dee5ea7a0b
From-SVN: r210743
265 lines
6.8 KiB
C++
265 lines
6.8 KiB
C++
//===-- tsan_mman.cc ------------------------------------------------------===//
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer (TSan), a race detector.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "sanitizer_common/sanitizer_placement_new.h"
|
|
#include "tsan_mman.h"
|
|
#include "tsan_rtl.h"
|
|
#include "tsan_report.h"
|
|
#include "tsan_flags.h"
|
|
|
|
// May be overriden by front-end.
|
|
extern "C" void WEAK __tsan_malloc_hook(void *ptr, uptr size) {
|
|
(void)ptr;
|
|
(void)size;
|
|
}
|
|
|
|
extern "C" void WEAK __tsan_free_hook(void *ptr) {
|
|
(void)ptr;
|
|
}
|
|
|
|
namespace __tsan {
|
|
|
|
COMPILER_CHECK(sizeof(MBlock) == 16);
|
|
|
|
void MBlock::Lock() {
|
|
atomic_uintptr_t *a = reinterpret_cast<atomic_uintptr_t*>(this);
|
|
uptr v = atomic_load(a, memory_order_relaxed);
|
|
for (int iter = 0;; iter++) {
|
|
if (v & 1) {
|
|
if (iter < 10)
|
|
proc_yield(20);
|
|
else
|
|
internal_sched_yield();
|
|
v = atomic_load(a, memory_order_relaxed);
|
|
continue;
|
|
}
|
|
if (atomic_compare_exchange_weak(a, &v, v | 1, memory_order_acquire))
|
|
break;
|
|
}
|
|
}
|
|
|
|
void MBlock::Unlock() {
|
|
atomic_uintptr_t *a = reinterpret_cast<atomic_uintptr_t*>(this);
|
|
uptr v = atomic_load(a, memory_order_relaxed);
|
|
DCHECK(v & 1);
|
|
atomic_store(a, v & ~1, memory_order_relaxed);
|
|
}
|
|
|
|
struct MapUnmapCallback {
|
|
void OnMap(uptr p, uptr size) const { }
|
|
void OnUnmap(uptr p, uptr size) const {
|
|
// We are about to unmap a chunk of user memory.
|
|
// Mark the corresponding shadow memory as not needed.
|
|
DontNeedShadowFor(p, size);
|
|
}
|
|
};
|
|
|
|
static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
|
|
Allocator *allocator() {
|
|
return reinterpret_cast<Allocator*>(&allocator_placeholder);
|
|
}
|
|
|
|
void InitializeAllocator() {
|
|
allocator()->Init();
|
|
}
|
|
|
|
void AllocatorThreadStart(ThreadState *thr) {
|
|
allocator()->InitCache(&thr->alloc_cache);
|
|
internal_allocator()->InitCache(&thr->internal_alloc_cache);
|
|
}
|
|
|
|
void AllocatorThreadFinish(ThreadState *thr) {
|
|
allocator()->DestroyCache(&thr->alloc_cache);
|
|
internal_allocator()->DestroyCache(&thr->internal_alloc_cache);
|
|
}
|
|
|
|
void AllocatorPrintStats() {
|
|
allocator()->PrintStats();
|
|
}
|
|
|
|
static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
|
|
if (!thr->in_signal_handler || !flags()->report_signal_unsafe)
|
|
return;
|
|
StackTrace stack;
|
|
stack.ObtainCurrent(thr, pc);
|
|
ThreadRegistryLock l(ctx->thread_registry);
|
|
ScopedReport rep(ReportTypeSignalUnsafe);
|
|
if (!IsFiredSuppression(ctx, rep, stack)) {
|
|
rep.AddStack(&stack);
|
|
OutputReport(ctx, rep, rep.GetReport()->stacks[0]);
|
|
}
|
|
}
|
|
|
|
void *user_alloc(ThreadState *thr, uptr pc, uptr sz, uptr align) {
|
|
if ((sz >= (1ull << 40)) || (align >= (1ull << 40)))
|
|
return AllocatorReturnNull();
|
|
void *p = allocator()->Allocate(&thr->alloc_cache, sz, align);
|
|
if (p == 0)
|
|
return 0;
|
|
MBlock *b = new(allocator()->GetMetaData(p)) MBlock;
|
|
b->Init(sz, thr->tid, CurrentStackId(thr, pc));
|
|
if (ctx && ctx->initialized) {
|
|
if (thr->ignore_reads_and_writes == 0)
|
|
MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
|
|
else
|
|
MemoryResetRange(thr, pc, (uptr)p, sz);
|
|
}
|
|
DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
|
|
SignalUnsafeCall(thr, pc);
|
|
return p;
|
|
}
|
|
|
|
void user_free(ThreadState *thr, uptr pc, void *p) {
|
|
CHECK_NE(p, (void*)0);
|
|
DPrintf("#%d: free(%p)\n", thr->tid, p);
|
|
MBlock *b = (MBlock*)allocator()->GetMetaData(p);
|
|
if (b->ListHead()) {
|
|
MBlock::ScopedLock l(b);
|
|
for (SyncVar *s = b->ListHead(); s;) {
|
|
SyncVar *res = s;
|
|
s = s->next;
|
|
StatInc(thr, StatSyncDestroyed);
|
|
res->mtx.Lock();
|
|
res->mtx.Unlock();
|
|
DestroyAndFree(res);
|
|
}
|
|
b->ListReset();
|
|
}
|
|
if (ctx && ctx->initialized) {
|
|
if (thr->ignore_reads_and_writes == 0)
|
|
MemoryRangeFreed(thr, pc, (uptr)p, b->Size());
|
|
}
|
|
allocator()->Deallocate(&thr->alloc_cache, p);
|
|
SignalUnsafeCall(thr, pc);
|
|
}
|
|
|
|
void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
|
|
void *p2 = 0;
|
|
// FIXME: Handle "shrinking" more efficiently,
|
|
// it seems that some software actually does this.
