113a5be6a9
2011-05-13 Vladimir Makarov <vmakarov@redhat.com> PR rtl-optimization/48971 * ira.c (setup_pressure_classes): Don't check register move cost for classes with one registers. Don't add pressure class if there is a pressure class with the same available hard registers. Check contains_reg_of_mode. Fix a typo in collecting temp_hard_regset. Ignore hard registers not belonging to a class. From-SVN: r174123
3808 lines
121 KiB
C
3808 lines
121 KiB
C
/* Integrated Register Allocator (IRA) entry point.
|
||
Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
|
||
Free Software Foundation, Inc.
|
||
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* The integrated register allocator (IRA) is a
|
||
regional register allocator performing graph coloring on a top-down
|
||
traversal of nested regions. Graph coloring in a region is based
|
||
on Chaitin-Briggs algorithm. It is called integrated because
|
||
register coalescing, register live range splitting, and choosing a
|
||
better hard register are done on-the-fly during coloring. Register
|
||
coalescing and choosing a cheaper hard register is done by hard
|
||
register preferencing during hard register assigning. The live
|
||
range splitting is a byproduct of the regional register allocation.
|
||
|
||
Major IRA notions are:
|
||
|
||
o *Region* is a part of CFG where graph coloring based on
|
||
Chaitin-Briggs algorithm is done. IRA can work on any set of
|
||
nested CFG regions forming a tree. Currently the regions are
|
||
the entire function for the root region and natural loops for
|
||
the other regions. Therefore data structure representing a
|
||
region is called loop_tree_node.
|
||
|
||
o *Allocno class* is a register class used for allocation of
|
||
given allocno. It means that only hard register of given
|
||
register class can be assigned to given allocno. In reality,
|
||
even smaller subset of (*profitable*) hard registers can be
|
||
assigned. In rare cases, the subset can be even smaller
|
||
because our modification of Chaitin-Briggs algorithm requires
|
||
that sets of hard registers can be assigned to allocnos forms a
|
||
forest, i.e. the sets can be ordered in a way where any
|
||
previous set is not intersected with given set or is a superset
|
||
of given set.
|
||
|
||
o *Pressure class* is a register class belonging to a set of
|
||
register classes containing all of the hard-registers available
|
||
for register allocation. The set of all pressure classes for a
|
||
target is defined in the corresponding machine-description file
|
||
according some criteria. Register pressure is calculated only
|
||
for pressure classes and it affects some IRA decisions as
|
||
forming allocation regions.
|
||
|
||
o *Allocno* represents the live range of a pseudo-register in a
|
||
region. Besides the obvious attributes like the corresponding
|
||
pseudo-register number, allocno class, conflicting allocnos and
|
||
conflicting hard-registers, there are a few allocno attributes
|
||
which are important for understanding the allocation algorithm:
|
||
|
||
- *Live ranges*. This is a list of ranges of *program points*
|
||
where the allocno lives. Program points represent places
|
||
where a pseudo can be born or become dead (there are
|
||
approximately two times more program points than the insns)
|
||
and they are represented by integers starting with 0. The
|
||
live ranges are used to find conflicts between allocnos.
|
||
They also play very important role for the transformation of
|
||
the IRA internal representation of several regions into a one
|
||
region representation. The later is used during the reload
|
||
pass work because each allocno represents all of the
|
||
corresponding pseudo-registers.
|
||
|
||
- *Hard-register costs*. This is a vector of size equal to the
|
||
number of available hard-registers of the allocno class. The
|
||
cost of a callee-clobbered hard-register for an allocno is
|
||
increased by the cost of save/restore code around the calls
|
||
through the given allocno's life. If the allocno is a move
|
||
instruction operand and another operand is a hard-register of
|
||
the allocno class, the cost of the hard-register is decreased
|
||
by the move cost.
|
||
|
||
When an allocno is assigned, the hard-register with minimal
|
||
full cost is used. Initially, a hard-register's full cost is
|
||
the corresponding value from the hard-register's cost vector.
|
||
If the allocno is connected by a *copy* (see below) to
|
||
another allocno which has just received a hard-register, the
|
||
cost of the hard-register is decreased. Before choosing a
|
||
hard-register for an allocno, the allocno's current costs of
|
||
the hard-registers are modified by the conflict hard-register
|
||
costs of all of the conflicting allocnos which are not
|
||
assigned yet.
|
||
|
||
- *Conflict hard-register costs*. This is a vector of the same
|
||
size as the hard-register costs vector. To permit an
|
||
unassigned allocno to get a better hard-register, IRA uses
|
||
this vector to calculate the final full cost of the
|
||
available hard-registers. Conflict hard-register costs of an
|
||
unassigned allocno are also changed with a change of the
|
||
hard-register cost of the allocno when a copy involving the
|
||
allocno is processed as described above. This is done to
|
||
show other unassigned allocnos that a given allocno prefers
|
||
some hard-registers in order to remove the move instruction
|
||
corresponding to the copy.
|
||
|
||
o *Cap*. If a pseudo-register does not live in a region but
|
||
lives in a nested region, IRA creates a special allocno called
|
||
a cap in the outer region. A region cap is also created for a
|
||
subregion cap.
|
||
|
||
o *Copy*. Allocnos can be connected by copies. Copies are used
|
||
to modify hard-register costs for allocnos during coloring.
|
||
Such modifications reflects a preference to use the same
|
||
hard-register for the allocnos connected by copies. Usually
|
||
copies are created for move insns (in this case it results in
|
||
register coalescing). But IRA also creates copies for operands
|
||
of an insn which should be assigned to the same hard-register
|
||
due to constraints in the machine description (it usually
|
||
results in removing a move generated in reload to satisfy
|
||
the constraints) and copies referring to the allocno which is
|
||
the output operand of an instruction and the allocno which is
|
||
an input operand dying in the instruction (creation of such
|
||
copies results in less register shuffling). IRA *does not*
|
||
create copies between the same register allocnos from different
|
||
regions because we use another technique for propagating
|
||
hard-register preference on the borders of regions.
|
||
|
||
Allocnos (including caps) for the upper region in the region tree
|
||
*accumulate* information important for coloring from allocnos with
|
||
the same pseudo-register from nested regions. This includes
|
||
hard-register and memory costs, conflicts with hard-registers,
|
||
allocno conflicts, allocno copies and more. *Thus, attributes for
|
||
allocnos in a region have the same values as if the region had no
|
||
subregions*. It means that attributes for allocnos in the
|
||
outermost region corresponding to the function have the same values
|
||
as though the allocation used only one region which is the entire
|
||
function. It also means that we can look at IRA work as if the
|
||
first IRA did allocation for all function then it improved the
|
||
allocation for loops then their subloops and so on.
|
||
|
||
IRA major passes are:
|
||
|
||
o Building IRA internal representation which consists of the
|
||
following subpasses:
|
||
|
||
* First, IRA builds regions and creates allocnos (file
|
||
ira-build.c) and initializes most of their attributes.
|
||
|
||
* Then IRA finds an allocno class for each allocno and
|
||
calculates its initial (non-accumulated) cost of memory and
|
||
each hard-register of its allocno class (file ira-cost.c).
|
||
|
||
* IRA creates live ranges of each allocno, calulates register
|
||
pressure for each pressure class in each region, sets up
|
||
conflict hard registers for each allocno and info about calls
|
||
the allocno lives through (file ira-lives.c).
|
||
|
||
* IRA removes low register pressure loops from the regions
|
||
mostly to speed IRA up (file ira-build.c).
|
||
|
||
* IRA propagates accumulated allocno info from lower region
|
||
allocnos to corresponding upper region allocnos (file
|
||
ira-build.c).
|
||
|
||
* IRA creates all caps (file ira-build.c).
|
||
|
||
* Having live-ranges of allocnos and their classes, IRA creates
|
||
conflicting allocnos for each allocno. Conflicting allocnos
|
||
are stored as a bit vector or array of pointers to the
|
||
conflicting allocnos whatever is more profitable (file
|
||
ira-conflicts.c). At this point IRA creates allocno copies.
|
||
|
||
o Coloring. Now IRA has all necessary info to start graph coloring
|
||
process. It is done in each region on top-down traverse of the
|
||
region tree (file ira-color.c). There are following subpasses:
|
||
|
||
* Finding profitable hard registers of corresponding allocno
|
||
class for each allocno. For example, only callee-saved hard
|
||
registers are frequently profitable for allocnos living
|
||
through colors. If the profitable hard register set of
|
||
allocno does not form a tree based on subset relation, we use
|
||
some approximation to form the tree. This approximation is
|
||
used to figure out trivial colorability of allocnos. The
|
||
approximation is a pretty rare case.
|
||
|
||
* Putting allocnos onto the coloring stack. IRA uses Briggs
|
||
optimistic coloring which is a major improvement over
|
||
Chaitin's coloring. Therefore IRA does not spill allocnos at
|
||
this point. There is some freedom in the order of putting
|
||
allocnos on the stack which can affect the final result of
|
||
the allocation. IRA uses some heuristics to improve the
|
||
order.
|
||
|
||
We also use a modification of Chaitin-Briggs algorithm which
|
||
works for intersected register classes of allocnos. To
|
||
figure out trivial colorability of allocnos, the mentioned
|
||
above tree of hard register sets is used. To get an idea how
|
||
the algorithm works in i386 example, let us consider an
|
||
allocno to which any general hard register can be assigned.
|
||
If the allocno conflicts with eight allocnos to which only
|
||
EAX register can be assigned, given allocno is still
|
||
trivially colorable because all conflicting allocnos might be
|
||
assigned only to EAX and all other general hard registers are
|
||
still free.
|
||
|
||
To get an idea of the used trivial colorability criterion, it
|
||
is also useful to read article "Graph-Coloring Register
|
||
Allocation for Irregular Architectures" by Michael D. Smith
|
||
and Glen Holloway. Major difference between the article
|
||
approach and approach used in IRA is that Smith's approach
|
||
takes register classes only from machine description and IRA
|
||
calculate register classes from intermediate code too
|
||
(e.g. an explicit usage of hard registers in RTL code for
|
||
parameter passing can result in creation of additional
|
||
register classes which contain or exclude the hard
|
||
registers). That makes IRA approach useful for improving
|
||
coloring even for architectures with regular register files
|
||
and in fact some benchmarking shows the improvement for
|
||
regular class architectures is even bigger than for irregular
|
||
ones. Another difference is that Smith's approach chooses
|
||
intersection of classes of all insn operands in which a given
|
||
pseudo occurs. IRA can use bigger classes if it is still
|
||
more profitable than memory usage.
|
||
|
||
* Popping the allocnos from the stack and assigning them hard
|
||
registers. If IRA can not assign a hard register to an
|
||
allocno and the allocno is coalesced, IRA undoes the
|
||
coalescing and puts the uncoalesced allocnos onto the stack in
|
||
the hope that some such allocnos will get a hard register
|
||
separately. If IRA fails to assign hard register or memory
|
||
is more profitable for it, IRA spills the allocno. IRA
|
||
assigns the allocno the hard-register with minimal full
|
||
allocation cost which reflects the cost of usage of the
|
||
hard-register for the allocno and cost of usage of the
|
||
hard-register for allocnos conflicting with given allocno.
|
||
|
||
* Chaitin-Briggs coloring assigns as many pseudos as possible
|
||
to hard registers. After coloringh we try to improve
|
||
allocation with cost point of view. We improve the
|
||
allocation by spilling some allocnos and assigning the freed
|
||
hard registers to other allocnos if it decreases the overall
|
||
allocation cost.
|
||
|
||
* After allono assigning in the region, IRA modifies the hard
|
||
register and memory costs for the corresponding allocnos in
|
||
the subregions to reflect the cost of possible loads, stores,
|
||
or moves on the border of the region and its subregions.
|
||
When default regional allocation algorithm is used
|
||
(-fira-algorithm=mixed), IRA just propagates the assignment
|
||
for allocnos if the register pressure in the region for the
|
||
corresponding pressure class is less than number of available
|
||
hard registers for given pressure class.
|
||
|
||
o Spill/restore code moving. When IRA performs an allocation
|
||
by traversing regions in top-down order, it does not know what
|
||
happens below in the region tree. Therefore, sometimes IRA
|
||
misses opportunities to perform a better allocation. A simple
|
||
optimization tries to improve allocation in a region having
|
||
subregions and containing in another region. If the
|
||
corresponding allocnos in the subregion are spilled, it spills
|
||
the region allocno if it is profitable. The optimization
|
||
implements a simple iterative algorithm performing profitable
|
||
transformations while they are still possible. It is fast in
|
||
practice, so there is no real need for a better time complexity
|
||
algorithm.
|
||
|
||
o Code change. After coloring, two allocnos representing the
|
||
same pseudo-register outside and inside a region respectively
|
||
may be assigned to different locations (hard-registers or
|
||
memory). In this case IRA creates and uses a new
|
||
pseudo-register inside the region and adds code to move allocno
|
||
values on the region's borders. This is done during top-down
|
||
traversal of the regions (file ira-emit.c). In some
|
||
complicated cases IRA can create a new allocno to move allocno
|
||
values (e.g. when a swap of values stored in two hard-registers
|
||
is needed). At this stage, the new allocno is marked as
|
||
spilled. IRA still creates the pseudo-register and the moves
|
||
on the region borders even when both allocnos were assigned to
|
||
the same hard-register. If the reload pass spills a
|
||
pseudo-register for some reason, the effect will be smaller
|
||
because another allocno will still be in the hard-register. In
|
||
most cases, this is better then spilling both allocnos. If
|
||
reload does not change the allocation for the two
|
||
pseudo-registers, the trivial move will be removed by
|
||
post-reload optimizations. IRA does not generate moves for
|
||
allocnos assigned to the same hard register when the default
|
||
regional allocation algorithm is used and the register pressure
|
||
in the region for the corresponding pressure class is less than
|
||
number of available hard registers for given pressure class.
|
||
IRA also does some optimizations to remove redundant stores and
|
||
to reduce code duplication on the region borders.
|
||
|
||
o Flattening internal representation. After changing code, IRA
|
||
transforms its internal representation for several regions into
|
||
one region representation (file ira-build.c). This process is
|
||
called IR flattening. Such process is more complicated than IR
|
||
rebuilding would be, but is much faster.
|
||
|
||
o After IR flattening, IRA tries to assign hard registers to all
|
||
spilled allocnos. This is impelemented by a simple and fast
|
||
priority coloring algorithm (see function
|
||
ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
|
||
created during the code change pass can be assigned to hard
|
||
registers.
|
||
|
||
o At the end IRA calls the reload pass. The reload pass
|
||
communicates with IRA through several functions in file
|
||
ira-color.c to improve its decisions in
|
||
|
||
* sharing stack slots for the spilled pseudos based on IRA info
|
||
about pseudo-register conflicts.
|
||
|
||
* reassigning hard-registers to all spilled pseudos at the end
|
||
of each reload iteration.
|
||
|
||
* choosing a better hard-register to spill based on IRA info
|
||
about pseudo-register live ranges and the register pressure
|
||
in places where the pseudo-register lives.
|
||
|
||
IRA uses a lot of data representing the target processors. These
|
||
data are initilized in file ira.c.
|
||
|
||
If function has no loops (or the loops are ignored when
|
||
-fira-algorithm=CB is used), we have classic Chaitin-Briggs
|
||
coloring (only instead of separate pass of coalescing, we use hard
|
||
register preferencing). In such case, IRA works much faster
|
||
because many things are not made (like IR flattening, the
|
||
spill/restore optimization, and the code change).
|
||
|
||
Literature is worth to read for better understanding the code:
|
||
|
||
o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
|
||
Graph Coloring Register Allocation.
|
||
|
||
o David Callahan, Brian Koblenz. Register allocation via
|
||
hierarchical graph coloring.
|
||
|
||
o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
|
||
Coloring Register Allocation: A Study of the Chaitin-Briggs and
|
||
Callahan-Koblenz Algorithms.
|
||
|
||
o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
|
||
Register Allocation Based on Graph Fusion.
|
||
|
||
o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
|
||
Allocation for Irregular Architectures
|
||
|
||
o Vladimir Makarov. The Integrated Register Allocator for GCC.
