes (const void *e1, const void *e2)
{
const struct clast_name_index *elt1 = (const struct clast_name_index *) e1;
const struct clast_name_index *elt2 = (const struct clast_name_index *) e2;
return (elt1->name == elt2->name);
}
/* NEWIVS_INDEX binds CLooG's scattering name to the index of the tree
induction variable in NEWIVS.
PARAMS_INDEX binds CLooG's parameter name to the index of the tree
parameter in PARAMS. */
typedef struct ivs_params {
VEC (tree, heap) *params, **newivs;
htab_t newivs_index, params_index;
sese region;
} *ivs_params_p;
/* Returns the tree variable from the name NAME that was given in
Cloog representation. */
static tree
clast_name_to_gcc (clast_name_p name, ivs_params_p ip)
{
int index;
if (ip->params && ip->params_index)
{
index = clast_name_to_index (name, ip->params_index);
if (index >= 0)
return VEC_index (tree, ip->params, index);
}
gcc_assert (*(ip->newivs) && ip->newivs_index);
index = clast_name_to_index (name, ip->newivs_index);
gcc_assert (index >= 0);
return VEC_index (tree, *(ip->newivs), index);
}
/* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
static tree
max_precision_type (tree type1, tree type2)
{
enum machine_mode mode;
int p1, p2, precision;
tree type;
if (POINTER_TYPE_P (type1))
return type1;
if (POINTER_TYPE_P (type2))
return type2;
if (TYPE_UNSIGNED (type1)
&& TYPE_UNSIGNED (type2))
return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
p1 = TYPE_PRECISION (type1);
p2 = TYPE_PRECISION (type2);
if (p1 > p2)
precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1;
else
precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2;
if (precision > BITS_PER_WORD)
{
gloog_error = true;
return integer_type_node;
}
mode = smallest_mode_for_size (precision, MODE_INT);
precision = GET_MODE_PRECISION (mode);
type = build_nonstandard_integer_type (precision, false);
if (!type)
{
gloog_error = true;
return integer_type_node;
}
return type;
}
static tree
clast_to_gcc_expression (tree, struct clast_expr *, ivs_params_p);
/* Converts a Cloog reduction expression R with reduction operation OP
to a GCC expression tree of type TYPE. */
static tree
clast_to_gcc_expression_red (tree type, enum tree_code op,
struct clast_reduction *r, ivs_params_p ip)
{
int i;
tree res = clast_to_gcc_expression (type, r->elts[0], ip);
tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;
for (i = 1; i < r->n; i++)
{
tree t = clast_to_gcc_expression (operand_type, r->elts[i], ip);
res = fold_build2 (op, type, res, t);
}
return res;
}
/* Converts a Cloog AST expression E back to a GCC expression tree of
type TYPE. */
static tree
clast_to_gcc_expression (tree type, struct clast_expr *e, ivs_params_p ip)
{
switch (e->type)
{
case clast_expr_term:
{
struct clast_term *t = (struct clast_term *) e;
if (t->var)
{
if (mpz_cmp_si (t->val, 1) == 0)
{
tree name = clast_name_to_gcc (t->var, ip);
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
name = convert_to_ptrofftype (name);
name = fold_convert (type, name);
return name;
}
else if (mpz_cmp_si (t->val, -1) == 0)
{
tree name = clast_name_to_gcc (t->var, ip);
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
name = convert_to_ptrofftype (name);
name = fold_convert (type, name);
return fold_build1 (NEGATE_EXPR, type, name);
}
else
{
tree name = clast_name_to_gcc (t->var, ip);
tree cst = gmp_cst_to_tree (type, t->val);
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
name = convert_to_ptrofftype (name);
name = fold_convert (type, name);
if (!POINTER_TYPE_P (type))
return fold_build2 (MULT_EXPR, type, cst, name);
gloog_error = true;
return cst;
}
}
else
return gmp_cst_to_tree (type, t->val);
}
case clast_expr_red:
{
struct clast_reduction *r = (struct clast_reduction *) e;
switch (r->type)
{
case clast_red_sum:
return clast_to_gcc_expression_red
(type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
r, ip);
case clast_red_min:
return clast_to_gcc_expression_red (type, MIN_EXPR, r, ip);
case clast_red_max:
return clast_to_gcc_expression_red (type, MAX_EXPR, r, ip);
default:
gcc_unreachable ();
}
break;
}
case clast_expr_bin:
{
struct clast_binary *b = (struct clast_binary *) e;
struct clast_expr *lhs = (struct clast_expr *) b->LHS;
tree tl = clast_to_gcc_expression (type, lhs, ip);
tree tr = gmp_cst_to_tree (type, b->RHS);
switch (b->type)
{
case clast_bin_fdiv:
return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);
case clast_bin_cdiv:
return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);
case clast_bin_div:
return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);
case clast_bin_mod:
return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);
default:
gcc_unreachable ();
}
}
default:
gcc_unreachable ();
}
return NULL_TREE;
}
/* Return a type that could represent the values between BOUND_ONE and
BOUND_TWO. */
static tree
type_for_interval (mpz_t bound_one, mpz_t bound_two)
{
bool unsigned_p;
tree type;
enum machine_mode mode;
int wider_precision;
int precision = MAX (mpz_sizeinbase (bound_one, 2),
mpz_sizeinbase (bound_two, 2));
if (precision > BITS_PER_WORD)
{
gloog_error = true;
return integer_type_node;
}
if (mpz_cmp (bound_one, bound_two) <= 0)
unsigned_p = (mpz_sgn (bound_one) >= 0);
else
unsigned_p = (mpz_sgn (bound_two) >= 0);
mode = smallest_mode_for_size (precision, MODE_INT);
wider_precision = GET_MODE_PRECISION (mode);
/* As we want to generate signed types as much as possible, try to
fit the interval [bound_one, bound_two] in a signed type. For example,
supposing that we have the interval [0, 100], instead of
generating unsigned char, we want to generate a signed char. */
if (unsigned_p && precision < wider_precision)
unsigned_p = false;
type = build_nonstandard_integer_type (wider_precision, unsigned_p);
if (!type)
{
gloog_error = true;
return integer_type_node;
}
return type;
}
/* Return a type that could represent the integer value VAL, or
otherwise return NULL_TREE. */
static tree
type_for_value (mpz_t val)
{
return type_for_interval (val, val);
}
/* Return the type for the clast_term T. Initializes BOUND_ONE and
BOUND_TWO to the bounds of the term. */
static tree
type_for_clast_term (struct clast_term *t, ivs_params_p ip, mpz_t bound_one,
mpz_t bound_two)
{
clast_name_p name = t->var;
bool found = false;
gcc_assert (t->expr.type == clast_expr_term);
if (!name)
{
mpz_set (bound_one, t->val);
mpz_set (bound_two, t->val);
return type_for_value (t->val);
}
if (ip->params && ip->params_index)
found = clast_name_to_lb_ub (name, ip->params_index, bound_one, bound_two);
if (!found)
{
gcc_assert (*(ip->newivs) && ip->newivs_index);
found = clast_name_to_lb_ub (name, ip->newivs_index,
bound_one, bound_two);
gcc_assert (found);
}
mpz_mul (bound_one, bound_one, t->val);
mpz_mul (bound_two, bound_two, t->val);
return TREE_TYPE (clast_name_to_gcc (name, ip));
}
static tree
type_for_clast_expr (struct clast_expr *, ivs_params_p, mpz_t, mpz_t);
/* Return the type for the clast_reduction R. Initializes BOUND_ONE
and BOUND_TWO to the bounds of the reduction expression. */
static tree
type_for_clast_red (struct clast_reduction *r, ivs_params_p ip,
mpz_t bound_one, mpz_t bound_two)
{
int i;
tree type = type_for_clast_expr (r->elts[0], ip, bound_one, bound_two);
mpz_t b1, b2, m1, m2;
if (r->n == 1)
return type;
mpz_init (b1);
mpz_init (b2);
mpz_init (m1);
mpz_init (m2);
for (i = 1; i < r->n; i++)
{
tree t = type_for_clast_expr (r->elts[i], ip, b1, b2);
type = max_precision_type (type, t);
switch (r->type)
{
case clast_red_sum:
value_min (m1, bound_one, bound_two);
value_min (m2, b1, b2);
mpz_add (bound_one, m1, m2);
value_max (m1, bound_one, bound_two);
value_max (m2, b1, b2);
mpz_add (bound_two, m1, m2);
break;
case clast_red_min:
value_min (bound_one, bound_one, bound_two);
value_min (bound_two, b1, b2);
break;
case clast_red_max:
value_max (bound_one, bound_one, bound_two);
value_max (bound_two, b1, b2);
break;
default:
gcc_unreachable ();
break;
}
}
mpz_clear (b1);
mpz_clear (b2);
mpz_clear (m1);
mpz_clear (m2);
/* Return a type that can represent the result of the reduction. */
return max_precision_type (type, type_for_interval (bound_one, bound_two));
}
/* Return the type for the clast_binary B used in STMT. */
static tree
type_for_clast_bin (struct clast_binary *b, ivs_params_p ip, mpz_t bound_one,
mpz_t bound_two)
{
mpz_t one;
tree l = type_for_clast_expr ((struct clast_expr *) b->LHS, ip,
bound_one, bound_two);
tree r = type_for_value (b->RHS);
tree type = max_precision_type (l, r);
switch (b->type)
{
case clast_bin_fdiv:
mpz_mdiv (bound_one, bound_one, b->RHS);
mpz_mdiv (bound_two, bound_two, b->RHS);
break;
case clast_bin_cdiv:
mpz_mdiv (bound_one, bound_one, b->RHS);
mpz_mdiv (bound_two, bound_two, b->RHS);
mpz_init (one);
mpz_add (bound_one, bound_one, one);
mpz_add (bound_two, bound_two, one);
mpz_clear (one);
break;
case clast_bin_div:
mpz_div (bound_one, bound_one, b->RHS);
mpz_div (bound_two, bound_two, b->RHS);
break;
case clast_bin_mod:
mpz_mod (bound_one, bound_one, b->RHS);
mpz_mod (bound_two, bound_two, b->RHS);
break;
default:
gcc_unreachable ();
}
/* Return a type that can represent the result of the reduction. */
return max_precision_type (type, type_for_interval (bound_one, bound_two));
}
/* Returns the type for the CLAST expression E when used in statement
STMT. */
static tree
type_for_clast_expr (struct clast_expr *e, ivs_params_p ip, mpz_t bound_one,
mpz_t bound_two)
{
switch (e->type)
{
case clast_expr_term:
return type_for_clast_term ((struct clast_term *) e, ip,
bound_one, bound_two);
case clast_expr_red:
return type_for_clast_red ((struct clast_reduction *) e, ip,
bound_one, bound_two);
case clast_expr_bin:
return type_for_clast_bin ((struct clast_binary *) e, ip,
bound_one, bound_two);
default:
gcc_unreachable ();
}
return NULL_TREE;
}
/* Returns the type for the equation CLEQ. */
static tree
type_for_clast_eq (struct clast_equation *cleq, ivs_params_p ip)
{
mpz_t bound_one, bound_two;
tree l, r;
mpz_init (bound_one);
mpz_init (bound_two);
l = type_for_clast_expr (cleq->LHS, ip, bound_one, bound_two);
r = type_for_clast_expr (cleq->RHS, ip, bound_one, bound_two);
mpz_clear (bound_one);
mpz_clear (bound_two);
return max_precision_type (l, r);
}
/* Translates a clast equation CLEQ to a tree. */
static tree
graphite_translate_clast_equation (struct clast_equation *cleq,
ivs_params_p ip)
{
enum tree_code comp;
tree type = type_for_clast_eq (cleq, ip);
tree lhs = clast_to_gcc_expression (type, cleq->LHS, ip);
tree rhs = clast_to_gcc_expression (type, cleq->RHS, ip);
if (cleq->sign == 0)
comp = EQ_EXPR;
else if (cleq->sign > 0)
comp = GE_EXPR;
else
comp = LE_EXPR;
return fold_build2 (comp, boolean_type_node, lhs, rhs);
}
/* Creates the test for the condition in STMT. */
static tree
graphite_create_guard_cond_expr (struct clast_guard *stmt,
ivs_params_p ip)
{
tree cond = NULL;
int i;
for (i = 0; i < stmt->n; i++)
{
tree eq = graphite_translate_clast_equation (&stmt->eq[i], ip);
if (cond)
cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
else
cond = eq;
}
return cond;
}
/* Creates a new if region corresponding to Cloog's guard. */
static edge
graphite_create_new_guard (edge entry_edge, struct clast_guard *stmt,
ivs_params_p ip)
{
tree cond_expr = graphite_create_guard_cond_expr (stmt, ip);
edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
return exit_edge;
}
/* Compute the lower bound LOW and upper bound UP for the parameter
PARAM in scop SCOP based on the constraints in the context. */
static void
compute_bounds_for_param (scop_p scop, int param, mpz_t low, mpz_t up)
{
ppl_Linear_Expression_t le;
/* Prepare the linear expression corresponding to the parameter that
we want to maximize/minimize. */
ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
ppl_set_coef (le, param, 1);
ppl_max_for_le_pointset (SCOP_CONTEXT (scop), le, up);
ppl_min_for_le_pointset (SCOP_CONTEXT (scop), le, low);
ppl_delete_Linear_Expression (le);
}
/* Compute the lower bound LOW and upper bound UP for the induction
variable at LEVEL for the statement PBB, based on the transformed
scattering of PBB: T|I|G|Cst, with T the scattering transform, I
the iteration domain, and G the context parameters. */
static void
compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up)
{
ppl_Pointset_Powerset_C_Polyhedron_t ps;
ppl_Linear_Expression_t le;
combine_context_id_scat (&ps, pbb, false);
/* Prepare the linear expression corresponding to the level that we
want to maximize/minimize. */
{
ppl_dimension_type dim = pbb_nb_scattering_transform (pbb)
+ pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
ppl_new_Linear_Expression_with_dimension (&le, dim);
ppl_set_coef (le, psct_dynamic_dim (pbb, level), 1);
}
ppl_max_for_le_pointset (ps, le, up);
ppl_min_for_le_pointset (ps, le, low);
ppl_delete_Linear_Expression (le);
ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
}
/* Walks a CLAST and returns the first statement in the body of a
loop.
FIXME: This function should not be used to get a PBB in the STMT
loop in order to find out the iteration domain of the loop: the
counter example from Tobias is:
| for (i = 0; i < 100; i++)
| {
| if (i == 0)
| S1;
| S2;
| }
This function would return S1 whose iteration domain contains only
one point "i = 0", whereas the iteration domain of S2 has 100 points.