|
|
if (sz) {
|
|
p2 = user_alloc(thr, pc, sz);
|
|
if (p2 == 0)
|
|
return 0;
|
|
if (p) {
|
|
MBlock *b = user_mblock(thr, p);
|
|
CHECK_NE(b, 0);
|
|
internal_memcpy(p2, p, min(b->Size(), sz));
|
|
}
|
|
}
|
|
if (p)
|
|
user_free(thr, pc, p);
|
|
return p2;
|
|
}
|
|
|
|
uptr user_alloc_usable_size(ThreadState *thr, uptr pc, void *p) {
|
|
if (p == 0)
|
|
return 0;
|
|
MBlock *b = (MBlock*)allocator()->GetMetaData(p);
|
|
return b ? b->Size() : 0;
|
|
}
|
|
|
|
MBlock *user_mblock(ThreadState *thr, void *p) {
|
|
CHECK_NE(p, 0);
|
|
Allocator *a = allocator();
|
|
void *b = a->GetBlockBegin(p);
|
|
if (b == 0)
|
|
return 0;
|
|
return (MBlock*)a->GetMetaData(b);
|
|
}
|
|
|
|
void invoke_malloc_hook(void *ptr, uptr size) {
|
|
ThreadState *thr = cur_thread();
|
|
if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
|
|
return;
|
|
__tsan_malloc_hook(ptr, size);
|
|
}
|
|
|
|
void invoke_free_hook(void *ptr) {
|
|
ThreadState *thr = cur_thread();
|
|
if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
|
|
return;
|
|
__tsan_free_hook(ptr);
|
|
}
|
|
|
|
void *internal_alloc(MBlockType typ, uptr sz) {
|
|
ThreadState *thr = cur_thread();
|
|
CHECK_LE(sz, InternalSizeClassMap::kMaxSize);
|
|
if (thr->nomalloc) {
|
|
thr->nomalloc = 0; // CHECK calls internal_malloc().
|
|
CHECK(0);
|
|
}
|
|
return InternalAlloc(sz, &thr->internal_alloc_cache);
|
|
}
|
|
|
|
void internal_free(void *p) {
|
|
ThreadState *thr = cur_thread();
|
|
if (thr->nomalloc) {
|
|
thr->nomalloc = 0; // CHECK calls internal_malloc().
|
|
CHECK(0);
|
|
}
|
|
InternalFree(p, &thr->internal_alloc_cache);
|
|
}
|
|
|
|
} // namespace __tsan
|
|
|
|
using namespace __tsan;
|
|
|
|
extern "C" {
|
|
uptr __tsan_get_current_allocated_bytes() {
|
|
u64 stats[AllocatorStatCount];
|
|
allocator()->GetStats(stats);
|
|
u64 m = stats[AllocatorStatMalloced];
|
|
u64 f = stats[AllocatorStatFreed];
|
|
return m >= f ? m - f : 1;
|
|
}
|
|
|
|
uptr __tsan_get_heap_size() {
|
|
u64 stats[AllocatorStatCount];
|
|
allocator()->GetStats(stats);
|
|
u64 m = stats[AllocatorStatMmapped];
|
|
u64 f = stats[AllocatorStatUnmapped];
|
|
return m >= f ? m - f : 1;
|
|
}
|
|
|
|
uptr __tsan_get_free_bytes() {
|
|
return 1;
|
|
}
|
|
|
|
uptr __tsan_get_unmapped_bytes() {
|
|
return 1;
|
|
}
|
|
|
|
uptr __tsan_get_estimated_allocated_size(uptr size) {
|
|
return size;
|
|
}
|
|
|
|
bool __tsan_get_ownership(void *p) {
|
|
return allocator()->GetBlockBegin(p) != 0;
|
|
}
|
|
|
|
uptr __tsan_get_allocated_size(void *p) {
|
|
if (p == 0)
|
|
return 0;
|
|
p = allocator()->GetBlockBegin(p);
|
|
if (p == 0)
|
|
return 0;
|
|
MBlock *b = (MBlock*)allocator()->GetMetaData(p);
|
|
return b->Size();
|
|
}
|
|
|
|
void __tsan_on_thread_idle() {
|
|
ThreadState *thr = cur_thread();
|
|
allocator()->SwallowCache(&thr->alloc_cache);
|
|
internal_allocator()->SwallowCache(&thr->internal_alloc_cache);
|
|
}
|
|
} // extern "C"
|