|
||
|
||
o Vladimir Makarov. The top-down register allocator for irregular
|
||
register file architectures.
|
||
|
||
*/
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "regs.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "target.h"
|
||
#include "flags.h"
|
||
#include "obstack.h"
|
||
#include "bitmap.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "df.h"
|
||
#include "expr.h"
|
||
#include "recog.h"
|
||
#include "params.h"
|
||
#include "timevar.h"
|
||
#include "tree-pass.h"
|
||
#include "output.h"
|
||
#include "except.h"
|
||
#include "reload.h"
|
||
#include "diagnostic-core.h"
|
||
#include "integrate.h"
|
||
#include "ggc.h"
|
||
#include "ira-int.h"
|
||
|
||
|
||
struct target_ira default_target_ira;
|
||
struct target_ira_int default_target_ira_int;
|
||
#if SWITCHABLE_TARGET
|
||
struct target_ira *this_target_ira = &default_target_ira;
|
||
struct target_ira_int *this_target_ira_int = &default_target_ira_int;
|
||
#endif
|
||
|
||
/* A modified value of flag `-fira-verbose' used internally. */
|
||
int internal_flag_ira_verbose;
|
||
|
||
/* Dump file of the allocator if it is not NULL. */
|
||
FILE *ira_dump_file;
|
||
|
||
/* The number of elements in the following array. */
|
||
int ira_spilled_reg_stack_slots_num;
|
||
|
||
/* The following array contains info about spilled pseudo-registers
|
||
stack slots used in current function so far. */
|
||
struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
|
||
|
||
/* Correspondingly overall cost of the allocation, cost of the
|
||
allocnos assigned to hard-registers, cost of the allocnos assigned
|
||
to memory, cost of loads, stores and register move insns generated
|
||
for pseudo-register live range splitting (see ira-emit.c). */
|
||
int ira_overall_cost;
|
||
int ira_reg_cost, ira_mem_cost;
|
||
int ira_load_cost, ira_store_cost, ira_shuffle_cost;
|
||
int ira_move_loops_num, ira_additional_jumps_num;
|
||
|
||
/* All registers that can be eliminated. */
|
||
|
||
HARD_REG_SET eliminable_regset;
|
||
|
||
/* Temporary hard reg set used for a different calculation. */
|
||
static HARD_REG_SET temp_hard_regset;
|
||
|
||
|
||
|
||
/* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
|
||
static void
|
||
setup_reg_mode_hard_regset (void)
|
||
{
|
||
int i, m, hard_regno;
|
||
|
||
for (m = 0; m < NUM_MACHINE_MODES; m++)
|
||
for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
|
||
{
|
||
CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
|
||
for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
|
||
if (hard_regno + i < FIRST_PSEUDO_REGISTER)
|
||
SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
|
||
hard_regno + i);
|
||
}
|
||
}
|
||
|
||
|
||
#define no_unit_alloc_regs \
|
||
(this_target_ira_int->x_no_unit_alloc_regs)
|
||
|
||
/* The function sets up the three arrays declared above. */
|
||
static void
|
||
setup_class_hard_regs (void)
|
||
{
|
||
int cl, i, hard_regno, n;
|
||
HARD_REG_SET processed_hard_reg_set;
|
||
|
||
ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
|
||
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
|
||
{
|
||
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
||
CLEAR_HARD_REG_SET (processed_hard_reg_set);
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
ira_non_ordered_class_hard_regs[cl][i] = -1;
|
||
ira_class_hard_reg_index[cl][i] = -1;
|
||
}
|
||
for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
#ifdef REG_ALLOC_ORDER
|
||
hard_regno = reg_alloc_order[i];
|
||
#else
|
||
hard_regno = i;
|
||
#endif
|
||
if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
|
||
continue;
|
||
SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
|
||
if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
|
||
ira_class_hard_reg_index[cl][hard_regno] = -1;
|
||
else
|
||
{
|
||
ira_class_hard_reg_index[cl][hard_regno] = n;
|
||
ira_class_hard_regs[cl][n++] = hard_regno;
|
||
}
|
||
}
|
||
ira_class_hard_regs_num[cl] = n;
|
||
for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (temp_hard_regset, i))
|
||
ira_non_ordered_class_hard_regs[cl][n++] = i;
|
||
ira_assert (ira_class_hard_regs_num[cl] == n);
|
||
}
|
||
}
|
||
|
||
/* Set up IRA_AVAILABLE_CLASS_REGS. */
|
||
static void
|
||
setup_available_class_regs (void)
|
||
{
|
||
int i, j;
|
||
|
||
memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
||
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
||
if (TEST_HARD_REG_BIT (temp_hard_regset, j))
|
||
ira_available_class_regs[i]++;
|
||
}
|
||
}
|
||
|
||
/* Set up global variables defining info about hard registers for the
|
||
allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
|
||
that we can use the hard frame pointer for the allocation. */
|
||
static void
|
||
setup_alloc_regs (bool use_hard_frame_p)
|
||
{
|
||
#ifdef ADJUST_REG_ALLOC_ORDER
|
||
ADJUST_REG_ALLOC_ORDER;
|
||
#endif
|
||
COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
|
||
if (! use_hard_frame_p)
|
||
SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
|
||
setup_class_hard_regs ();
|
||
setup_available_class_regs ();
|
||
}
|
||
|
||
|
||
|
||
#define alloc_reg_class_subclasses \
|
||
(this_target_ira_int->x_alloc_reg_class_subclasses)
|
||
|
||
/* Initialize the table of subclasses of each reg class. */
|
||
static void
|
||
setup_reg_subclasses (void)
|
||
{
|
||
int i, j;
|
||
HARD_REG_SET temp_hard_regset2;
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
for (j = 0; j < N_REG_CLASSES; j++)
|
||
alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
if (i == (int) NO_REGS)
|
||
continue;
|
||
|
||
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
||
if (hard_reg_set_empty_p (temp_hard_regset))
|
||
continue;
|
||
for (j = 0; j < N_REG_CLASSES; j++)
|
||
if (i != j)
|
||
{
|
||
enum reg_class *p;
|
||
|
||
COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
|
||
if (! hard_reg_set_subset_p (temp_hard_regset,
|
||
temp_hard_regset2))
|
||
continue;
|
||
p = &alloc_reg_class_subclasses[j][0];
|
||
while (*p != LIM_REG_CLASSES) p++;
|
||
*p = (enum reg_class) i;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
|
||
static void
|
||
setup_class_subset_and_memory_move_costs (void)
|
||
{
|
||
int cl, cl2, mode, cost;
|
||
HARD_REG_SET temp_hard_regset2;
|
||
|
||
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
||
ira_memory_move_cost[mode][NO_REGS][0]
|
||
= ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
|
||
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
|
||
{
|
||
if (cl != (int) NO_REGS)
|
||
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
||
{
|
||
ira_max_memory_move_cost[mode][cl][0]
|
||
= ira_memory_move_cost[mode][cl][0]
|
||
= memory_move_cost ((enum machine_mode) mode,
|
||
(reg_class_t) cl, false);
|
||
ira_max_memory_move_cost[mode][cl][1]
|
||
= ira_memory_move_cost[mode][cl][1]
|
||
= memory_move_cost ((enum machine_mode) mode,
|
||
(reg_class_t) cl, true);
|
||
/* Costs for NO_REGS are used in cost calculation on the
|
||
1st pass when the preferred register classes are not
|
||
known yet. In this case we take the best scenario. */
|
||
if (ira_memory_move_cost[mode][NO_REGS][0]
|
||
> ira_memory_move_cost[mode][cl][0])
|
||
ira_max_memory_move_cost[mode][NO_REGS][0]
|
||
= ira_memory_move_cost[mode][NO_REGS][0]
|
||
= ira_memory_move_cost[mode][cl][0];
|
||
if (ira_memory_move_cost[mode][NO_REGS][1]
|
||
> ira_memory_move_cost[mode][cl][1])
|
||
ira_max_memory_move_cost[mode][NO_REGS][1]
|
||
= ira_memory_move_cost[mode][NO_REGS][1]
|
||
= ira_memory_move_cost[mode][cl][1];
|
||
}
|
||
}
|
||
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
|
||
for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
|
||
{
|
||
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
||
COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
|
||
ira_class_subset_p[cl][cl2]
|
||
= hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
|
||
if (! hard_reg_set_empty_p (temp_hard_regset2)
|
||
&& hard_reg_set_subset_p (reg_class_contents[cl2],
|
||
reg_class_contents[cl]))
|
||
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
||
{
|
||
cost = ira_memory_move_cost[mode][cl2][0];
|
||
if (cost > ira_max_memory_move_cost[mode][cl][0])
|
||
ira_max_memory_move_cost[mode][cl][0] = cost;
|
||
cost = ira_memory_move_cost[mode][cl2][1];
|
||
if (cost > ira_max_memory_move_cost[mode][cl][1])
|
||
ira_max_memory_move_cost[mode][cl][1] = cost;
|
||
}
|
||
}
|
||
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
|
||
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
||
{
|
||
ira_memory_move_cost[mode][cl][0]
|
||
= ira_max_memory_move_cost[mode][cl][0];
|
||
ira_memory_move_cost[mode][cl][1]
|
||
= ira_max_memory_move_cost[mode][cl][1];
|
||
}
|
||
setup_reg_subclasses ();
|
||
}
|
||
|
||
|
||
|
||
/* Define the following macro if allocation through malloc if
|
||
preferable. */
|
||
#define IRA_NO_OBSTACK
|
||
|
||
#ifndef IRA_NO_OBSTACK
|
||
/* Obstack used for storing all dynamic data (except bitmaps) of the
|
||
IRA. */
|
||
static struct obstack ira_obstack;
|
||
#endif
|
||
|
||
/* Obstack used for storing all bitmaps of the IRA. */
|
||
static struct bitmap_obstack ira_bitmap_obstack;
|
||
|
||
/* Allocate memory of size LEN for IRA data. */
|
||
void *
|
||
ira_allocate (size_t len)
|
||
{
|
||
void *res;
|
||
|
||
#ifndef IRA_NO_OBSTACK
|
||
res = obstack_alloc (&ira_obstack, len);
|
||
#else
|
||
res = xmalloc (len);
|
||
#endif
|
||
return res;
|
||
}
|
||
|
||
/* Free memory ADDR allocated for IRA data. */
|
||
void
|
||
ira_free (void *addr ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifndef IRA_NO_OBSTACK
|
||
/* do nothing */
|
||
#else
|
||
free (addr);
|
||
#endif
|
||
}
|
||
|
||
|
||
/* Allocate and returns bitmap for IRA. */
|
||
bitmap
|
||
ira_allocate_bitmap (void)
|
||
{
|
||
return BITMAP_ALLOC (&ira_bitmap_obstack);
|
||
}
|
||
|
||
/* Free bitmap B allocated for IRA. */
|
||
void
|
||
ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
|
||
{
|
||
/* do nothing */
|
||
}
|
||
|
||
|
||
|
||
/* Output information about allocation of all allocnos (except for
|
||
caps) into file F. */
|
||
void
|
||
ira_print_disposition (FILE *f)
|
||
{
|
||
int i, n, max_regno;
|
||
ira_allocno_t a;
|
||
basic_block bb;
|
||
|
||
fprintf (f, "Disposition:");
|
||
max_regno = max_reg_num ();
|
||
for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
for (a = ira_regno_allocno_map[i];
|
||
a != NULL;
|
||
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
||
{
|
||
if (n % 4 == 0)
|
||
fprintf (f, "\n");
|
||
n++;
|
||
fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
|
||
if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
|
||
fprintf (f, "b%-3d", bb->index);
|
||
else
|
||
fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
|
||
if (ALLOCNO_HARD_REGNO (a) >= 0)
|
||
fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
|
||
else
|
||
fprintf (f, " mem");
|
||
}
|
||
fprintf (f, "\n");
|
||
}
|
||
|
||
/* Outputs information about allocation of all allocnos into
|
||
stderr. */
|
||
void
|
||
ira_debug_disposition (void)
|
||
{
|
||
ira_print_disposition (stderr);
|
||
}
|
||
|
||
|
||
|
||
/* Set up ira_stack_reg_pressure_class which is the biggest pressure
|
||
register class containing stack registers or NO_REGS if there are
|
||
no stack registers. To find this class, we iterate through all
|
||
register pressure classes and choose the first register pressure
|
||
class containing all the stack registers and having the biggest
|
||
size. */
|
||
static void
|
||
setup_stack_reg_pressure_class (void)
|
||
{
|
||
ira_stack_reg_pressure_class = NO_REGS;
|
||
#ifdef STACK_REGS
|
||
{
|
||
int i, best, size;
|
||
enum reg_class cl;
|
||
HARD_REG_SET temp_hard_regset2;
|
||
|
||
CLEAR_HARD_REG_SET (temp_hard_regset);
|
||
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
|
||
SET_HARD_REG_BIT (temp_hard_regset, i);
|
||
best = 0;
|
||
for (i = 0; i < ira_pressure_classes_num; i++)
|
||
{
|
||
cl = ira_pressure_classes[i];
|
||
COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
|
||
AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
|
||
size = hard_reg_set_size (temp_hard_regset2);
|
||
if (best < size)
|
||
{
|
||
best = size;
|
||
ira_stack_reg_pressure_class = cl;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* Find pressure classes which are register classes for which we
|
||
calculate register pressure in IRA, register pressure sensitive
|
||
insn scheduling, and register pressure sensitive loop invariant
|
||
motion.
|
||
|
||
To make register pressure calculation easy, we always use
|
||
non-intersected register pressure classes. A move of hard
|
||
registers from one register pressure class is not more expensive
|
||
than load and store of the hard registers. Most likely an allocno
|
||
class will be a subset of a register pressure class and in many
|
||
cases a register pressure class. That makes usage of register
|
||
pressure classes a good approximation to find a high register
|
||
pressure. */
|
||
static void
|
||
setup_pressure_classes (void)
|
||
{
|
||
int cost, i, n, curr;
|
||
int cl, cl2;
|
||
enum reg_class pressure_classes[N_REG_CLASSES];
|
||
int m;
|
||
HARD_REG_SET temp_hard_regset2;
|
||
bool insert_p;
|
||
|
||
n = 0;
|
||
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
||
{
|
||
if (ira_available_class_regs[cl] == 0)
|
||
continue;
|
||
if (ira_available_class_regs[cl] != 1)
|
||
{
|
||
/* Check that the moves between any hard registers of the
|
||
current class are not more expensive for a legal mode
|
||
than load/store of the hard registers of the current
|
||
class. Such class is a potential candidate to be a
|
||
register pressure class. */
|
||
for (m = 0; m < NUM_MACHINE_MODES; m++)
|
||
{
|
||
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset,
|
||
ira_prohibited_class_mode_regs[cl][m]);
|
||
if (hard_reg_set_empty_p (temp_hard_regset))
|
||
continue;
|
||
ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
|
||
cost = ira_register_move_cost[m][cl][cl];
|
||
if (cost <= ira_max_memory_move_cost[m][cl][1]
|
||
|| cost <= ira_max_memory_move_cost[m][cl][0])
|
||
break;
|
||
}
|
||
if (m >= NUM_MACHINE_MODES)
|
||
continue;
|
||
}
|
||
curr = 0;
|
||
insert_p = true;
|
||
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
||
/* Remove so far added pressure classes which are subset of the
|
||
current candidate class. Prefer GENERAL_REGS as a pressure
|
||
register class to another class containing the same
|
||
allocatable hard registers. We do this because machine
|
||
dependent cost hooks might give wrong costs for the latter
|
||
class but always give the right cost for the former class
|
||
(GENERAL_REGS). */
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
cl2 = pressure_classes[i];
|
||
COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
|
||
if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
|
||
&& (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
|
||
|| cl2 == (int) GENERAL_REGS))
|
||
{
|
||
pressure_classes[curr++] = (enum reg_class) cl2;
|
||
insert_p = false;
|
||
continue;
|
||
}
|
||
if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
|
||
&& (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
|
||
|| cl == (int) GENERAL_REGS))
|
||
continue;
|
||
if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
|
||
insert_p = false;
|
||
pressure_classes[curr++] = (enum reg_class) cl2;
|
||
}
|
||
/* If the current candidate is a subset of a so far added
|
||
pressure class, don't add it to the list of the pressure
|
||
classes. */
|
||
if (insert_p)
|
||
pressure_classes[curr++] = (enum reg_class) cl;
|
||
n = curr;
|
||
}
|
||
#ifdef ENABLE_IRA_CHECKING
|
||
{
|
||
HARD_REG_SET ignore_hard_regs;
|
||
|
||
/* Check pressure classes correctness: here we check that hard
|
||
registers from all register pressure classes contains all hard
|
||
registers available for the allocation. */
|
||
CLEAR_HARD_REG_SET (temp_hard_regset);
|
||
CLEAR_HARD_REG_SET (temp_hard_regset2);
|
||
COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
|
||
for (cl = 0; cl < LIM_REG_CLASSES; cl++)
|
||
{
|
||
/* For some targets (like MIPS with MD_REGS), there are some
|
||
classes with hard registers available for allocation but
|
||
not able to hold value of any mode. */
|
||
for (m = 0; m < NUM_MACHINE_MODES; m++)
|
||
if (contains_reg_of_mode[cl][m])
|
||
break;
|
||
if (m >= NUM_MACHINE_MODES)
|
||
{
|
||
IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
|
||
continue;
|
||
}
|
||
for (i = 0; i < n; i++)
|
||
if ((int) pressure_classes[i] == cl)
|
||
break;
|
||
IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
|
||
if (i < n)
|
||
IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
||
}
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
/* Some targets (like SPARC with ICC reg) have alocatable regs
|
||
for which no reg class is defined. */
|
||
if (REGNO_REG_CLASS (i) == NO_REGS)
|
||
SET_HARD_REG_BIT (ignore_hard_regs, i);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
|
||
ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
|
||
}
|
||
#endif
|
||
ira_pressure_classes_num = 0;
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
cl = (int) pressure_classes[i];
|
||
ira_reg_pressure_class_p[cl] = true;
|
||
ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
|
||
}
|
||
setup_stack_reg_pressure_class ();
|
||
}
|
||
|
||
/* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
|
||
IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
|
||
|
||
Target may have many subtargets and not all target hard regiters can
|
||
be used for allocation, e.g. x86 port in 32-bit mode can not use
|
||
hard registers introduced in x86-64 like r8-r15). Some classes
|
||
might have the same allocatable hard registers, e.g. INDEX_REGS
|
||
and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
|
||
calculations efforts we introduce allocno classes which contain
|
||
unique non-empty sets of allocatable hard-registers.