This should be implemented using some functionality existing in
CLooG-ISL. */
static struct clast_user_stmt *
clast_get_body_of_loop (struct clast_stmt *stmt)
{
if (!stmt
|| CLAST_STMT_IS_A (stmt, stmt_user))
return (struct clast_user_stmt *) stmt;
if (CLAST_STMT_IS_A (stmt, stmt_for))
return clast_get_body_of_loop (((struct clast_for *) stmt)->body);
if (CLAST_STMT_IS_A (stmt, stmt_guard))
return clast_get_body_of_loop (((struct clast_guard *) stmt)->then);
if (CLAST_STMT_IS_A (stmt, stmt_block))
return clast_get_body_of_loop (((struct clast_block *) stmt)->body);
if (CLAST_STMT_IS_A (stmt, stmt_ass))
return clast_get_body_of_loop (stmt->next);
gcc_unreachable ();
}
/* Returns the type for the induction variable for the loop translated
from STMT_FOR. */
static tree
type_for_clast_for (struct clast_for *stmt_for, ivs_params_p ip)
{
mpz_t bound_one, bound_two;
tree lb_type, ub_type;
mpz_init (bound_one);
mpz_init (bound_two);
lb_type = type_for_clast_expr (stmt_for->LB, ip, bound_one, bound_two);
ub_type = type_for_clast_expr (stmt_for->UB, ip, bound_one, bound_two);
mpz_clear (bound_one);
mpz_clear (bound_two);
return max_precision_type (lb_type, ub_type);
}
/* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
induction variable for the new LOOP. New LOOP is attached to CFG
starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
CLooG's scattering name to the induction variable created for the
loop of STMT. The new induction variable is inserted in the NEWIVS
vector and is of type TYPE. */
static struct loop *
graphite_create_new_loop (edge entry_edge, struct clast_for *stmt,
loop_p outer, tree type, tree lb, tree ub,
int level, ivs_params_p ip)
{
mpz_t low, up;
struct clast_user_stmt *body
= clast_get_body_of_loop ((struct clast_stmt *) stmt);
poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (body->statement);
tree stride = gmp_cst_to_tree (type, stmt->stride);
tree ivvar = create_tmp_var (type, "graphite_IV");
tree iv, iv_after_increment;
loop_p loop = create_empty_loop_on_edge
(entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
outer ? outer : entry_edge->src->loop_father);
add_referenced_var (ivvar);
mpz_init (low);
mpz_init (up);
compute_bounds_for_level (pbb, level, low, up);
save_clast_name_index (ip->newivs_index, stmt->iterator,
VEC_length (tree, *(ip->newivs)), level, low, up);
mpz_clear (low);
mpz_clear (up);
VEC_safe_push (tree, heap, *(ip->newivs), iv);
return loop;
}
/* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the
induction variables of the loops around GBB in SESE. */
static void
build_iv_mapping (VEC (tree, heap) *iv_map, struct clast_user_stmt *user_stmt,
ivs_params_p ip)
{
struct clast_stmt *t;
int depth = 0;
CloogStatement *cs = user_stmt->statement;
poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
mpz_t bound_one, bound_two;
mpz_init (bound_one);
mpz_init (bound_two);
for (t = user_stmt->substitutions; t; t = t->next, depth++)
{
struct clast_expr *expr = (struct clast_expr *)
((struct clast_assignment *)t)->RHS;
tree type = type_for_clast_expr (expr, ip, bound_one, bound_two);
tree new_name = clast_to_gcc_expression (type, expr, ip);
loop_p old_loop = gbb_loop_at_index (gbb, ip->region, depth);
VEC_replace (tree, iv_map, old_loop->num, new_name);
}
mpz_clear (bound_one);
mpz_clear (bound_two);
}
/* Construct bb_pbb_def with BB and PBB. */
static bb_pbb_def *
new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
{
bb_pbb_def *bb_pbb_p;
bb_pbb_p = XNEW (bb_pbb_def);
bb_pbb_p->bb = bb;
bb_pbb_p->pbb = pbb;
return bb_pbb_p;
}
/* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
static void
mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping)
{
bb_pbb_def tmp;
PTR *x;
tmp.bb = bb;
x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT);
if (x && !*x)
*x = new_bb_pbb_def (bb, pbb);
}
/* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
static poly_bb_p
find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb)
{
bb_pbb_def tmp;
PTR *slot;
tmp.bb = bb;
slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT);
if (slot && *slot)
return ((bb_pbb_def *) *slot)->pbb;
return NULL;
}
/* Check data dependency in LOOP at level LEVEL.
BB_PBB_MAPPING is a basic_block and it's related poly_bb_p
mapping. */
static bool
dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level)
{
unsigned i,j;
basic_block *bbs = get_loop_body_in_dom_order (loop);
for (i = 0; i < loop->num_nodes; i++)
{
poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);
if (pbb1 == NULL)
continue;
for (j = 0; j < loop->num_nodes; j++)
{
poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]);
if (pbb2 == NULL)
continue;
if (dependency_between_pbbs_p (pbb1, pbb2, level))
{
free (bbs);
return true;
}
}
}
free (bbs);
return false;
}
/* Translates a clast user statement STMT to gimple.
- NEXT_E is the edge where new generated code should be attached.
- CONTEXT_LOOP is the loop in which the generated code will be placed
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
static edge
translate_clast_user (struct clast_user_stmt *stmt, edge next_e,
htab_t bb_pbb_mapping, ivs_params_p ip)
{
int i, nb_loops;
basic_block new_bb;
poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement);
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
VEC (tree, heap) *iv_map;
if (GBB_BB (gbb) == ENTRY_BLOCK_PTR)
return next_e;
nb_loops = number_of_loops ();
iv_map = VEC_alloc (tree, heap, nb_loops);
for (i = 0; i < nb_loops; i++)
VEC_quick_push (tree, iv_map, NULL_TREE);
build_iv_mapping (iv_map, stmt, ip);
next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), ip->region,
next_e, iv_map, &gloog_error);
VEC_free (tree, heap, iv_map);
new_bb = next_e->src;
mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
update_ssa (TODO_update_ssa);
return next_e;
}
/* Creates a new if region protecting the loop to be executed, if the execution
count is zero (lb > ub). */
static edge
graphite_create_new_loop_guard (edge entry_edge, struct clast_for *stmt,
tree *type, tree *lb, tree *ub,
ivs_params_p ip)
{
tree cond_expr;
edge exit_edge;
*type = type_for_clast_for (stmt, ip);
*lb = clast_to_gcc_expression (*type, stmt->LB, ip);
*ub = clast_to_gcc_expression (*type, stmt->UB, ip);
/* When ub is simply a constant or a parameter, use lb <= ub. */
if (TREE_CODE (*ub) == INTEGER_CST || TREE_CODE (*ub) == SSA_NAME)
cond_expr = fold_build2 (LE_EXPR, boolean_type_node, *lb, *ub);
else
{
tree one = (POINTER_TYPE_P (*type)
? convert_to_ptrofftype (integer_one_node)
: fold_convert (*type, integer_one_node));
/* Adding +1 and using LT_EXPR helps with loop latches that have a
loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
2^k-1 due to integer overflow, and the condition lb <= ub is true,
even if we do not want this. However lb < ub + 1 is false, as
expected. */
tree ub_one = fold_build2 (POINTER_TYPE_P (*type) ? POINTER_PLUS_EXPR
: PLUS_EXPR, *type, *ub, one);
cond_expr = fold_build2 (LT_EXPR, boolean_type_node, *lb, ub_one);
}
exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
return exit_edge;
}
static edge
translate_clast (loop_p, struct clast_stmt *, edge, htab_t, int, ivs_params_p);
/* Create the loop for a clast for statement.
- NEXT_E is the edge where new generated code should be attached.
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
static edge
translate_clast_for_loop (loop_p context_loop, struct clast_for *stmt,
edge next_e, htab_t bb_pbb_mapping, int level,
tree type, tree lb, tree ub, ivs_params_p ip)
{
struct loop *loop = graphite_create_new_loop (next_e, stmt, context_loop,
type, lb, ub, level, ip);
edge last_e = single_exit (loop);
edge to_body = single_succ_edge (loop->header);
basic_block after = to_body->dest;
/* Create a basic block for loop close phi nodes. */
last_e = single_succ_edge (split_edge (last_e));
/* Translate the body of the loop. */
next_e = translate_clast (loop, stmt->body, to_body, bb_pbb_mapping,
level + 1, ip);
redirect_edge_succ_nodup (next_e, after);
set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
if (flag_loop_parallelize_all
&& !dependency_in_loop_p (loop, bb_pbb_mapping, level))
loop->can_be_parallel = true;
return last_e;
}
/* Translates a clast for statement STMT to gimple. First a guard is created
protecting the loop, if it is executed zero times. In this guard we create
the real loop structure.
- NEXT_E is the edge where new generated code should be attached.
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
static edge
translate_clast_for (loop_p context_loop, struct clast_for *stmt, edge next_e,
htab_t bb_pbb_mapping, int level, ivs_params_p ip)
{
tree type, lb, ub;
edge last_e = graphite_create_new_loop_guard (next_e, stmt, &type,
&lb, &ub, ip);
edge true_e = get_true_edge_from_guard_bb (next_e->dest);
translate_clast_for_loop (context_loop, stmt, true_e, bb_pbb_mapping, level,
type, lb, ub, ip);
return last_e;
}
/* Translates a clast assignment STMT to gimple.
- NEXT_E is the edge where new generated code should be attached.
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
static edge
translate_clast_assignment (struct clast_assignment *stmt, edge next_e,
int level, ivs_params_p ip)
{
gimple_seq stmts;
mpz_t bound_one, bound_two;
tree type, new_name, var;
edge res = single_succ_edge (split_edge (next_e));
struct clast_expr *expr = (struct clast_expr *) stmt->RHS;
mpz_init (bound_one);
mpz_init (bound_two);
type = type_for_clast_expr (expr, ip, bound_one, bound_two);
var = create_tmp_var (type, "graphite_var");
new_name = force_gimple_operand (clast_to_gcc_expression (type, expr, ip),
&stmts, true, var);
add_referenced_var (var);
if (stmts)
{
gsi_insert_seq_on_edge (next_e, stmts);
gsi_commit_edge_inserts ();
}
save_clast_name_index (ip->newivs_index, stmt->LHS,
VEC_length (tree, *(ip->newivs)), level,
bound_one, bound_two);
VEC_safe_push (tree, heap, *(ip->newivs), new_name);
mpz_clear (bound_one);
mpz_clear (bound_two);
return res;
}
/* Translates a clast guard statement STMT to gimple.