|
||
|
||
Pseudo class cost calculation in ira-costs.c is very expensive.
|
||
Therefore we are trying to decrease number of classes involved in
|
||
such calculation. Register classes used in the cost calculation
|
||
are called important classes. They are allocno classes and other
|
||
non-empty classes whose allocatable hard register sets are inside
|
||
of an allocno class hard register set. From the first sight, it
|
||
looks like that they are just allocno classes. It is not true. In
|
||
example of x86-port in 32-bit mode, allocno classes will contain
|
||
GENERAL_REGS but not LEGACY_REGS (because allocatable hard
|
||
registers are the same for the both classes). The important
|
||
classes will contain GENERAL_REGS and LEGACY_REGS. It is done
|
||
because a machine description insn constraint may refers for
|
||
LEGACY_REGS and code in ira-costs.c is mostly base on investigation
|
||
of the insn constraints. */
|
||
static void
|
||
setup_allocno_and_important_classes (void)
|
||
{
|
||
int i, j, n, cl;
|
||
bool set_p;
|
||
HARD_REG_SET temp_hard_regset2;
|
||
static enum reg_class classes[LIM_REG_CLASSES + 1];
|
||
|
||
n = 0;
|
||
/* Collect classes which contain unique sets of allocatable hard
|
||
registers. Prefer GENERAL_REGS to other classes containing the
|
||
same set of hard registers. */
|
||
for (i = 0; i < LIM_REG_CLASSES; i++)
|
||
{
|
||
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
||
for (j = 0; j < n; j++)
|
||
{
|
||
cl = classes[j];
|
||
COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset2,
|
||
no_unit_alloc_regs);
|
||
if (hard_reg_set_equal_p (temp_hard_regset,
|
||
temp_hard_regset2))
|
||
break;
|
||
}
|
||
if (j >= n)
|
||
classes[n++] = (enum reg_class) i;
|
||
else if (i == GENERAL_REGS)
|
||
/* Prefer general regs. For i386 example, it means that
|
||
we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
|
||
(all of them consists of the same available hard
|
||
registers). */
|
||
classes[j] = (enum reg_class) i;
|
||
}
|
||
classes[n] = LIM_REG_CLASSES;
|
||
|
||
/* Set up classes which can be used for allocnos as classes
|
||
conatining non-empty unique sets of allocatable hard
|
||
registers. */
|
||
ira_allocno_classes_num = 0;
|
||
for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
|
||
{
|
||
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
||
if (hard_reg_set_empty_p (temp_hard_regset))
|
||
continue;
|
||
ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
|
||
}
|
||
ira_important_classes_num = 0;
|
||
/* Add non-allocno classes containing to non-empty set of
|
||
allocatable hard regs. */
|
||
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
||
{
|
||
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
||
if (! hard_reg_set_empty_p (temp_hard_regset))
|
||
{
|
||
set_p = false;
|
||
for (j = 0; j < ira_allocno_classes_num; j++)
|
||
{
|
||
COPY_HARD_REG_SET (temp_hard_regset2,
|
||
reg_class_contents[ira_allocno_classes[j]]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
|
||
if ((enum reg_class) cl == ira_allocno_classes[j])
|
||
break;
|
||
else if (hard_reg_set_subset_p (temp_hard_regset,
|
||
temp_hard_regset2))
|
||
set_p = true;
|
||
}
|
||
if (set_p && j >= ira_allocno_classes_num)
|
||
ira_important_classes[ira_important_classes_num++]
|
||
= (enum reg_class) cl;
|
||
}
|
||
}
|
||
/* Now add allocno classes to the important classes. */
|
||
for (j = 0; j < ira_allocno_classes_num; j++)
|
||
ira_important_classes[ira_important_classes_num++]
|
||
= ira_allocno_classes[j];
|
||
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
||
{
|
||
ira_reg_allocno_class_p[cl] = false;
|
||
ira_reg_pressure_class_p[cl] = false;
|
||
}
|
||
for (j = 0; j < ira_allocno_classes_num; j++)
|
||
ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
|
||
setup_pressure_classes ();
|
||
}
|
||
|
||
/* Setup translation in CLASS_TRANSLATE of all classes into a class
|
||
given by array CLASSES of length CLASSES_NUM. The function is used
|
||
make translation any reg class to an allocno class or to an
|
||
pressure class. This translation is necessary for some
|
||
calculations when we can use only allocno or pressure classes and
|
||
such translation represents an approximate representation of all
|
||
classes.
|
||
|
||
The translation in case when allocatable hard register set of a
|
||
given class is subset of allocatable hard register set of a class
|
||
in CLASSES is pretty simple. We use smallest classes from CLASSES
|
||
containing a given class. If allocatable hard register set of a
|
||
given class is not a subset of any corresponding set of a class
|
||
from CLASSES, we use the cheapest (with load/store point of view)
|
||
class from CLASSES whose set intersects with given class set */
|
||
static void
|
||
setup_class_translate_array (enum reg_class *class_translate,
|
||
int classes_num, enum reg_class *classes)
|
||
{
|
||
int cl, mode;
|
||
enum reg_class aclass, best_class, *cl_ptr;
|
||
int i, cost, min_cost, best_cost;
|
||
|
||
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
||
class_translate[cl] = NO_REGS;
|
||
|
||
for (i = 0; i < classes_num; i++)
|
||
{
|
||
aclass = classes[i];
|
||
for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
|
||
(cl = *cl_ptr) != LIM_REG_CLASSES;
|
||
cl_ptr++)
|
||
if (class_translate[cl] == NO_REGS)
|
||
class_translate[cl] = aclass;
|
||
class_translate[aclass] = aclass;
|
||
}
|
||
/* For classes which are not fully covered by one of given classes
|
||
(in other words covered by more one given class), use the
|
||
cheapest class. */
|
||
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
||
{
|
||
if (cl == NO_REGS || class_translate[cl] != NO_REGS)
|
||
continue;
|
||
best_class = NO_REGS;
|
||
best_cost = INT_MAX;
|
||
for (i = 0; i < classes_num; i++)
|
||
{
|
||
aclass = classes[i];
|
||
COPY_HARD_REG_SET (temp_hard_regset,
|
||
reg_class_contents[aclass]);
|
||
AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
||
if (! hard_reg_set_empty_p (temp_hard_regset))
|
||
{
|
||
min_cost = INT_MAX;
|
||
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
||
{
|
||
cost = (ira_memory_move_cost[mode][cl][0]
|
||
+ ira_memory_move_cost[mode][cl][1]);
|
||
if (min_cost > cost)
|
||
min_cost = cost;
|
||
}
|
||
if (best_class == NO_REGS || best_cost > min_cost)
|
||
{
|
||
best_class = aclass;
|
||
best_cost = min_cost;
|
||
}
|
||
}
|
||
}
|
||
class_translate[cl] = best_class;
|
||
}
|
||
}
|
||
|
||
/* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
|
||
IRA_PRESSURE_CLASS_TRANSLATE. */
|
||
static void
|
||
setup_class_translate (void)
|
||
{
|
||
setup_class_translate_array (ira_allocno_class_translate,
|
||
ira_allocno_classes_num, ira_allocno_classes);
|
||
setup_class_translate_array (ira_pressure_class_translate,
|
||
ira_pressure_classes_num, ira_pressure_classes);
|
||
}
|
||
|
||
/* Order numbers of allocno classes in original target allocno class
|
||
array, -1 for non-allocno classes. */
|
||
static int allocno_class_order[N_REG_CLASSES];
|
||
|
||
/* The function used to sort the important classes. */
|
||
static int
|
||
comp_reg_classes_func (const void *v1p, const void *v2p)
|
||
{
|
||
enum reg_class cl1 = *(const enum reg_class *) v1p;
|
||
enum reg_class cl2 = *(const enum reg_class *) v2p;
|
||
enum reg_class tcl1, tcl2;
|
||
int diff;
|
||
|
||
tcl1 = ira_allocno_class_translate[cl1];
|
||
tcl2 = ira_allocno_class_translate[cl2];
|
||
if (tcl1 != NO_REGS && tcl2 != NO_REGS
|
||
&& (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
|
||
return diff;
|
||
return (int) cl1 - (int) cl2;
|
||
}
|
||
|
||
/* For correct work of function setup_reg_class_relation we need to
|
||
reorder important classes according to the order of their allocno
|
||
classes. It places important classes containing the same
|
||
allocatable hard register set adjacent to each other and allocno
|
||
class with the allocatable hard register set right after the other
|
||
important classes with the same set.
|
||
|
||
In example from comments of function
|
||
setup_allocno_and_important_classes, it places LEGACY_REGS and
|
||
GENERAL_REGS close to each other and GENERAL_REGS is after
|
||
LEGACY_REGS. */
|
||
static void
|
||
reorder_important_classes (void)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
allocno_class_order[i] = -1;
|
||
for (i = 0; i < ira_allocno_classes_num; i++)
|
||
allocno_class_order[ira_allocno_classes[i]] = i;
|
||
qsort (ira_important_classes, ira_important_classes_num,
|
||
sizeof (enum reg_class), comp_reg_classes_func);
|
||
for (i = 0; i < ira_important_classes_num; i++)
|
||
ira_important_class_nums[ira_important_classes[i]] = i;
|
||
}
|
||
|
||
/* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
|
||
IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
|
||
IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
|
||
please see corresponding comments in ira-int.h. */
|
||
static void
|
||
setup_reg_class_relations (void)
|
||
{
|
||
int i, cl1, cl2, cl3;
|
||
HARD_REG_SET intersection_set, union_set, temp_set2;
|
||
bool important_class_p[N_REG_CLASSES];
|
||
|
||
memset (important_class_p, 0, sizeof (important_class_p));
|
||
for (i = 0; i < ira_important_classes_num; i++)
|
||
important_class_p[ira_important_classes[i]] = true;
|
||
for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
|
||
{
|
||
ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
|
||
for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
|
||
{
|
||
ira_reg_classes_intersect_p[cl1][cl2] = false;
|
||
ira_reg_class_intersect[cl1][cl2] = NO_REGS;
|
||
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
||
COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
|
||
AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
|
||
if (hard_reg_set_empty_p (temp_hard_regset)
|
||
&& hard_reg_set_empty_p (temp_set2))
|
||
{
|
||
/* The both classes have no allocatable hard registers
|
||
-- take all class hard registers into account and use
|
||
reg_class_subunion and reg_class_superunion. */
|
||
for (i = 0;; i++)
|
||
{
|
||
cl3 = reg_class_subclasses[cl1][i];
|
||
if (cl3 == LIM_REG_CLASSES)
|
||
break;
|
||
if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
|
||
(enum reg_class) cl3))
|
||
ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
|
||
}
|
||
ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
|
||
ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
|
||
continue;
|
||
}
|
||
ira_reg_classes_intersect_p[cl1][cl2]
|
||
= hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
|
||
if (important_class_p[cl1] && important_class_p[cl2]
|
||
&& hard_reg_set_subset_p (temp_hard_regset, temp_set2))
|
||
{
|
||
/* CL1 and CL2 are important classes and CL1 allocatable
|
||
hard register set is inside of CL2 allocatable hard
|
||
registers -- make CL1 a superset of CL2. */
|
||
enum reg_class *p;
|
||
|
||
p = &ira_reg_class_super_classes[cl1][0];
|
||
while (*p != LIM_REG_CLASSES)
|
||
p++;
|
||
*p++ = (enum reg_class) cl2;
|
||
*p = LIM_REG_CLASSES;
|
||
}
|
||
ira_reg_class_subunion[cl1][cl2] = NO_REGS;
|
||
ira_reg_class_superunion[cl1][cl2] = NO_REGS;
|
||
COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
|
||
AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
|
||
AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
|
||
COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
|
||
IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
|
||
AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
|
||
for (i = 0; i < ira_important_classes_num; i++)
|
||
{
|
||
cl3 = ira_important_classes[i];
|
||
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
||
if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
|
||
{
|
||
/* CL3 allocatable hard register set is inside of
|
||
intersection of allocatable hard register sets
|
||
of CL1 and CL2. */
|
||
COPY_HARD_REG_SET
|
||
(temp_set2,
|
||
reg_class_contents[(int)
|
||
ira_reg_class_intersect[cl1][cl2]]);
|
||
AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
|
||
if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
|
||
/* If the allocatable hard register sets are the
|
||
same, prefer GENERAL_REGS or the smallest
|
||
class for debugging purposes. */
|
||
|| (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
|
||
&& (cl3 == GENERAL_REGS
|
||
|| (ira_reg_class_intersect[cl1][cl2] != GENERAL_REGS
|
||
&& hard_reg_set_subset_p
|
||
(reg_class_contents[cl3],
|
||
reg_class_contents
|
||
[(int) ira_reg_class_intersect[cl1][cl2]])))))
|
||
ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
|
||
}
|
||
if (hard_reg_set_subset_p (temp_hard_regset, union_set))
|
||
{
|
||
/* CL3 allocatbale hard register set is inside of
|
||
union of allocatable hard register sets of CL1
|
||
and CL2. */
|
||
COPY_HARD_REG_SET
|
||
(temp_set2,
|
||
reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
|
||
AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
|
||
if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
|
||
|| (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
|
||
|
||
&& (! hard_reg_set_equal_p (temp_set2,
|
||
temp_hard_regset)
|
||
|| cl3 == GENERAL_REGS
|
||
/* If the allocatable hard register sets are the
|
||
same, prefer GENERAL_REGS or the smallest
|
||
class for debugging purposes. */
|
||
|| (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
|
||
&& hard_reg_set_subset_p
|
||
(reg_class_contents[cl3],
|
||
reg_class_contents
|
||
[(int) ira_reg_class_subunion[cl1][cl2]])))))
|
||
ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
|
||
}
|
||
if (hard_reg_set_subset_p (union_set, temp_hard_regset))
|
||
{
|
||
/* CL3 allocatable hard register set contains union
|
||
of allocatable hard register sets of CL1 and
|
||
CL2. */
|
||
COPY_HARD_REG_SET
|
||
(temp_set2,
|
||
reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
|
||
AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
|
||
if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
|
||
|| (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
|
||
|
||
&& (! hard_reg_set_equal_p (temp_set2,
|
||
temp_hard_regset)
|
||
|| cl3 == GENERAL_REGS
|
||
/* If the allocatable hard register sets are the
|
||
same, prefer GENERAL_REGS or the smallest
|
||
class for debugging purposes. */
|
||
|| (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
|
||
&& hard_reg_set_subset_p
|
||
(reg_class_contents[cl3],
|
||
reg_class_contents
|
||
[(int) ira_reg_class_superunion[cl1][cl2]])))))
|
||
ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Output all possible allocno classes and the translation map into
|
||
file F. */
|
||
static void
|
||
print_classes (FILE *f, bool pressure_p)
|
||
{
|
||
int classes_num = (pressure_p
|
||
? ira_pressure_classes_num : ira_allocno_classes_num);
|
||
enum reg_class *classes = (pressure_p
|
||
? ira_pressure_classes : ira_allocno_classes);
|
||
enum reg_class *class_translate = (pressure_p
|
||
? ira_pressure_class_translate
|
||
: ira_allocno_class_translate);
|
||
static const char *const reg_class_names[] = REG_CLASS_NAMES;
|
||
int i;
|
||
|
||
fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
|
||
for (i = 0; i < classes_num; i++)
|
||
fprintf (f, " %s", reg_class_names[classes[i]]);
|
||
fprintf (f, "\nClass translation:\n");
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
fprintf (f, " %s -> %s\n", reg_class_names[i],
|
||
reg_class_names[class_translate[i]]);
|
||
}
|
||
|
||
/* Output all possible allocno and translation classes and the
|
||
translation maps into stderr. */
|
||
void
|
||
ira_debug_allocno_classes (void)
|
||
{
|
||
print_classes (stderr, false);
|
||
print_classes (stderr, true);
|
||
}
|
||
|
||
/* Set up different arrays concerning class subsets, allocno and
|
||
important classes. */
|
||
static void
|
||
find_reg_classes (void)
|
||
{
|
||
setup_allocno_and_important_classes ();
|
||
setup_class_translate ();
|
||
reorder_important_classes ();
|
||
setup_reg_class_relations ();
|
||
}
|
||
|
||
|
||
|
||
/* Set up the array above. */
|
||
static void
|
||
setup_hard_regno_aclass (void)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
#if 1
|
||
ira_hard_regno_allocno_class[i]
|
||
= (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
|
||
? NO_REGS
|
||
: ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
|
||
#else
|
||
int j;
|
||
enum reg_class cl;
|
||
ira_hard_regno_allocno_class[i] = NO_REGS;
|
||
for (j = 0; j < ira_allocno_classes_num; j++)