- NEXT_E is the edge where new generated code should be attached.
- CONTEXT_LOOP is the loop in which the generated code will be placed
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
static edge
translate_clast_guard (loop_p context_loop, struct clast_guard *stmt,
edge next_e, htab_t bb_pbb_mapping, int level,
ivs_params_p ip)
{
edge last_e = graphite_create_new_guard (next_e, stmt, ip);
edge true_e = get_true_edge_from_guard_bb (next_e->dest);
translate_clast (context_loop, stmt->then, true_e, bb_pbb_mapping, level, ip);
return last_e;
}
/* Translates a CLAST statement STMT to GCC representation in the
context of a SESE.
- NEXT_E is the edge where new generated code should be attached.
- CONTEXT_LOOP is the loop in which the generated code will be placed
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
static edge
translate_clast (loop_p context_loop, struct clast_stmt *stmt, edge next_e,
htab_t bb_pbb_mapping, int level, ivs_params_p ip)
{
if (!stmt)
return next_e;
if (CLAST_STMT_IS_A (stmt, stmt_root))
; /* Do nothing. */
else if (CLAST_STMT_IS_A (stmt, stmt_user))
next_e = translate_clast_user ((struct clast_user_stmt *) stmt,
next_e, bb_pbb_mapping, ip);
else if (CLAST_STMT_IS_A (stmt, stmt_for))
next_e = translate_clast_for (context_loop, (struct clast_for *) stmt,
next_e, bb_pbb_mapping, level, ip);
else if (CLAST_STMT_IS_A (stmt, stmt_guard))
next_e = translate_clast_guard (context_loop, (struct clast_guard *) stmt,
next_e, bb_pbb_mapping, level, ip);
else if (CLAST_STMT_IS_A (stmt, stmt_block))
next_e = translate_clast (context_loop, ((struct clast_block *) stmt)->body,
next_e, bb_pbb_mapping, level, ip);
else if (CLAST_STMT_IS_A (stmt, stmt_ass))
next_e = translate_clast_assignment ((struct clast_assignment *) stmt,
next_e, level, ip);
else
gcc_unreachable();
recompute_all_dominators ();
graphite_verify ();
return translate_clast (context_loop, stmt->next, next_e, bb_pbb_mapping,
level, ip);
}
/* Free the SCATTERING domain list. */
static void
free_scattering (CloogScatteringList *scattering)
{
while (scattering)
{
CloogScattering *dom = cloog_scattering (scattering);
CloogScatteringList *next = cloog_next_scattering (scattering);
cloog_scattering_free (dom);
free (scattering);
scattering = next;
}
}
/* Initialize Cloog's parameter names from the names used in GIMPLE.
Initialize Cloog's iterator names, using 'graphite_iterator_%d'
from 0 to scop_nb_loops (scop). */
static void
initialize_cloog_names (scop_p scop, CloogProgram *prog)
{
sese region = SCOP_REGION (scop);
int i;
int nb_iterators = scop_max_loop_depth (scop);
int nb_scattering = cloog_program_nb_scattdims (prog);
int nb_parameters = VEC_length (tree, SESE_PARAMS (region));
char **iterators = XNEWVEC (char *, nb_iterators * 2);
char **scattering = XNEWVEC (char *, nb_scattering);
char **parameters= XNEWVEC (char *, nb_parameters);
cloog_program_set_names (prog, cloog_names_malloc ());
for (i = 0; i < nb_parameters; i++)
{
tree param = VEC_index (tree, SESE_PARAMS (region), i);
const char *name = get_name (param);
int len;
if (!name)
name = "T";
len = strlen (name);
len += 17;
parameters[i] = XNEWVEC (char, len + 1);
snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param));
}
cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters);
cloog_names_set_parameters (cloog_program_names (prog), parameters);
for (i = 0; i < nb_iterators; i++)
{
int len = 4 + 16;
iterators[i] = XNEWVEC (char, len);
snprintf (iterators[i], len, "git_%d", i);
}
cloog_names_set_nb_iterators (cloog_program_names (prog),
nb_iterators);
cloog_names_set_iterators (cloog_program_names (prog),
iterators);
for (i = 0; i < nb_scattering; i++)
{
int len = 5 + 16;
scattering[i] = XNEWVEC (char, len);
snprintf (scattering[i], len, "scat_%d", i);
}
cloog_names_set_nb_scattering (cloog_program_names (prog),
nb_scattering);
cloog_names_set_scattering (cloog_program_names (prog),
scattering);
}
/* Initialize a CLooG input file. */
static FILE *
init_cloog_input_file (int scop_number)
{
FILE *graphite_out_file;
int len = strlen (dump_base_name);
char *dumpname = XNEWVEC (char, len + 25);
char *s_scop_number = XNEWVEC (char, 15);
memcpy (dumpname, dump_base_name, len + 1);
strip_off_ending (dumpname, len);
sprintf (s_scop_number, ".%d", scop_number);
strcat (dumpname, s_scop_number);
strcat (dumpname, ".cloog");
graphite_out_file = fopen (dumpname, "w+b");
if (graphite_out_file == 0)
fatal_error ("can%'t open %s for writing: %m", dumpname);
free (dumpname);
return graphite_out_file;
}
/* Build cloog program for SCoP. */
static void
build_cloog_prog (scop_p scop, CloogProgram *prog,
CloogOptions *options)
{
int i;
int max_nb_loops = scop_max_loop_depth (scop);
poly_bb_p pbb;
CloogLoop *loop_list = NULL;
CloogBlockList *block_list = NULL;
CloogScatteringList *scattering = NULL;
int nbs = 2 * max_nb_loops + 1;
int *scaldims;
cloog_program_set_context
(prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop),
scop_nb_params (scop), cloog_state));
nbs = unify_scattering_dimensions (scop);
scaldims = (int *) xmalloc (nbs * (sizeof (int)));
cloog_program_set_nb_scattdims (prog, nbs);
initialize_cloog_names (scop, prog);
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
{
CloogStatement *stmt;
CloogBlock *block;
CloogDomain *dom;
/* Dead code elimination: when the domain of a PBB is empty,
don't generate code for the PBB. */
if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb)))
continue;
/* Build the new statement and its block. */
stmt = cloog_statement_alloc (cloog_state, pbb_index (pbb));
dom = new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb),
scop_nb_params (scop),
cloog_state);
block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb));
cloog_statement_set_usr (stmt, pbb);
/* Build loop list. */
{
CloogLoop *new_loop_list = cloog_loop_malloc (cloog_state);
cloog_loop_set_next (new_loop_list, loop_list);
cloog_loop_set_domain (new_loop_list, dom);
cloog_loop_set_block (new_loop_list, block);
loop_list = new_loop_list;
}
/* Build block list. */
{
CloogBlockList *new_block_list = cloog_block_list_malloc ();
cloog_block_list_set_next (new_block_list, block_list);
cloog_block_list_set_block (new_block_list, block);
block_list = new_block_list;
}
/* Build scattering list. */
{
/* XXX: Replace with cloog_domain_list_alloc(), when available. */
CloogScatteringList *new_scattering
= (CloogScatteringList *) xmalloc (sizeof (CloogScatteringList));
ppl_Polyhedron_t scat;
CloogScattering *dom;
scat = PBB_TRANSFORMED_SCATTERING (pbb);
dom = new_Cloog_Scattering_from_ppl_Polyhedron
(scat, scop_nb_params (scop), pbb_nb_scattering_transform (pbb),
cloog_state);
cloog_set_next_scattering (new_scattering, scattering);
cloog_set_scattering (new_scattering, dom);
scattering = new_scattering;
}
}
cloog_program_set_loop (prog, loop_list);
cloog_program_set_blocklist (prog, block_list);
for (i = 0; i < nbs; i++)
scaldims[i] = 0 ;
cloog_program_set_scaldims (prog, scaldims);
/* Extract scalar dimensions to simplify the code generation problem. */
cloog_program_extract_scalars (prog, scattering, options);
/* Dump a .cloog input file, if requested. This feature is only
enabled in the Graphite branch. */
if (0)
{
static size_t file_scop_number = 0;
FILE *cloog_file = init_cloog_input_file (file_scop_number);
cloog_program_dump_cloog (cloog_file, prog, scattering);
++file_scop_number;
}
/* Apply scattering. */
cloog_program_scatter (prog, scattering, options);
free_scattering (scattering);
/* Iterators corresponding to scalar dimensions have to be extracted. */
cloog_names_scalarize (cloog_program_names (prog), nbs,
cloog_program_scaldims (prog));
/* Free blocklist. */
{
CloogBlockList *next = cloog_program_blocklist (prog);
while (next)
{
CloogBlockList *toDelete = next;
next = cloog_block_list_next (next);
cloog_block_list_set_next (toDelete, NULL);
cloog_block_list_set_block (toDelete, NULL);
cloog_block_list_free (toDelete);
}
cloog_program_set_blocklist (prog, NULL);
}
}
/* Return the options that will be used in GLOOG. */
static CloogOptions *
set_cloog_options (void)
{
CloogOptions *options = cloog_options_malloc (cloog_state);
/* Change cloog output language to C. If we do use FORTRAN instead, cloog
will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
we pass an incomplete program to cloog. */
options->language = CLOOG_LANGUAGE_C;
/* Enable complex equality spreading: removes dummy statements
(assignments) in the generated code which repeats the
substitution equations for statements. This is useless for
GLooG. */
options->esp = 1;
#ifdef CLOOG_ORG
/* Silence CLooG to avoid failing tests due to debug output to stderr. */
options->quiet = 1;
#else
/* Enable C pretty-printing mode: normalizes the substitution
equations for statements. */
options->cpp = 1;
#endif
/* Allow cloog to build strides with a stride width different to one.
This example has stride = 4:
for (i = 0; i < 20; i += 4)
A */
options->strides = 1;
/* Disable optimizations and make cloog generate source code closer to the
input. This is useful for debugging, but later we want the optimized
code.