|
||
{
|
||
cl = ira_allocno_classes[j];
|
||
if (ira_class_hard_reg_index[cl][i] >= 0)
|
||
{
|
||
ira_hard_regno_allocno_class[i] = cl;
|
||
break;
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
|
||
static void
|
||
setup_reg_class_nregs (void)
|
||
{
|
||
int i, cl, cl2, m;
|
||
|
||
for (m = 0; m < MAX_MACHINE_MODE; m++)
|
||
{
|
||
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
||
ira_reg_class_max_nregs[cl][m]
|
||
= ira_reg_class_min_nregs[cl][m]
|
||
= CLASS_MAX_NREGS ((enum reg_class) cl, (enum machine_mode) m);
|
||
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
||
for (i = 0;
|
||
(cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
|
||
i++)
|
||
if (ira_reg_class_min_nregs[cl2][m]
|
||
< ira_reg_class_min_nregs[cl][m])
|
||
ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Set up IRA_PROHIBITED_CLASS_MODE_REGS. */
|
||
static void
|
||
setup_prohibited_class_mode_regs (void)
|
||
{
|
||
int j, k, hard_regno, cl;
|
||
|
||
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
|
||
{
|
||
for (j = 0; j < NUM_MACHINE_MODES; j++)
|
||
{
|
||
CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
|
||
for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
|
||
{
|
||
hard_regno = ira_class_hard_regs[cl][k];
|
||
if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
|
||
SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
|
||
hard_regno);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
|
||
spanning from one register pressure class to another one. It is
|
||
called after defining the pressure classes. */
|
||
static void
|
||
clarify_prohibited_class_mode_regs (void)
|
||
{
|
||
int j, k, hard_regno, cl, pclass, nregs;
|
||
|
||
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
|
||
for (j = 0; j < NUM_MACHINE_MODES; j++)
|
||
for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
|
||
{
|
||
hard_regno = ira_class_hard_regs[cl][k];
|
||
if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
|
||
continue;
|
||
nregs = hard_regno_nregs[hard_regno][j];
|
||
if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
|
||
{
|
||
SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
|
||
hard_regno);
|
||
continue;
|
||
}
|
||
pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
|
||
for (nregs-- ;nregs >= 0; nregs--)
|
||
if (((enum reg_class) pclass
|
||
!= ira_pressure_class_translate[REGNO_REG_CLASS
|
||
(hard_regno + nregs)]))
|
||
{
|
||
SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
|
||
hard_regno);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Allocate and initialize IRA_REGISTER_MOVE_COST,
|
||
IRA_MAX_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST,
|
||
IRA_MAY_MOVE_OUT_COST, IRA_MAX_MAY_MOVE_IN_COST, and
|
||
IRA_MAX_MAY_MOVE_OUT_COST for MODE if it is not done yet. */
|
||
void
|
||
ira_init_register_move_cost (enum machine_mode mode)
|
||
{
|
||
int cl1, cl2, cl3;
|
||
|
||
ira_assert (ira_register_move_cost[mode] == NULL
|
||
&& ira_max_register_move_cost[mode] == NULL
|
||
&& ira_may_move_in_cost[mode] == NULL
|
||
&& ira_may_move_out_cost[mode] == NULL
|
||
&& ira_max_may_move_in_cost[mode] == NULL
|
||
&& ira_max_may_move_out_cost[mode] == NULL);
|
||
if (move_cost[mode] == NULL)
|
||
init_move_cost (mode);
|
||
ira_register_move_cost[mode] = move_cost[mode];
|
||
/* Don't use ira_allocate because the tables exist out of scope of a
|
||
IRA call. */
|
||
ira_max_register_move_cost[mode]
|
||
= (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
|
||
memcpy (ira_max_register_move_cost[mode], ira_register_move_cost[mode],
|
||
sizeof (move_table) * N_REG_CLASSES);
|
||
for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
|
||
{
|
||
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
||
if (hard_reg_set_empty_p (temp_hard_regset))
|
||
continue;
|
||
for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
|
||
if (hard_reg_set_subset_p (reg_class_contents[cl1],
|
||
reg_class_contents[cl2]))
|
||
for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
|
||
{
|
||
if (ira_max_register_move_cost[mode][cl2][cl3]
|
||
< ira_register_move_cost[mode][cl1][cl3])
|
||
ira_max_register_move_cost[mode][cl2][cl3]
|
||
= ira_register_move_cost[mode][cl1][cl3];
|
||
if (ira_max_register_move_cost[mode][cl3][cl2]
|
||
< ira_register_move_cost[mode][cl3][cl1])
|
||
ira_max_register_move_cost[mode][cl3][cl2]
|
||
= ira_register_move_cost[mode][cl3][cl1];
|
||
}
|
||
}
|
||
ira_may_move_in_cost[mode]
|
||
= (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
|
||
memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
|
||
sizeof (move_table) * N_REG_CLASSES);
|
||
ira_may_move_out_cost[mode]
|
||
= (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
|
||
memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
|
||
sizeof (move_table) * N_REG_CLASSES);
|
||
ira_max_may_move_in_cost[mode]
|
||
= (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
|
||
memcpy (ira_max_may_move_in_cost[mode], ira_max_register_move_cost[mode],
|
||
sizeof (move_table) * N_REG_CLASSES);
|
||
ira_max_may_move_out_cost[mode]
|
||
= (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
|
||
memcpy (ira_max_may_move_out_cost[mode], ira_max_register_move_cost[mode],
|
||
sizeof (move_table) * N_REG_CLASSES);
|
||
for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
|
||
{
|
||
for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
|
||
{
|
||
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl2]);
|
||
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
||
if (hard_reg_set_empty_p (temp_hard_regset))
|
||
continue;
|
||
if (ira_class_subset_p[cl1][cl2])
|
||
ira_may_move_in_cost[mode][cl1][cl2] = 0;
|
||
if (ira_class_subset_p[cl2][cl1])
|
||
ira_may_move_out_cost[mode][cl1][cl2] = 0;
|
||
if (ira_class_subset_p[cl1][cl2])
|
||
ira_max_may_move_in_cost[mode][cl1][cl2] = 0;
|
||
if (ira_class_subset_p[cl2][cl1])
|
||
ira_max_may_move_out_cost[mode][cl1][cl2] = 0;
|
||
ira_register_move_cost[mode][cl1][cl2]
|
||
= ira_max_register_move_cost[mode][cl1][cl2];
|
||
ira_may_move_in_cost[mode][cl1][cl2]
|
||
= ira_max_may_move_in_cost[mode][cl1][cl2];
|
||
ira_may_move_out_cost[mode][cl1][cl2]
|
||
= ira_max_may_move_out_cost[mode][cl1][cl2];
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* This is called once during compiler work. It sets up
|
||
different arrays whose values don't depend on the compiled
|
||
function. */
|
||
void
|
||
ira_init_once (void)
|
||
{
|
||
int mode;
|
||
|
||
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
||
{
|
||
ira_register_move_cost[mode] = NULL;
|
||
ira_max_register_move_cost[mode] = NULL;
|
||
ira_may_move_in_cost[mode] = NULL;
|
||
ira_may_move_out_cost[mode] = NULL;
|
||
ira_max_may_move_in_cost[mode] = NULL;
|
||
ira_max_may_move_out_cost[mode] = NULL;
|
||
}
|
||
ira_init_costs_once ();
|
||
}
|
||
|
||
/* Free ira_max_register_move_cost, ira_may_move_in_cost,
|
||
ira_may_move_out_cost, ira_max_may_move_in_cost, and
|
||
ira_max_may_move_out_cost for each mode. */
|
||
static void
|
||
free_register_move_costs (void)
|
||
{
|
||
int mode;
|
||
|
||
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
||
{
|
||
free (ira_max_register_move_cost[mode]);
|
||
free (ira_may_move_in_cost[mode]);
|
||
free (ira_may_move_out_cost[mode]);
|
||
free (ira_max_may_move_in_cost[mode]);
|
||
free (ira_max_may_move_out_cost[mode]);
|
||
ira_register_move_cost[mode] = NULL;
|
||
ira_max_register_move_cost[mode] = NULL;
|
||
ira_may_move_in_cost[mode] = NULL;
|
||
ira_may_move_out_cost[mode] = NULL;
|
||
ira_max_may_move_in_cost[mode] = NULL;
|
||
ira_max_may_move_out_cost[mode] = NULL;
|
||
}
|
||
}
|
||
|
||
/* This is called every time when register related information is
|
||
changed. */
|
||
void
|
||
ira_init (void)
|
||
{
|
||
free_register_move_costs ();
|
||
setup_reg_mode_hard_regset ();
|
||
setup_alloc_regs (flag_omit_frame_pointer != 0);
|
||
setup_class_subset_and_memory_move_costs ();
|
||
setup_reg_class_nregs ();
|
||
setup_prohibited_class_mode_regs ();
|
||
find_reg_classes ();
|
||
clarify_prohibited_class_mode_regs ();
|
||
setup_hard_regno_aclass ();
|
||
ira_init_costs ();
|
||
}
|
||
|
||
/* Function called once at the end of compiler work. */
|
||
void
|
||
ira_finish_once (void)
|
||
{
|
||
ira_finish_costs_once ();
|
||
free_register_move_costs ();
|
||
}
|
||
|
||
|
||
#define ira_prohibited_mode_move_regs_initialized_p \
|
||
(this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
|
||
|
||
/* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
|
||
static void
|
||
setup_prohibited_mode_move_regs (void)
|
||
{
|
||
int i, j;
|
||
rtx test_reg1, test_reg2, move_pat, move_insn;
|
||
|
||
if (ira_prohibited_mode_move_regs_initialized_p)
|
||
return;
|
||
ira_prohibited_mode_move_regs_initialized_p = true;
|
||
test_reg1 = gen_rtx_REG (VOIDmode, 0);
|
||
test_reg2 = gen_rtx_REG (VOIDmode, 0);
|
||
move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
|
||
move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
{
|
||
SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
|
||
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
||
{
|
||
if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
|
||
continue;
|
||
SET_REGNO_RAW (test_reg1, j);
|
||
PUT_MODE (test_reg1, (enum machine_mode) i);
|
||
SET_REGNO_RAW (test_reg2, j);
|
||
PUT_MODE (test_reg2, (enum machine_mode) i);
|
||
INSN_CODE (move_insn) = -1;
|
||
recog_memoized (move_insn);
|
||
if (INSN_CODE (move_insn) < 0)
|
||
continue;
|
||
extract_insn (move_insn);
|
||
if (! constrain_operands (1))
|
||
continue;
|
||
CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Return nonzero if REGNO is a particularly bad choice for reloading X. */
|
||
static bool
|
||
ira_bad_reload_regno_1 (int regno, rtx x)
|
||
{
|
||
int x_regno, n, i;
|
||
ira_allocno_t a;
|
||
enum reg_class pref;
|
||
|
||
/* We only deal with pseudo regs. */
|
||
if (! x || GET_CODE (x) != REG)
|
||
return false;
|
||
|
||
x_regno = REGNO (x);
|
||
if (x_regno < FIRST_PSEUDO_REGISTER)
|
||
return false;
|
||
|
||
/* If the pseudo prefers REGNO explicitly, then do not consider
|
||
REGNO a bad spill choice. */
|
||
pref = reg_preferred_class (x_regno);
|
||
if (reg_class_size[pref] == 1)
|
||
return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
|
||
|
||
/* If the pseudo conflicts with REGNO, then we consider REGNO a
|
||
poor choice for a reload regno. */
|
||
a = ira_regno_allocno_map[x_regno];
|
||
n = ALLOCNO_NUM_OBJECTS (a);
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
||
if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return nonzero if REGNO is a particularly bad choice for reloading
|
||
IN or OUT. */
|
||
bool
|
||
ira_bad_reload_regno (int regno, rtx in, rtx out)
|
||
{
|
||
return (ira_bad_reload_regno_1 (regno, in)
|
||
|| ira_bad_reload_regno_1 (regno, out));
|
||
}
|
||
|
||
/* Return TRUE if *LOC contains an asm. */
|
||
static int
|
||
insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
if ( !*loc)
|
||
return FALSE;
|
||
if (GET_CODE (*loc) == ASM_OPERANDS)
|
||
return TRUE;
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
/* Return TRUE if INSN contains an ASM. */
|
||
static bool
|
||
insn_contains_asm (rtx insn)
|
||
{
|
||
return for_each_rtx (&insn, insn_contains_asm_1, NULL);
|
||
}
|
||
|
||
/* Add register clobbers from asm statements. */
|
||
static void
|
||
compute_regs_asm_clobbered (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
rtx insn;
|
||
FOR_BB_INSNS_REVERSE (bb, insn)
|
||
{
|
||
df_ref *def_rec;
|
||
|
||
if (insn_contains_asm (insn))
|
||
for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
|
||
{
|
||
df_ref def = *def_rec;
|
||
unsigned int dregno = DF_REF_REGNO (def);
|
||
if (HARD_REGISTER_NUM_P (dregno))
|
||
add_to_hard_reg_set (&crtl->asm_clobbers,
|
||
GET_MODE (DF_REF_REAL_REG (def)),
|
||
dregno);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
|
||
void
|
||
ira_setup_eliminable_regset (void)
|
||
{
|
||
#ifdef ELIMINABLE_REGS
|
||
int i;
|
||
static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
|
||
#endif
|
||
/* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
|
||
sp for alloca. So we can't eliminate the frame pointer in that
|
||
case. At some point, we should improve this by emitting the
|
||
sp-adjusting insns for this case. */
|
||
int need_fp
|
||
= (! flag_omit_frame_pointer
|
||
|| (cfun->calls_alloca && EXIT_IGNORE_STACK)
|
||
/* We need the frame pointer to catch stack overflow exceptions
|
||
if the stack pointer is moving. */
|
||
|| (flag_stack_check && STACK_CHECK_MOVING_SP)
|
||
|| crtl->accesses_prior_frames
|
||
|| crtl->stack_realign_needed
|
||
|| targetm.frame_pointer_required ());
|
||
|
||
frame_pointer_needed = need_fp;
|
||
|
||
COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
|
||
CLEAR_HARD_REG_SET (eliminable_regset);
|
||
|
||
compute_regs_asm_clobbered ();
|
||
|
||
/* Build the regset of all eliminable registers and show we can't
|
||
use those that we already know won't be eliminated. */
|
||
#ifdef ELIMINABLE_REGS
|
||
for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
|
||
{
|
||
bool cannot_elim
|
||
= (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
|
||
|| (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
|
||
|
||
if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
|
||
{
|
||
SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
|
||
|
||
if (cannot_elim)
|
||
SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
|
||
}
|
||
else if (cannot_elim)
|
||
error ("%s cannot be used in asm here",
|
||
reg_names[eliminables[i].from]);
|
||
else
|
||
df_set_regs_ever_live (eliminables[i].from, true);
|
||
}
|
||
#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
|
||
if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
|
||
{
|
||
SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
|
||
if (need_fp)
|
||
SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
|
||
}
|
||
else if (need_fp)
|
||
error ("%s cannot be used in asm here",
|
||
reg_names[HARD_FRAME_POINTER_REGNUM]);
|
||
else
|
||
df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
|
||
#endif
|
||
|
||
#else
|
||
if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
|
||
{
|
||
SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
|
||
if (need_fp)
|
||
SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
|
||
}
|
||
else if (need_fp)
|
||
error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
|
||
else
|
||
df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
|
||
#endif
|
||
}
|
||
|
||
|
||
|
||
/* The length of the following two arrays. */
|
||
int ira_reg_equiv_len;
|
||
|
||
/* The element value is TRUE if the corresponding regno value is
|
||
invariant. */
|
||
bool *ira_reg_equiv_invariant_p;
|
||
|
||
/* The element value is equiv constant of given pseudo-register or
|
||
NULL_RTX. */
|
||
rtx *ira_reg_equiv_const;
|
||
|
||
/* Set up the two arrays declared above. */
|
||
static void
|
||
find_reg_equiv_invariant_const (void)
|
||
{
|
||
unsigned int i;
|
||
bool invariant_p;
|
||
rtx list, insn, note, constant, x;
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < VEC_length (reg_equivs_t, reg_equivs); i++)
|
||
{
|
||
constant = NULL_RTX;
|
||
invariant_p = false;
|
||
for (list = reg_equiv_init (i); list != NULL_RTX; list = XEXP (list, 1))
|
||
{
|
||
insn = XEXP (list, 0);
|
||
note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
||
|
||
if (note == NULL_RTX)
|
||
continue;
|
||
|
||
x = XEXP (note, 0);
|
||
|
||
if (! CONSTANT_P (x)
|
||
|| ! flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
|
||
{
|
||
/* It can happen that a REG_EQUIV note contains a MEM
|
||
that is not a legitimate memory operand. As later
|
||
stages of the reload assume that all addresses found
|
||
in the reg_equiv_* arrays were originally legitimate,
|
||
we ignore such REG_EQUIV notes. */
|
||
if (memory_operand (x, VOIDmode))
|
||
invariant_p = MEM_READONLY_P (x);
|
||
else if (function_invariant_p (x))
|
||
{
|
||
if (GET_CODE (x) == PLUS
|
||
|| x == frame_pointer_rtx || x == arg_pointer_rtx)
|
||
invariant_p = true;
|
||
else
|
||
constant = x;
|
||
}
|
||
}
|
||
}
|
||
ira_reg_equiv_invariant_p[i] = invariant_p;
|
||
ira_reg_equiv_const[i] = constant;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Vector of substitutions of register numbers,
|
||
used to map pseudo regs into hardware regs.