XXX: We can not disable optimizations, as loop blocking is not working
without them. */
if (0)
{
options->f = -1;
options->l = INT_MAX;
}
return options;
}
/* Prints STMT to STDERR. */
void
print_clast_stmt (FILE *file, struct clast_stmt *stmt)
{
CloogOptions *options = set_cloog_options ();
clast_pprint (file, stmt, 0, options);
cloog_options_free (options);
}
/* Prints STMT to STDERR. */
DEBUG_FUNCTION void
debug_clast_stmt (struct clast_stmt *stmt)
{
print_clast_stmt (stderr, stmt);
}
/* Translate SCOP to a CLooG program and clast. These two
representations should be freed together: a clast cannot be used
without a program. */
cloog_prog_clast
scop_to_clast (scop_p scop)
{
CloogOptions *options = set_cloog_options ();
cloog_prog_clast pc;
/* Connect new cloog prog generation to graphite. */
pc.prog = cloog_program_malloc ();
build_cloog_prog (scop, pc.prog, options);
pc.prog = cloog_program_generate (pc.prog, options);
pc.stmt = cloog_clast_create (pc.prog, options);
cloog_options_free (options);
return pc;
}
/* Prints to FILE the code generated by CLooG for SCOP. */
void
print_generated_program (FILE *file, scop_p scop)
{
CloogOptions *options = set_cloog_options ();
cloog_prog_clast pc = scop_to_clast (scop);
fprintf (file, " (prog: \n");
cloog_program_print (file, pc.prog);
fprintf (file, " )\n");
fprintf (file, " (clast: \n");
clast_pprint (file, pc.stmt, 0, options);
fprintf (file, " )\n");
cloog_options_free (options);
cloog_clast_free (pc.stmt);
cloog_program_free (pc.prog);
}
/* Prints to STDERR the code generated by CLooG for SCOP. */
DEBUG_FUNCTION void
debug_generated_program (scop_p scop)
{
print_generated_program (stderr, scop);
}
/* Add CLooG names to parameter index. The index is used to translate
back from CLooG names to GCC trees. */
static void
create_params_index (scop_p scop, htab_t index_table, CloogProgram *prog) {
CloogNames* names = cloog_program_names (prog);
int nb_parameters = cloog_names_nb_parameters (names);
char **parameters = cloog_names_parameters (names);
int i;
mpz_t bound_one, bound_two;
mpz_init (bound_one);
mpz_init (bound_two);
for (i = 0; i < nb_parameters; i++)
{
compute_bounds_for_param (scop, i, bound_one, bound_two);
save_clast_name_index (index_table, parameters[i], i, i,
bound_one, bound_two);
}
mpz_clear (bound_one);
mpz_clear (bound_two);
}
/* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
the given SCOP. Return true if code generation succeeded.
BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
*/
bool
gloog (scop_p scop, htab_t bb_pbb_mapping)
{
VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10);
loop_p context_loop;
sese region = SCOP_REGION (scop);
ifsese if_region = NULL;
htab_t newivs_index, params_index;
cloog_prog_clast pc;
struct ivs_params ip;
timevar_push (TV_GRAPHITE_CODE_GEN);
gloog_error = false;
pc = scop_to_clast (scop);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nCLAST generated by CLooG: \n");
print_clast_stmt (dump_file, pc.stmt);
fprintf (dump_file, "\n");
}
recompute_all_dominators ();
graphite_verify ();
if_region = move_sese_in_condition (region);
sese_insert_phis_for_liveouts (region,
if_region->region->exit->src,
if_region->false_region->exit,
if_region->true_region->exit);
recompute_all_dominators ();
graphite_verify ();
context_loop = SESE_ENTRY (region)->src->loop_father;
newivs_index = htab_create (10, clast_name_index_elt_info,
eq_clast_name_indexes, free_clast_name_index);
params_index = htab_create (10, clast_name_index_elt_info,
eq_clast_name_indexes, free_clast_name_index);
create_params_index (scop, params_index, pc.prog);
ip.newivs = &newivs;
ip.newivs_index = newivs_index;
ip.params = SESE_PARAMS (region);
ip.params_index = params_index;
ip.region = region;
translate_clast (context_loop, pc.stmt, if_region->true_region->entry,
bb_pbb_mapping, 0, &ip);
graphite_verify ();
scev_reset ();
recompute_all_dominators ();
graphite_verify ();
if (gloog_error)
set_ifsese_condition (if_region, integer_zero_node);
free (if_region->true_region);
free (if_region->region);
free (if_region);
htab_delete (newivs_index);
htab_delete (params_index);
VEC_free (tree, heap, newivs);
cloog_clast_free (pc.stmt);
cloog_program_free (pc.prog);
timevar_pop (TV_GRAPHITE_CODE_GEN);
if (dump_file && (dump_flags & TDF_DETAILS))
{
loop_p loop;
loop_iterator li;
int num_no_dependency = 0;
FOR_EACH_LOOP (li, loop, 0)
if (loop->can_be_parallel)
num_no_dependency++;
fprintf (dump_file, "\n%d loops carried no dependency.\n",
num_no_dependency);
}
return !gloog_error;
}
#endif