|
||
This is set up as a result of register allocation.
|
||
Element N is the hard reg assigned to pseudo reg N,
|
||
or is -1 if no hard reg was assigned.
|
||
If N is a hard reg number, element N is N. */
|
||
short *reg_renumber;
|
||
|
||
/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
|
||
the allocation found by IRA. */
|
||
static void
|
||
setup_reg_renumber (void)
|
||
{
|
||
int regno, hard_regno;
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
|
||
caller_save_needed = 0;
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
/* There are no caps at this point. */
|
||
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
|
||
if (! ALLOCNO_ASSIGNED_P (a))
|
||
/* It can happen if A is not referenced but partially anticipated
|
||
somewhere in a region. */
|
||
ALLOCNO_ASSIGNED_P (a) = true;
|
||
ira_free_allocno_updated_costs (a);
|
||
hard_regno = ALLOCNO_HARD_REGNO (a);
|
||
regno = ALLOCNO_REGNO (a);
|
||
reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
|
||
if (hard_regno >= 0)
|
||
{
|
||
int i, nwords;
|
||
enum reg_class pclass;
|
||
ira_object_t obj;
|
||
|
||
pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
|
||
nwords = ALLOCNO_NUM_OBJECTS (a);
|
||
for (i = 0; i < nwords; i++)
|
||
{
|
||
obj = ALLOCNO_OBJECT (a, i);
|
||
IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
|
||
reg_class_contents[pclass]);
|
||
}
|
||
if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
|
||
&& ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
|
||
call_used_reg_set))
|
||
{
|
||
ira_assert (!optimize || flag_caller_saves
|
||
|| regno >= ira_reg_equiv_len
|
||
|| ira_reg_equiv_const[regno]
|
||
|| ira_reg_equiv_invariant_p[regno]);
|
||
caller_save_needed = 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Set up allocno assignment flags for further allocation
|
||
improvements. */
|
||
static void
|
||
setup_allocno_assignment_flags (void)
|
||
{
|
||
int hard_regno;
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
if (! ALLOCNO_ASSIGNED_P (a))
|
||
/* It can happen if A is not referenced but partially anticipated
|
||
somewhere in a region. */
|
||
ira_free_allocno_updated_costs (a);
|
||
hard_regno = ALLOCNO_HARD_REGNO (a);
|
||
/* Don't assign hard registers to allocnos which are destination
|
||
of removed store at the end of loop. It has no sense to keep
|
||
the same value in different hard registers. It is also
|
||
impossible to assign hard registers correctly to such
|
||
allocnos because the cost info and info about intersected
|
||
calls are incorrect for them. */
|
||
ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
|
||
|| ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
|
||
|| (ALLOCNO_MEMORY_COST (a)
|
||
- ALLOCNO_CLASS_COST (a)) < 0);
|
||
ira_assert (hard_regno < 0
|
||
|| ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
|
||
reg_class_contents
|
||
[ALLOCNO_CLASS (a)]));
|
||
}
|
||
}
|
||
|
||
/* Evaluate overall allocation cost and the costs for using hard
|
||
registers and memory for allocnos. */
|
||
static void
|
||
calculate_allocation_cost (void)
|
||
{
|
||
int hard_regno, cost;
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
|
||
ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
hard_regno = ALLOCNO_HARD_REGNO (a);
|
||
ira_assert (hard_regno < 0
|
||
|| ! ira_hard_reg_not_in_set_p
|
||
(hard_regno, ALLOCNO_MODE (a),
|
||
reg_class_contents[ALLOCNO_CLASS (a)]));
|
||
if (hard_regno < 0)
|
||
{
|
||
cost = ALLOCNO_MEMORY_COST (a);
|
||
ira_mem_cost += cost;
|
||
}
|
||
else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
|
||
{
|
||
cost = (ALLOCNO_HARD_REG_COSTS (a)
|
||
[ira_class_hard_reg_index
|
||
[ALLOCNO_CLASS (a)][hard_regno]]);
|
||
ira_reg_cost += cost;
|
||
}
|
||
else
|
||
{
|
||
cost = ALLOCNO_CLASS_COST (a);
|
||
ira_reg_cost += cost;
|
||
}
|
||
ira_overall_cost += cost;
|
||
}
|
||
|
||
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
|
||
{
|
||
fprintf (ira_dump_file,
|
||
"+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
|
||
ira_overall_cost, ira_reg_cost, ira_mem_cost,
|
||
ira_load_cost, ira_store_cost, ira_shuffle_cost);
|
||
fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
|
||
ira_move_loops_num, ira_additional_jumps_num);
|
||
}
|
||
|
||
}
|
||
|
||
#ifdef ENABLE_IRA_CHECKING
|
||
/* Check the correctness of the allocation. We do need this because
|
||
of complicated code to transform more one region internal
|
||
representation into one region representation. */
|
||
static void
|
||
check_allocation (void)
|
||
{
|
||
ira_allocno_t a;
|
||
int hard_regno, nregs, conflict_nregs;
|
||
ira_allocno_iterator ai;
|
||
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
int n = ALLOCNO_NUM_OBJECTS (a);
|
||
int i;
|
||
|
||
if (ALLOCNO_CAP_MEMBER (a) != NULL
|
||
|| (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
|
||
continue;
|
||
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
|
||
if (nregs == 1)
|
||
/* We allocated a single hard register. */
|
||
n = 1;
|
||
else if (n > 1)
|
||
/* We allocated multiple hard registers, and we will test
|
||
conflicts in a granularity of single hard regs. */
|
||
nregs = 1;
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
||
ira_object_t conflict_obj;
|
||
ira_object_conflict_iterator oci;
|
||
int this_regno = hard_regno;
|
||
if (n > 1)
|
||
{
|
||
if (WORDS_BIG_ENDIAN)
|
||
this_regno += n - i - 1;
|
||
else
|
||
this_regno += i;
|
||
}
|
||
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
|
||
{
|
||
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
|
||
int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
|
||
if (conflict_hard_regno < 0)
|
||
continue;
|
||
|
||
conflict_nregs
|
||
= (hard_regno_nregs
|
||
[conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
|
||
|
||
if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
|
||
&& conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
|
||
{
|
||
if (WORDS_BIG_ENDIAN)
|
||
conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
|
||
- OBJECT_SUBWORD (conflict_obj) - 1);
|
||
else
|
||
conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
|
||
conflict_nregs = 1;
|
||
}
|
||
|
||
if ((conflict_hard_regno <= this_regno
|
||
&& this_regno < conflict_hard_regno + conflict_nregs)
|
||
|| (this_regno <= conflict_hard_regno
|
||
&& conflict_hard_regno < this_regno + nregs))
|
||
{
|
||
fprintf (stderr, "bad allocation for %d and %d\n",
|
||
ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Fix values of array REG_EQUIV_INIT after live range splitting done
|
||
by IRA. */
|
||
static void
|
||
fix_reg_equiv_init (void)
|
||
{
|
||
unsigned int max_regno = max_reg_num ();
|
||
int i, new_regno, max;
|
||
rtx x, prev, next, insn, set;
|
||
|
||
if (VEC_length (reg_equivs_t, reg_equivs) < max_regno)
|
||
{
|
||
max = VEC_length (reg_equivs_t, reg_equivs);
|
||
grow_reg_equivs ();
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
|
||
for (prev = NULL_RTX, x = reg_equiv_init (i);
|
||
x != NULL_RTX;
|
||
x = next)
|
||
{
|
||
next = XEXP (x, 1);
|
||
insn = XEXP (x, 0);
|
||
set = single_set (insn);
|
||
ira_assert (set != NULL_RTX
|
||
&& (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
|
||
if (REG_P (SET_DEST (set))
|
||
&& ((int) REGNO (SET_DEST (set)) == i
|
||
|| (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
|
||
new_regno = REGNO (SET_DEST (set));
|
||
else if (REG_P (SET_SRC (set))
|
||
&& ((int) REGNO (SET_SRC (set)) == i
|
||
|| (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
|
||
new_regno = REGNO (SET_SRC (set));
|
||
else
|
||
gcc_unreachable ();
|
||
if (new_regno == i)
|
||
prev = x;
|
||
else
|
||
{
|
||
if (prev == NULL_RTX)
|
||
reg_equiv_init (i) = next;
|
||
else
|
||
XEXP (prev, 1) = next;
|
||
XEXP (x, 1) = reg_equiv_init (new_regno);
|
||
reg_equiv_init (new_regno) = x;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef ENABLE_IRA_CHECKING
|
||
/* Print redundant memory-memory copies. */
|
||
static void
|
||
print_redundant_copies (void)
|
||
{
|
||
int hard_regno;
|
||
ira_allocno_t a;
|
||
ira_copy_t cp, next_cp;
|
||
ira_allocno_iterator ai;
|
||
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
||
/* It is a cap. */
|
||
continue;
|
||
hard_regno = ALLOCNO_HARD_REGNO (a);
|
||
if (hard_regno >= 0)
|
||
continue;
|
||
for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
|
||
if (cp->first == a)
|
||
next_cp = cp->next_first_allocno_copy;
|
||
else
|
||
{
|
||
next_cp = cp->next_second_allocno_copy;
|
||
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
|
||
&& cp->insn != NULL_RTX
|
||
&& ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
|
||
fprintf (ira_dump_file,
|
||
" Redundant move from %d(freq %d):%d\n",
|
||
INSN_UID (cp->insn), cp->freq, hard_regno);
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Setup preferred and alternative classes for new pseudo-registers
|
||
created by IRA starting with START. */
|
||
static void
|
||
setup_preferred_alternate_classes_for_new_pseudos (int start)
|
||
{
|
||
int i, old_regno;
|
||
int max_regno = max_reg_num ();
|
||
|
||
for (i = start; i < max_regno; i++)
|
||
{
|
||
old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
|
||
ira_assert (i != old_regno);
|
||
setup_reg_classes (i, reg_preferred_class (old_regno),
|
||
reg_alternate_class (old_regno),
|
||
reg_allocno_class (old_regno));
|
||
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file,
|
||
" New r%d: setting preferred %s, alternative %s\n",
|
||
i, reg_class_names[reg_preferred_class (old_regno)],
|
||
reg_class_names[reg_alternate_class (old_regno)]);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Regional allocation can create new pseudo-registers. This function
|
||
expands some arrays for pseudo-registers. */
|
||
static void
|
||
expand_reg_info (int old_size)
|
||
{
|
||
int i;
|
||
int size = max_reg_num ();
|
||
|
||
resize_reg_info ();
|
||
for (i = old_size; i < size; i++)
|
||
setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
|
||
}
|
||
|
||
/* Return TRUE if there is too high register pressure in the function.
|
||
It is used to decide when stack slot sharing is worth to do. */
|
||
static bool
|
||
too_high_register_pressure_p (void)
|
||
{
|
||
int i;
|
||
enum reg_class pclass;
|
||
|
||
for (i = 0; i < ira_pressure_classes_num; i++)
|
||
{
|
||
pclass = ira_pressure_classes[i];
|
||
if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
|
||
/* Indicate that hard register number FROM was eliminated and replaced with
|
||
an offset from hard register number TO. The status of hard registers live
|
||
at the start of a basic block is updated by replacing a use of FROM with
|
||
a use of TO. */
|
||
|
||
void
|
||
mark_elimination (int from, int to)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
/* We don't use LIVE info in IRA. */
|
||
bitmap r = DF_LR_IN (bb);
|
||
|
||
if (REGNO_REG_SET_P (r, from))
|
||
{
|
||
CLEAR_REGNO_REG_SET (r, from);
|
||
SET_REGNO_REG_SET (r, to);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
struct equivalence
|
||
{
|
||
/* Set when a REG_EQUIV note is found or created. Use to
|
||
keep track of what memory accesses might be created later,
|
||
e.g. by reload. */
|
||
rtx replacement;
|
||
rtx *src_p;
|
||
/* The list of each instruction which initializes this register. */
|
||
rtx init_insns;
|
||
/* Loop depth is used to recognize equivalences which appear
|
||
to be present within the same loop (or in an inner loop). */
|
||
int loop_depth;
|
||
/* Nonzero if this had a preexisting REG_EQUIV note. */
|
||
int is_arg_equivalence;
|
||
/* Set when an attempt should be made to replace a register
|
||
with the associated src_p entry. */
|
||
char replace;
|
||
};
|
||
|
||
/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
|
||
structure for that register. */
|
||
static struct equivalence *reg_equiv;
|
||
|
||
/* Used for communication between the following two functions: contains
|
||
a MEM that we wish to ensure remains unchanged. */
|
||
static rtx equiv_mem;
|
||
|
||
/* Set nonzero if EQUIV_MEM is modified. */
|
||
static int equiv_mem_modified;
|
||
|
||
/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
|
||
Called via note_stores. */
|
||
static void
|
||
validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
if ((REG_P (dest)
|
||
&& reg_overlap_mentioned_p (dest, equiv_mem))
|
||
|| (MEM_P (dest)
|
||
&& true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
|
||
equiv_mem_modified = 1;
|
||
}
|
||
|
||
/* Verify that no store between START and the death of REG invalidates
|
||
MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
|
||
by storing into an overlapping memory location, or with a non-const
|
||
CALL_INSN.
|
||
|
||
Return 1 if MEMREF remains valid. */
|
||
static int
|
||
validate_equiv_mem (rtx start, rtx reg, rtx memref)
|
||
{
|
||
rtx insn;
|
||
rtx note;
|
||
|
||
equiv_mem = memref;
|
||
equiv_mem_modified = 0;
|
||
|
||
/* If the memory reference has side effects or is volatile, it isn't a
|
||
valid equivalence. */
|
||
if (side_effects_p (memref))
|
||
return 0;
|
||
|
||
for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
|
||
{
|
||
if (! INSN_P (insn))
|
||
continue;
|
||
|
||
if (find_reg_note (insn, REG_DEAD, reg))
|
||
return 1;
|
||
|
||
/* This used to ignore readonly memory and const/pure calls. The problem
|
||
is the equivalent form may reference a pseudo which gets assigned a
|
||
call clobbered hard reg. When we later replace REG with its
|
||
equivalent form, the value in the call-clobbered reg has been
|
||
changed and all hell breaks loose. */
|
||
if (CALL_P (insn))
|
||
return 0;
|
||
|
||
note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
|
||
|
||
/* If a register mentioned in MEMREF is modified via an
|
||
auto-increment, we lose the equivalence. Do the same if one
|
||
dies; although we could extend the life, it doesn't seem worth
|
||
the trouble. */
|
||
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
if ((REG_NOTE_KIND (note) == REG_INC
|
||
|| REG_NOTE_KIND (note) == REG_DEAD)
|
||
&& REG_P (XEXP (note, 0))
|
||
&& reg_overlap_mentioned_p (XEXP (note, 0), memref))
|
||
return 0;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Returns zero if X is known to be invariant. */
|
||
static int
|
||
equiv_init_varies_p (rtx x)
|
||
{
|
||
RTX_CODE code = GET_CODE (x);
|
||
int i;
|
||
const char *fmt;
|
||
|
||
switch (code)
|
||
{
|
||
case MEM:
|
||
return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
|
||
|
||
case CONST:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return 0;
|
||
|
||
case REG:
|
||
return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
|
||
|
||
case ASM_OPERANDS:
|
||
if (MEM_VOLATILE_P (x))
|
||
return 1;
|
||
|
||
/* Fall through. */
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (equiv_init_varies_p (XEXP (x, i)))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (equiv_init_varies_p (XVECEXP (x, i, j)))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Returns nonzero if X (used to initialize register REGNO) is movable.
|
||
X is only movable if the registers it uses have equivalent initializations
|
||
which appear to be within the same loop (or in an inner loop) and movable
|
||
or if they are not candidates for local_alloc and don't vary. */
|
||
static int
|
||
equiv_init_movable_p (rtx x, int regno)
|
||
{
|
||
int i, j;
|
||
const char *fmt;
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case SET:
|
||
return equiv_init_movable_p (SET_SRC (x), regno);
|
||
|
||
case CC0:
|
||
case CLOBBER:
|
||
return 0;
|
||
|
||
case PRE_INC:
|
||
case PRE_DEC:
|
||
case POST_INC:
|
||
case POST_DEC:
|
||
case PRE_MODIFY:
|
||
case POST_MODIFY:
|
||
return 0;
|
||
|
||
case REG:
|
||
return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
|
||
&& reg_equiv[REGNO (x)].replace)
|
||
|| (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
|
||
&& ! rtx_varies_p (x, 0)));
|
||
|
||
case UNSPEC_VOLATILE:
|
||
return 0;
|
||
|
||
case ASM_OPERANDS:
|
||
if (MEM_VOLATILE_P (x))
|
||
return 0;
|
||
|
||
/* Fall through. */
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
switch (fmt[i])
|
||
{
|
||
case 'e':
|
||
if (! equiv_init_movable_p (XEXP (x, i), regno))
|
||
return 0;
|
||
break;
|
||
case 'E':
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
|
||
return 0;
|
||
break;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
|
||
true. */
|
||
static int
|
||
contains_replace_regs (rtx x)
|
||
{
|
||
int i, j;
|
||
const char *fmt;
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST:
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case PC:
|
||
case CC0:
|
||
case HIGH:
|
||
return 0;
|
||
|
||
case REG:
|
||
return reg_equiv[REGNO (x)].replace;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
switch (fmt[i])
|
||
{
|
||
case 'e':
|
||
if (contains_replace_regs (XEXP (x, i)))
|
||
return 1;
|
||
break;
|
||
case 'E':
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (contains_replace_regs (XVECEXP (x, i, j)))
|
||
return 1;
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* TRUE if X references a memory location that would be affected by a store
|
||
to MEMREF. */
|
||
static int
|
||
memref_referenced_p (rtx memref, rtx x)
|
||
{
|
||
int i, j;
|
||
const char *fmt;
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST:
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case PC:
|
||
case CC0:
|
||
case HIGH:
|
||
case LO_SUM:
|
||
return 0;
|
||
|
||
case REG:
|
||
return (reg_equiv[REGNO (x)].replacement
|
||
&& memref_referenced_p (memref,
|
||
reg_equiv[REGNO (x)].replacement));
|
||
|
||
case MEM:
|
||
if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
|
||
return 1;
|
||
break;
|
||
|
||
case SET:
|
||
/* If we are setting a MEM, it doesn't count (its address does), but any
|
||
other SET_DEST that has a MEM in it is referencing the MEM. */
|
||
if (MEM_P (SET_DEST (x)))
|
||
{
|
||
if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
|
||
return 1;
|
||
}
|
||
else if (memref_referenced_p (memref, SET_DEST (x)))
|
||
return 1;
|
||
|
||
return memref_referenced_p (memref, SET_SRC (x));
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
switch (fmt[i])
|
||
{
|
||
case 'e':
|
||
if (memref_referenced_p (memref, XEXP (x, i)))
|
||
return 1;
|
||
break;
|
||
case 'E':
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (memref_referenced_p (memref, XVECEXP (x, i, j)))
|
||
return 1;
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* TRUE if some insn in the range (START, END] references a memory location
|
||
that would be affected by a store to MEMREF. */
|
||
static int
|
||
memref_used_between_p (rtx memref, rtx start, rtx end)
|
||
{
|
||
rtx insn;
|
||
|
||
for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
if (!NONDEBUG_INSN_P (insn))
|
||
continue;
|
||
|
||
if (memref_referenced_p (memref, PATTERN (insn)))
|
||
return 1;
|
||
|
||
/* Nonconst functions may access memory. */
|
||
if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Mark REG as having no known equivalence.
|
||
Some instructions might have been processed before and furnished
|
||
with REG_EQUIV notes for this register; these notes will have to be
|
||
removed.
|
||
STORE is the piece of RTL that does the non-constant / conflicting
|
||
assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
|
||
but needs to be there because this function is called from note_stores. */
|
||
static void
|
||
no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
int regno;
|
||
rtx list;
|
||
|
||
if (!REG_P (reg))
|
||
return;
|
||
regno = REGNO (reg);
|
||
list = reg_equiv[regno].init_insns;
|
||
if (list == const0_rtx)
|
||
return;
|
||
reg_equiv[regno].init_insns = const0_rtx;
|
||
reg_equiv[regno].replacement = NULL_RTX;
|
||
/* This doesn't matter for equivalences made for argument registers, we
|
||
should keep their initialization insns. */
|
||
if (reg_equiv[regno].is_arg_equivalence)
|
||
return;
|
||
reg_equiv_init (regno) = NULL_RTX;
|
||
for (; list; list = XEXP (list, 1))
|
||
{
|
||
rtx insn = XEXP (list, 0);
|
||
remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
|
||
}
|
||
}
|
||
|
||
/* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
|
||
equivalent replacement. */
|
||
|
||
static rtx
|
||
adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
|
||
{
|
||
if (REG_P (loc))
|
||
{
|
||
bitmap cleared_regs = (bitmap) data;
|
||
if (bitmap_bit_p (cleared_regs, REGNO (loc)))
|
||
return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
|
||
NULL_RTX, adjust_cleared_regs, data);
|
||
}
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Nonzero if we recorded an equivalence for a LABEL_REF. */
|
||
static int recorded_label_ref;
|
||
|
||
/* Find registers that are equivalent to a single value throughout the
|
||
compilation (either because they can be referenced in memory or are
|
||
set once from a single constant). Lower their priority for a
|
||
register.
|
||
|
||
If such a register is only referenced once, try substituting its
|
||
value into the using insn. If it succeeds, we can eliminate the
|
||
register completely.
|
||
|
||
Initialize the REG_EQUIV_INIT array of initializing insns.
|
||
|
||
Return non-zero if jump label rebuilding should be done. */
|
||
static int
|
||
update_equiv_regs (void)
|
||
{
|
||
rtx insn;
|
||
basic_block bb;
|
||
int loop_depth;
|
||
bitmap cleared_regs;
|
||
|
||
/* We need to keep track of whether or not we recorded a LABEL_REF so
|
||
that we know if the jump optimizer needs to be rerun. */
|
||
recorded_label_ref = 0;
|
||
|
||
reg_equiv = XCNEWVEC (struct equivalence, max_regno);
|
||
grow_reg_equivs ();
|
||
|
||
init_alias_analysis ();
|
||
|
||
/* Scan the insns and find which registers have equivalences. Do this
|
||
in a separate scan of the insns because (due to -fcse-follow-jumps)
|
||
a register can be set below its use. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
loop_depth = bb->loop_depth;
|
||
|
||
for (insn = BB_HEAD (bb);
|
||
insn != NEXT_INSN (BB_END (bb));
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
rtx note;
|
||
rtx set;
|
||
rtx dest, src;
|
||
int regno;
|
||
|
||
if (! INSN_P (insn))
|
||
continue;
|
||
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_INC)
|
||
no_equiv (XEXP (note, 0), note, NULL);
|
||
|
||
set = single_set (insn);
|
||
|
||
/* If this insn contains more (or less) than a single SET,
|
||
only mark all destinations as having no known equivalence. */
|
||
if (set == 0)
|
||
{
|
||
note_stores (PATTERN (insn), no_equiv, NULL);
|
||
continue;
|
||
}
|
||
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
||
{
|
||
int i;
|
||
|
||
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
|
||
{
|
||
rtx part = XVECEXP (PATTERN (insn), 0, i);
|
||
if (part != set)
|
||
note_stores (part, no_equiv, NULL);
|
||
}
|
||
}
|
||
|
||
dest = SET_DEST (set);
|
||
src = SET_SRC (set);
|
||
|
||
/* See if this is setting up the equivalence between an argument
|
||
register and its stack slot. */
|
||
note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
||
if (note)
|
||
{
|
||
gcc_assert (REG_P (dest));
|
||
regno = REGNO (dest);
|
||
|
||
/* Note that we don't want to clear reg_equiv_init even if there
|
||
are multiple sets of this register. */
|
||
reg_equiv[regno].is_arg_equivalence = 1;
|
||
|
||
/* Record for reload that this is an equivalencing insn. */
|
||
if (rtx_equal_p (src, XEXP (note, 0)))
|
||
reg_equiv_init (regno)
|
||
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
|
||
|
||
/* Continue normally in case this is a candidate for
|
||
replacements. */
|
||
}
|
||
|
||
if (!optimize)
|
||
continue;
|
||
|
||
/* We only handle the case of a pseudo register being set
|
||
once, or always to the same value. */
|
||
/* ??? The mn10200 port breaks if we add equivalences for
|
||
values that need an ADDRESS_REGS register and set them equivalent
|
||
to a MEM of a pseudo. The actual problem is in the over-conservative
|
||
handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
|
||
calculate_needs, but we traditionally work around this problem
|
||
here by rejecting equivalences when the destination is in a register
|
||
that's likely spilled. This is fragile, of course, since the
|
||
preferred class of a pseudo depends on all instructions that set
|
||
or use it. */
|
||
|
||
if (!REG_P (dest)
|
||
|| (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
|
||
|| reg_equiv[regno].init_insns == const0_rtx
|
||
|| (targetm.class_likely_spilled_p (reg_preferred_class (regno))
|
||
&& MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
|
||
{
|
||
/* This might be setting a SUBREG of a pseudo, a pseudo that is
|
||
also set somewhere else to a constant. */
|
||
note_stores (set, no_equiv, NULL);
|
||
continue;
|
||
}
|
||
|
||
note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
|
||
|
||
/* cse sometimes generates function invariants, but doesn't put a
|
||
REG_EQUAL note on the insn. Since this note would be redundant,
|
||
there's no point creating it earlier than here. */
|
||
if (! note && ! rtx_varies_p (src, 0))
|
||
note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
|
||
|
||
/* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
|
||
since it represents a function call */
|
||
if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
|
||
note = NULL_RTX;
|
||
|
||
if (DF_REG_DEF_COUNT (regno) != 1
|
||
&& (! note
|
||
|| rtx_varies_p (XEXP (note, 0), 0)
|
||
|| (reg_equiv[regno].replacement
|
||
&& ! rtx_equal_p (XEXP (note, 0),
|
||
reg_equiv[regno].replacement))))
|
||
{
|
||
no_equiv (dest, set, NULL);
|
||
continue;
|
||
}
|
||
/* Record this insn as initializing this register. */
|
||
reg_equiv[regno].init_insns
|
||
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
|
||
|
||
/* If this register is known to be equal to a constant, record that
|
||
it is always equivalent to the constant. */
|
||
if (DF_REG_DEF_COUNT (regno) == 1
|
||
&& note && ! rtx_varies_p (XEXP (note, 0), 0))
|
||
{
|
||
rtx note_value = XEXP (note, 0);
|
||
remove_note (insn, note);
|
||
set_unique_reg_note (insn, REG_EQUIV, note_value);
|
||
}
|
||
|
||
/* If this insn introduces a "constant" register, decrease the priority
|
||
of that register. Record this insn if the register is only used once
|
||
more and the equivalence value is the same as our source.
|
||
|
||
The latter condition is checked for two reasons: First, it is an
|
||
indication that it may be more efficient to actually emit the insn
|
||
as written (if no registers are available, reload will substitute
|
||
the equivalence). Secondly, it avoids problems with any registers
|
||
dying in this insn whose death notes would be missed.
|
||
|
||
If we don't have a REG_EQUIV note, see if this insn is loading
|
||
a register used only in one basic block from a MEM. If so, and the
|
||
MEM remains unchanged for the life of the register, add a REG_EQUIV
|
||
note. */
|
||
|
||
note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
||
|
||
if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
|
||
&& MEM_P (SET_SRC (set))
|
||
&& validate_equiv_mem (insn, dest, SET_SRC (set)))
|
||
note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
|
||
|
||
if (note)
|
||
{
|
||
int regno = REGNO (dest);
|
||
rtx x = XEXP (note, 0);
|
||
|
||
/* If we haven't done so, record for reload that this is an
|
||
equivalencing insn. */
|
||
if (!reg_equiv[regno].is_arg_equivalence)
|
||
reg_equiv_init (regno)
|
||
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
|
||
|
||
/* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
|
||
We might end up substituting the LABEL_REF for uses of the
|
||
pseudo here or later. That kind of transformation may turn an
|
||
indirect jump into a direct jump, in which case we must rerun the
|
||
jump optimizer to ensure that the JUMP_LABEL fields are valid. */
|
||
if (GET_CODE (x) == LABEL_REF
|
||
|| (GET_CODE (x) == CONST
|
||
&& GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
|
||
recorded_label_ref = 1;
|
||
|
||
reg_equiv[regno].replacement = x;
|
||
reg_equiv[regno].src_p = &SET_SRC (set);
|
||
reg_equiv[regno].loop_depth = loop_depth;
|
||
|
||
/* Don't mess with things live during setjmp. */
|
||
if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
|
||
{
|
||
/* Note that the statement below does not affect the priority
|
||
in local-alloc! */
|
||
REG_LIVE_LENGTH (regno) *= 2;
|
||
|
||
/* If the register is referenced exactly twice, meaning it is
|
||
set once and used once, indicate that the reference may be
|
||
replaced by the equivalence we computed above. Do this
|
||
even if the register is only used in one block so that
|
||
dependencies can be handled where the last register is
|
||
used in a different block (i.e. HIGH / LO_SUM sequences)
|
||
and to reduce the number of registers alive across
|
||
calls. */
|
||
|
||
if (REG_N_REFS (regno) == 2
|
||
&& (rtx_equal_p (x, src)
|
||
|| ! equiv_init_varies_p (src))
|
||
&& NONJUMP_INSN_P (insn)
|
||
&& equiv_init_movable_p (PATTERN (insn), regno))
|
||
reg_equiv[regno].replace = 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!optimize)
|
||
goto out;
|
||
|
||
/* A second pass, to gather additional equivalences with memory. This needs
|
||
to be done after we know which registers we are going to replace. */
|
||
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
{
|
||
rtx set, src, dest;
|
||
unsigned regno;
|
||
|
||
if (! INSN_P (insn))
|
||
continue;
|
||
|
||
set = single_set (insn);
|
||
if (! set)
|
||
continue;
|
||
|
||
dest = SET_DEST (set);
|
||
src = SET_SRC (set);
|
||
|
||
/* If this sets a MEM to the contents of a REG that is only used
|
||
in a single basic block, see if the register is always equivalent
|
||
to that memory location and if moving the store from INSN to the
|
||
insn that set REG is safe. If so, put a REG_EQUIV note on the
|
||
initializing insn.
|
||
|
||
Don't add a REG_EQUIV note if the insn already has one. The existing
|
||
REG_EQUIV is likely more useful than the one we are adding.
|
||
|
||
If one of the regs in the address has reg_equiv[REGNO].replace set,
|
||
then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
|
||
optimization may move the set of this register immediately before
|
||
insn, which puts it after reg_equiv[REGNO].init_insns, and hence
|
||
the mention in the REG_EQUIV note would be to an uninitialized
|
||
pseudo. */
|
||
|
||
if (MEM_P (dest) && REG_P (src)
|
||
&& (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
|
||
&& REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
|
||
&& DF_REG_DEF_COUNT (regno) == 1
|
||
&& reg_equiv[regno].init_insns != 0
|
||
&& reg_equiv[regno].init_insns != const0_rtx
|
||
&& ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
|
||
REG_EQUIV, NULL_RTX)
|
||
&& ! contains_replace_regs (XEXP (dest, 0)))
|
||
{
|
||
rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
|
||
if (validate_equiv_mem (init_insn, src, dest)
|
||
&& ! memref_used_between_p (dest, init_insn, insn)
|
||
/* Attaching a REG_EQUIV note will fail if INIT_INSN has
|
||
multiple sets. */
|
||
&& set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
|
||
{
|
||
/* This insn makes the equivalence, not the one initializing
|
||
the register. */
|
||
reg_equiv_init (regno)
|
||
= gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
|
||
df_notes_rescan (init_insn);
|
||
}
|
||
}
|
||
}
|
||
|
||
cleared_regs = BITMAP_ALLOC (NULL);
|
||
/* Now scan all regs killed in an insn to see if any of them are
|
||
registers only used that once. If so, see if we can replace the
|
||
reference with the equivalent form. If we can, delete the
|
||
initializing reference and this register will go away. If we
|
||
can't replace the reference, and the initializing reference is
|
||
within the same loop (or in an inner loop), then move the register
|
||
initialization just before the use, so that they are in the same
|
||
basic block. */
|
||
FOR_EACH_BB_REVERSE (bb)
|
||
{
|
||
loop_depth = bb->loop_depth;
|
||
for (insn = BB_END (bb);
|
||
insn != PREV_INSN (BB_HEAD (bb));
|
||
insn = PREV_INSN (insn))
|
||
{
|
||
rtx link;
|
||
|
||
if (! INSN_P (insn))
|
||
continue;
|
||
|
||
/* Don't substitute into a non-local goto, this confuses CFG. */
|
||
if (JUMP_P (insn)
|
||
&& find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
|
||
continue;
|
||
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
{
|
||
if (REG_NOTE_KIND (link) == REG_DEAD
|
||
/* Make sure this insn still refers to the register. */
|
||
&& reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
|
||
{
|
||
int regno = REGNO (XEXP (link, 0));
|
||
rtx equiv_insn;
|
||
|
||
if (! reg_equiv[regno].replace
|
||
|| reg_equiv[regno].loop_depth < loop_depth
|
||
/* There is no sense to move insns if we did
|
||
register pressure-sensitive scheduling was
|
||
done because it will not improve allocation
|
||
but worsen insn schedule with a big
|
||
probability. */
|
||
|| (flag_sched_pressure && flag_schedule_insns))
|
||
continue;
|
||
|
||
/* reg_equiv[REGNO].replace gets set only when
|
||
REG_N_REFS[REGNO] is 2, i.e. the register is set
|
||
once and used once. (If it were only set, but not used,
|
||
flow would have deleted the setting insns.) Hence
|
||
there can only be one insn in reg_equiv[REGNO].init_insns. */
|
||
gcc_assert (reg_equiv[regno].init_insns
|
||
&& !XEXP (reg_equiv[regno].init_insns, 1));
|
||
equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
|
||
|
||
/* We may not move instructions that can throw, since
|
||
that changes basic block boundaries and we are not
|
||
prepared to adjust the CFG to match. */
|
||
if (can_throw_internal (equiv_insn))
|
||
continue;
|
||
|
||
if (asm_noperands (PATTERN (equiv_insn)) < 0
|
||
&& validate_replace_rtx (regno_reg_rtx[regno],
|
||
*(reg_equiv[regno].src_p), insn))
|
||
{
|
||
rtx equiv_link;
|
||
rtx last_link;
|
||
rtx note;
|
||
|
||
/* Find the last note. */
|
||
for (last_link = link; XEXP (last_link, 1);
|
||
last_link = XEXP (last_link, 1))
|
||
;
|
||
|
||
/* Append the REG_DEAD notes from equiv_insn. */
|
||
equiv_link = REG_NOTES (equiv_insn);
|
||
while (equiv_link)
|
||
{
|
||
note = equiv_link;
|
||
equiv_link = XEXP (equiv_link, 1);
|
||
if (REG_NOTE_KIND (note) == REG_DEAD)
|
||
{
|
||
remove_note (equiv_insn, note);
|
||
XEXP (last_link, 1) = note;
|
||
XEXP (note, 1) = NULL_RTX;
|
||
last_link = note;
|
||
}
|
||
}
|
||
|
||
remove_death (regno, insn);
|
||
SET_REG_N_REFS (regno, 0);
|
||
REG_FREQ (regno) = 0;
|
||
delete_insn (equiv_insn);
|
||
|
||
reg_equiv[regno].init_insns
|
||
= XEXP (reg_equiv[regno].init_insns, 1);
|
||
|
||
reg_equiv_init (regno) = NULL_RTX;
|
||
bitmap_set_bit (cleared_regs, regno);
|
||
}
|
||
/* Move the initialization of the register to just before
|
||
INSN. Update the flow information. */
|
||
else if (prev_nondebug_insn (insn) != equiv_insn)
|
||
{
|
||
rtx new_insn;
|
||
|
||
new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
|
||
REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
|
||
REG_NOTES (equiv_insn) = 0;
|
||
/* Rescan it to process the notes. */
|
||
df_insn_rescan (new_insn);
|
||
|
||
/* Make sure this insn is recognized before
|
||
reload begins, otherwise
|
||
eliminate_regs_in_insn will die. */
|
||
INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
|
||
|
||
delete_insn (equiv_insn);
|
||
|
||
XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
|
||
|
||
REG_BASIC_BLOCK (regno) = bb->index;
|
||
REG_N_CALLS_CROSSED (regno) = 0;
|
||
REG_FREQ_CALLS_CROSSED (regno) = 0;
|
||
REG_N_THROWING_CALLS_CROSSED (regno) = 0;
|
||
REG_LIVE_LENGTH (regno) = 2;
|
||
|
||
if (insn == BB_HEAD (bb))
|
||
BB_HEAD (bb) = PREV_INSN (insn);
|
||
|
||
reg_equiv_init (regno)
|
||
= gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
|
||
bitmap_set_bit (cleared_regs, regno);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!bitmap_empty_p (cleared_regs))
|
||
{
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
|
||
bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
|
||
bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
|
||
bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
|
||
}
|
||
|
||
/* Last pass - adjust debug insns referencing cleared regs. */
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
if (DEBUG_INSN_P (insn))
|
||
{
|
||
rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
|
||
INSN_VAR_LOCATION_LOC (insn)
|
||
= simplify_replace_fn_rtx (old_loc, NULL_RTX,
|
||
adjust_cleared_regs,
|
||
(void *) cleared_regs);
|
||
if (old_loc != INSN_VAR_LOCATION_LOC (insn))
|
||
df_insn_rescan (insn);
|
||
}
|
||
}
|
||
|
||
BITMAP_FREE (cleared_regs);
|
||
|
||
out:
|
||
/* Clean up. */
|
||
|
||
end_alias_analysis ();
|
||
free (reg_equiv);
|
||
return recorded_label_ref;
|
||
}
|
||
|
||
|
||
|
||
/* Print chain C to FILE. */
|
||
static void
|
||
print_insn_chain (FILE *file, struct insn_chain *c)
|
||
{
|
||
fprintf (file, "insn=%d, ", INSN_UID(c->insn));
|
||
bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
|
||
bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
|
||
}
|
||
|
||
|
||
/* Print all reload_insn_chains to FILE. */
|
||
static void
|
||
print_insn_chains (FILE *file)
|
||
{
|
||
struct insn_chain *c;
|
||
for (c = reload_insn_chain; c ; c = c->next)
|
||
print_insn_chain (file, c);
|
||
}
|
||
|
||
/* Return true if pseudo REGNO should be added to set live_throughout
|
||
or dead_or_set of the insn chains for reload consideration. */
|
||
static bool
|
||
pseudo_for_reload_consideration_p (int regno)
|
||
{
|
||
/* Consider spilled pseudos too for IRA because they still have a
|
||
chance to get hard-registers in the reload when IRA is used. */
|
||
return (reg_renumber[regno] >= 0 || ira_conflicts_p);
|
||
}
|
||
|
||
/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
|
||
REG to the number of nregs, and INIT_VALUE to get the
|
||
initialization. ALLOCNUM need not be the regno of REG. */
|
||
static void
|
||
init_live_subregs (bool init_value, sbitmap *live_subregs,
|
||
int *live_subregs_used, int allocnum, rtx reg)
|
||
{
|
||
unsigned int regno = REGNO (SUBREG_REG (reg));
|
||
int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
|
||
|
||
gcc_assert (size > 0);
|
||
|
||
/* Been there, done that. */
|
||
if (live_subregs_used[allocnum])
|
||
return;
|
||
|
||
/* Create a new one with zeros. */
|
||
if (live_subregs[allocnum] == NULL)
|
||
live_subregs[allocnum] = sbitmap_alloc (size);
|
||
|
||
/* If the entire reg was live before blasting into subregs, we need
|
||
to init all of the subregs to ones else init to 0. */
|
||
if (init_value)
|
||
sbitmap_ones (live_subregs[allocnum]);
|
||
else
|
||
sbitmap_zero (live_subregs[allocnum]);
|
||
|
||
/* Set the number of bits that we really want. */
|
||
live_subregs_used[allocnum] = size;
|
||
}
|
||
|
||
/* Walk the insns of the current function and build reload_insn_chain,
|
||
and record register life information. */
|
||
static void
|
||
build_insn_chain (void)
|
||
{
|
||
unsigned int i;
|
||
struct insn_chain **p = &reload_insn_chain;
|
||
basic_block bb;
|
||
struct insn_chain *c = NULL;
|
||
struct insn_chain *next = NULL;
|
||
bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
|
||
bitmap elim_regset = BITMAP_ALLOC (NULL);
|
||
/* live_subregs is a vector used to keep accurate information about
|
||
which hardregs are live in multiword pseudos. live_subregs and
|
||
live_subregs_used are indexed by pseudo number. The live_subreg
|
||
entry for a particular pseudo is only used if the corresponding
|
||
element is non zero in live_subregs_used. The value in
|
||
live_subregs_used is number of bytes that the pseudo can
|
||
occupy. */
|
||
sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
|
||
int *live_subregs_used = XNEWVEC (int, max_regno);
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (eliminable_regset, i))
|
||
bitmap_set_bit (elim_regset, i);
|
||
FOR_EACH_BB_REVERSE (bb)
|
||
{
|
||
bitmap_iterator bi;
|
||
rtx insn;
|
||
|
||
CLEAR_REG_SET (live_relevant_regs);
|
||
memset (live_subregs_used, 0, max_regno * sizeof (int));
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
|
||
{
|
||
if (i >= FIRST_PSEUDO_REGISTER)
|
||
break;
|
||
bitmap_set_bit (live_relevant_regs, i);
|
||
}
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
|
||
FIRST_PSEUDO_REGISTER, i, bi)
|
||
{
|
||
if (pseudo_for_reload_consideration_p (i))
|
||
bitmap_set_bit (live_relevant_regs, i);
|
||
}
|
||
|
||
FOR_BB_INSNS_REVERSE (bb, insn)
|
||
{
|
||
if (!NOTE_P (insn) && !BARRIER_P (insn))
|
||
{
|
||
unsigned int uid = INSN_UID (insn);
|
||
df_ref *def_rec;
|
||
df_ref *use_rec;
|
||
|
||
c = new_insn_chain ();
|
||
c->next = next;
|
||
next = c;
|
||
*p = c;
|
||
p = &c->prev;
|
||
|
||
c->insn = insn;
|
||
c->block = bb->index;
|
||
|
||
if (INSN_P (insn))
|
||
for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
|
||
{
|
||
df_ref def = *def_rec;
|
||
unsigned int regno = DF_REF_REGNO (def);
|
||
|
||
/* Ignore may clobbers because these are generated
|
||
from calls. However, every other kind of def is
|
||
added to dead_or_set. */
|
||
if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
|
||
{
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
if (!fixed_regs[regno])
|
||
bitmap_set_bit (&c->dead_or_set, regno);
|
||
}
|
||
else if (pseudo_for_reload_consideration_p (regno))
|
||
bitmap_set_bit (&c->dead_or_set, regno);
|
||
}
|
||
|
||
if ((regno < FIRST_PSEUDO_REGISTER
|
||
|| reg_renumber[regno] >= 0
|
||
|| ira_conflicts_p)
|
||
&& (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
|
||
{
|
||
rtx reg = DF_REF_REG (def);
|
||
|
||
/* We can model subregs, but not if they are
|
||
wrapped in ZERO_EXTRACTS. */
|
||
if (GET_CODE (reg) == SUBREG
|
||
&& !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
|
||
{
|
||
unsigned int start = SUBREG_BYTE (reg);
|
||
unsigned int last = start
|
||
+ GET_MODE_SIZE (GET_MODE (reg));
|
||
|
||
init_live_subregs
|
||
(bitmap_bit_p (live_relevant_regs, regno),
|
||
live_subregs, live_subregs_used, regno, reg);
|
||
|
||
if (!DF_REF_FLAGS_IS_SET
|
||
(def, DF_REF_STRICT_LOW_PART))
|
||
{
|
||
/* Expand the range to cover entire words.
|
||
Bytes added here are "don't care". */
|
||
start
|
||
= start / UNITS_PER_WORD * UNITS_PER_WORD;
|
||
last = ((last + UNITS_PER_WORD - 1)
|
||
/ UNITS_PER_WORD * UNITS_PER_WORD);
|
||
}
|
||
|
||
/* Ignore the paradoxical bits. */
|
||
if ((int)last > live_subregs_used[regno])
|
||
last = live_subregs_used[regno];
|
||
|
||
while (start < last)
|
||
{
|
||
RESET_BIT (live_subregs[regno], start);
|
||
start++;
|
||
}
|
||
|
||
if (sbitmap_empty_p (live_subregs[regno]))
|
||
{
|
||
live_subregs_used[regno] = 0;
|
||
bitmap_clear_bit (live_relevant_regs, regno);
|
||
}
|
||
else
|
||
/* Set live_relevant_regs here because
|
||
that bit has to be true to get us to
|
||
look at the live_subregs fields. */
|
||
bitmap_set_bit (live_relevant_regs, regno);
|
||
}
|
||
else
|
||
{
|
||
/* DF_REF_PARTIAL is generated for
|
||
subregs, STRICT_LOW_PART, and
|
||
ZERO_EXTRACT. We handle the subreg
|
||
case above so here we have to keep from
|
||
modeling the def as a killing def. */
|
||
if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
|
||
{
|
||
bitmap_clear_bit (live_relevant_regs, regno);
|
||
live_subregs_used[regno] = 0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
bitmap_and_compl_into (live_relevant_regs, elim_regset);
|
||
bitmap_copy (&c->live_throughout, live_relevant_regs);
|
||
|
||
if (INSN_P (insn))
|
||
for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
|
||
{
|
||
df_ref use = *use_rec;
|
||
unsigned int regno = DF_REF_REGNO (use);
|
||
rtx reg = DF_REF_REG (use);
|
||
|
||
/* DF_REF_READ_WRITE on a use means that this use
|
||
is fabricated from a def that is a partial set
|
||
to a multiword reg. Here, we only model the
|
||
subreg case that is not wrapped in ZERO_EXTRACT
|
||
precisely so we do not need to look at the
|
||
fabricated use. */
|
||
if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
|
||
&& !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
|
||
&& DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
|
||
continue;
|
||
|
||
/* Add the last use of each var to dead_or_set. */
|
||
if (!bitmap_bit_p (live_relevant_regs, regno))
|
||
{
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
if (!fixed_regs[regno])
|
||
bitmap_set_bit (&c->dead_or_set, regno);
|
||
}
|
||
else if (pseudo_for_reload_consideration_p (regno))
|
||
bitmap_set_bit (&c->dead_or_set, regno);
|
||
}
|
||
|
||
if (regno < FIRST_PSEUDO_REGISTER
|
||
|| pseudo_for_reload_consideration_p (regno))
|
||
{
|
||
if (GET_CODE (reg) == SUBREG
|
||
&& !DF_REF_FLAGS_IS_SET (use,
|
||
DF_REF_SIGN_EXTRACT
|
||
| DF_REF_ZERO_EXTRACT))
|
||
{
|
||
unsigned int start = SUBREG_BYTE (reg);
|
||
unsigned int last = start
|
||
+ GET_MODE_SIZE (GET_MODE (reg));
|
||
|
||
init_live_subregs
|
||
(bitmap_bit_p (live_relevant_regs, regno),
|
||
live_subregs, live_subregs_used, regno, reg);
|
||
|
||
/* Ignore the paradoxical bits. */
|
||
if ((int)last > live_subregs_used[regno])
|
||
last = live_subregs_used[regno];
|
||
|
||
while (start < last)
|
||
{
|
||
SET_BIT (live_subregs[regno], start);
|
||
start++;
|
||
}
|
||
}
|
||
else
|
||
/* Resetting the live_subregs_used is
|
||
effectively saying do not use the subregs
|
||
because we are reading the whole
|
||
pseudo. */
|
||
live_subregs_used[regno] = 0;
|
||
bitmap_set_bit (live_relevant_regs, regno);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* FIXME!! The following code is a disaster. Reload needs to see the
|
||
labels and jump tables that are just hanging out in between
|
||
the basic blocks. See pr33676. */
|
||
insn = BB_HEAD (bb);
|
||
|
||
/* Skip over the barriers and cruft. */
|
||
while (insn && (BARRIER_P (insn) || NOTE_P (insn)
|
||
|| BLOCK_FOR_INSN (insn) == bb))
|
||
insn = PREV_INSN (insn);
|
||
|
||
/* While we add anything except barriers and notes, the focus is
|
||
to get the labels and jump tables into the
|
||
reload_insn_chain. */
|
||
while (insn)
|
||
{
|
||
if (!NOTE_P (insn) && !BARRIER_P (insn))
|
||
{
|
||
if (BLOCK_FOR_INSN (insn))
|
||
break;
|
||
|
||
c = new_insn_chain ();
|
||
c->next = next;
|
||
next = c;
|
||
*p = c;
|
||
p = &c->prev;
|
||
|
||
/* The block makes no sense here, but it is what the old
|
||
code did. */
|
||
c->block = bb->index;
|
||
c->insn = insn;
|
||
bitmap_copy (&c->live_throughout, live_relevant_regs);
|
||
}
|
||
insn = PREV_INSN (insn);
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < (unsigned int) max_regno; i++)
|
||
free (live_subregs[i]);
|
||
|
||
reload_insn_chain = c;
|
||
*p = NULL;
|
||
|
||
free (live_subregs);
|
||
free (live_subregs_used);
|
||
BITMAP_FREE (live_relevant_regs);
|
||
BITMAP_FREE (elim_regset);
|
||
|
||
if (dump_file)
|
||
print_insn_chains (dump_file);
|
||
}
|
||
|
||
|
||
|
||
/* All natural loops. */
|
||
struct loops ira_loops;
|
||
|
||
/* True if we have allocno conflicts. It is false for non-optimized
|
||
mode or when the conflict table is too big. */
|
||
bool ira_conflicts_p;
|
||
|
||
/* This is the main entry of IRA. */
|
||
static void
|
||
ira (FILE *f)
|
||
{
|
||
int overall_cost_before, allocated_reg_info_size;
|
||
bool loops_p;
|
||
int max_regno_before_ira, ira_max_point_before_emit;
|
||
int rebuild_p;
|
||
int saved_flag_ira_share_spill_slots;
|
||
basic_block bb;
|
||
|
||
timevar_push (TV_IRA);
|
||
|
||
if (flag_caller_saves)
|
||
init_caller_save ();
|
||
|
||
if (flag_ira_verbose < 10)
|
||
{
|
||
internal_flag_ira_verbose = flag_ira_verbose;
|
||
ira_dump_file = f;
|
||
}
|
||
else
|
||
{
|
||
internal_flag_ira_verbose = flag_ira_verbose - 10;
|
||
ira_dump_file = stderr;
|
||
}
|
||
|
||
ira_conflicts_p = optimize > 0;
|
||
setup_prohibited_mode_move_regs ();
|
||
|
||
df_note_add_problem ();
|
||
|
||
if (optimize == 1)
|
||
{
|
||
df_live_add_problem ();
|
||
df_live_set_all_dirty ();
|
||
}
|
||
#ifdef ENABLE_CHECKING
|
||
df->changeable_flags |= DF_VERIFY_SCHEDULED;
|
||
#endif
|
||
df_analyze ();
|
||
df_clear_flags (DF_NO_INSN_RESCAN);
|
||
regstat_init_n_sets_and_refs ();
|
||
regstat_compute_ri ();
|
||
|
||
/* If we are not optimizing, then this is the only place before
|
||
register allocation where dataflow is done. And that is needed
|
||
to generate these warnings. */
|
||
if (warn_clobbered)
|
||
generate_setjmp_warnings ();
|
||
|
||
/* Determine if the current function is a leaf before running IRA
|
||
since this can impact optimizations done by the prologue and
|
||
epilogue thus changing register elimination offsets. */
|
||
current_function_is_leaf = leaf_function_p ();
|
||
|
||
if (resize_reg_info () && flag_ira_loop_pressure)
|
||
ira_set_pseudo_classes (ira_dump_file);
|
||
|
||
rebuild_p = update_equiv_regs ();
|
||
|
||
#ifndef IRA_NO_OBSTACK
|
||
gcc_obstack_init (&ira_obstack);
|
||
#endif
|
||
bitmap_obstack_initialize (&ira_bitmap_obstack);
|
||
if (optimize)
|
||
{
|
||
max_regno = max_reg_num ();
|
||
ira_reg_equiv_len = max_regno;
|
||
ira_reg_equiv_invariant_p
|
||
= (bool *) ira_allocate (max_regno * sizeof (bool));
|
||
memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
|
||
ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
|
||
memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
|
||
find_reg_equiv_invariant_const ();
|
||
if (rebuild_p)
|
||
{
|
||
timevar_push (TV_JUMP);
|
||
rebuild_jump_labels (get_insns ());
|
||
if (purge_all_dead_edges ())
|
||
delete_unreachable_blocks ();
|
||
timevar_pop (TV_JUMP);
|
||
}
|
||
}
|
||
|
||
max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
|
||
ira_setup_eliminable_regset ();
|
||
|
||
ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
|
||
ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
|
||
ira_move_loops_num = ira_additional_jumps_num = 0;
|
||
|
||
ira_assert (current_loops == NULL);
|
||
flow_loops_find (&ira_loops);
|
||
record_loop_exits ();
|
||
current_loops = &ira_loops;
|
||
|
||
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, "Building IRA IR\n");
|
||
loops_p = ira_build (optimize
|
||
&& (flag_ira_region == IRA_REGION_ALL
|
||
|| flag_ira_region == IRA_REGION_MIXED));
|
||
|
||
ira_assert (ira_conflicts_p || !loops_p);
|
||
|
||
saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
|
||
if (too_high_register_pressure_p () || cfun->calls_setjmp)
|
||
/* It is just wasting compiler's time to pack spilled pseudos into
|
||
stack slots in this case -- prohibit it. We also do this if
|
||
there is setjmp call because a variable not modified between
|
||
setjmp and longjmp the compiler is required to preserve its
|
||
value and sharing slots does not guarantee it. */
|
||
flag_ira_share_spill_slots = FALSE;
|
||
|
||
ira_color ();
|
||
|
||
ira_max_point_before_emit = ira_max_point;
|
||
|
||
ira_initiate_emit_data ();
|
||
|
||
ira_emit (loops_p);
|
||
|
||
if (ira_conflicts_p)
|
||
{
|
||
max_regno = max_reg_num ();
|
||
|
||
if (! loops_p)
|
||
ira_initiate_assign ();
|
||
else
|
||
{
|
||
expand_reg_info (allocated_reg_info_size);
|
||
setup_preferred_alternate_classes_for_new_pseudos
|
||
(allocated_reg_info_size);
|
||
allocated_reg_info_size = max_regno;
|
||
|
||
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, "Flattening IR\n");
|
||
ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
|
||
/* New insns were generated: add notes and recalculate live
|
||
info. */
|
||
df_analyze ();
|
||
|
||
flow_loops_find (&ira_loops);
|
||
record_loop_exits ();
|
||
current_loops = &ira_loops;
|
||
|
||
setup_allocno_assignment_flags ();
|
||
ira_initiate_assign ();
|
||
ira_reassign_conflict_allocnos (max_regno);
|
||
}
|
||
}
|
||
|
||
ira_finish_emit_data ();
|
||
|
||
setup_reg_renumber ();
|
||
|
||
calculate_allocation_cost ();
|
||
|
||
#ifdef ENABLE_IRA_CHECKING
|
||
if (ira_conflicts_p)
|
||
check_allocation ();
|
||
#endif
|
||
|
||
if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
|
||
df_analyze ();
|
||
|
||
if (max_regno != max_regno_before_ira)
|
||
{
|
||
regstat_free_n_sets_and_refs ();
|
||
regstat_free_ri ();
|
||
regstat_init_n_sets_and_refs ();
|
||
regstat_compute_ri ();
|
||
}
|
||
|
||
overall_cost_before = ira_overall_cost;
|
||
if (! ira_conflicts_p)
|
||
grow_reg_equivs ();
|
||
else
|
||
{
|
||
fix_reg_equiv_init ();
|
||
|
||
#ifdef ENABLE_IRA_CHECKING
|
||
print_redundant_copies ();
|
||
#endif
|
||
|
||
ira_spilled_reg_stack_slots_num = 0;
|
||
ira_spilled_reg_stack_slots
|
||
= ((struct ira_spilled_reg_stack_slot *)
|
||
ira_allocate (max_regno
|
||
* sizeof (struct ira_spilled_reg_stack_slot)));
|
||
memset (ira_spilled_reg_stack_slots, 0,
|
||
max_regno * sizeof (struct ira_spilled_reg_stack_slot));
|
||
}
|
||
allocate_initial_values (reg_equivs);
|
||
|
||
timevar_pop (TV_IRA);
|
||
|
||
timevar_push (TV_RELOAD);
|
||
df_set_flags (DF_NO_INSN_RESCAN);
|
||
build_insn_chain ();
|
||
|
||
reload_completed = !reload (get_insns (), ira_conflicts_p);
|
||
|
||
timevar_pop (TV_RELOAD);
|
||
|
||
timevar_push (TV_IRA);
|
||
|
||
if (ira_conflicts_p)
|
||
{
|
||
ira_free (ira_spilled_reg_stack_slots);
|
||
|
||
ira_finish_assign ();
|
||
|
||
}
|
||
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
|
||
&& overall_cost_before != ira_overall_cost)
|
||
fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
|
||
ira_destroy ();
|
||
|
||
flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
|
||
|
||
flow_loops_free (&ira_loops);
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
FOR_ALL_BB (bb)
|
||
bb->loop_father = NULL;
|
||
current_loops = NULL;
|
||
|
||
regstat_free_ri ();
|
||
regstat_free_n_sets_and_refs ();
|
||
|
||
if (optimize)
|
||
{
|
||
cleanup_cfg (CLEANUP_EXPENSIVE);
|
||
|
||
ira_free (ira_reg_equiv_invariant_p);
|
||
ira_free (ira_reg_equiv_const);
|
||
}
|
||
|
||
bitmap_obstack_release (&ira_bitmap_obstack);
|
||
#ifndef IRA_NO_OBSTACK
|
||
obstack_free (&ira_obstack, NULL);
|
||
#endif
|
||
|
||
/* The code after the reload has changed so much that at this point
|
||
we might as well just rescan everything. Not that
|
||
df_rescan_all_insns is not going to help here because it does not
|
||
touch the artificial uses and defs. */
|
||
df_finish_pass (true);
|
||
if (optimize > 1)
|
||
df_live_add_problem ();
|
||
df_scan_alloc (NULL);
|
||
df_scan_blocks ();
|
||
|
||
if (optimize)
|
||
df_analyze ();
|
||
|
||
timevar_pop (TV_IRA);
|
||
}
|
||
|
||
|
||
|
||
static bool
|
||
gate_ira (void)
|
||
{
|
||
return true;
|
||
}
|
||
|
||
/* Run the integrated register allocator. */
|
||
static unsigned int
|
||
rest_of_handle_ira (void)
|
||
{
|
||
ira (dump_file);
|
||
return 0;
|
||
}
|
||
|
||
struct rtl_opt_pass pass_ira =
|
||
{
|
||
{
|
||
RTL_PASS,
|
||
"ira", /* name */
|
||
gate_ira, /* gate */
|
||
rest_of_handle_ira, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_NONE, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func |
|
||
TODO_ggc_collect /* todo_flags_finish */
|
||
}
|
||
};
|