fcc42bcad4
2006-09-13 Andreas Krebbel <krebbel1@de.ibm.com> * flow.c (calculate_global_regs_live): Invalidate eh registers on eh edges. Renamed invalidated_by_call to invalidated_by_eh_edge. (propagate_block): Handle eh registers as if they were set at basic block start. * except.c (dw2_build_landing_pads): Don't emit clobbers for eh registers. * global.c (global_conflicts): Make eh registers to conflict with pseudos live at basic block begin. * basic_block.h (bb_has_eh_pred): New function. From-SVN: r116920
2552 lines
76 KiB
C
2552 lines
76 KiB
C
/* Allocate registers for pseudo-registers that span basic blocks.
|
||
Copyright (C) 1987, 1988, 1991, 1994, 1996, 1997, 1998,
|
||
1999, 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "machmode.h"
|
||
#include "hard-reg-set.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "flags.h"
|
||
#include "regs.h"
|
||
#include "function.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "reload.h"
|
||
#include "output.h"
|
||
#include "toplev.h"
|
||
#include "tree-pass.h"
|
||
#include "timevar.h"
|
||
#include "vecprim.h"
|
||
|
||
/* This pass of the compiler performs global register allocation.
|
||
It assigns hard register numbers to all the pseudo registers
|
||
that were not handled in local_alloc. Assignments are recorded
|
||
in the vector reg_renumber, not by changing the rtl code.
|
||
(Such changes are made by final). The entry point is
|
||
the function global_alloc.
|
||
|
||
After allocation is complete, the reload pass is run as a subroutine
|
||
of this pass, so that when a pseudo reg loses its hard reg due to
|
||
spilling it is possible to make a second attempt to find a hard
|
||
reg for it. The reload pass is independent in other respects
|
||
and it is run even when stupid register allocation is in use.
|
||
|
||
1. Assign allocation-numbers (allocnos) to the pseudo-registers
|
||
still needing allocations and to the pseudo-registers currently
|
||
allocated by local-alloc which may be spilled by reload.
|
||
Set up tables reg_allocno and allocno_reg to map
|
||
reg numbers to allocnos and vice versa.
|
||
max_allocno gets the number of allocnos in use.
|
||
|
||
2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
|
||
Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
|
||
for conflicts between allocnos and explicit hard register use
|
||
(which includes use of pseudo-registers allocated by local_alloc).
|
||
|
||
3. For each basic block
|
||
walk forward through the block, recording which
|
||
pseudo-registers and which hardware registers are live.
|
||
Build the conflict matrix between the pseudo-registers
|
||
and another of pseudo-registers versus hardware registers.
|
||
Also record the preferred hardware registers
|
||
for each pseudo-register.
|
||
|
||
4. Sort a table of the allocnos into order of
|
||
desirability of the variables.
|
||
|
||
5. Allocate the variables in that order; each if possible into
|
||
a preferred register, else into another register. */
|
||
|
||
/* Number of pseudo-registers which are candidates for allocation. */
|
||
|
||
static int max_allocno;
|
||
|
||
/* Indexed by (pseudo) reg number, gives the allocno, or -1
|
||
for pseudo registers which are not to be allocated. */
|
||
|
||
static int *reg_allocno;
|
||
|
||
struct allocno
|
||
{
|
||
int reg;
|
||
/* Gives the number of consecutive hard registers needed by that
|
||
pseudo reg. */
|
||
int size;
|
||
|
||
/* Number of calls crossed by each allocno. */
|
||
int calls_crossed;
|
||
|
||
/* Number of calls that might throw crossed by each allocno. */
|
||
int throwing_calls_crossed;
|
||
|
||
/* Number of refs to each allocno. */
|
||
int n_refs;
|
||
|
||
/* Frequency of uses of each allocno. */
|
||
int freq;
|
||
|
||
/* Guess at live length of each allocno.
|
||
This is actually the max of the live lengths of the regs. */
|
||
int live_length;
|
||
|
||
/* Set of hard regs conflicting with allocno N. */
|
||
|
||
HARD_REG_SET hard_reg_conflicts;
|
||
|
||
/* Set of hard regs preferred by allocno N.
|
||
This is used to make allocnos go into regs that are copied to or from them,
|
||
when possible, to reduce register shuffling. */
|
||
|
||
HARD_REG_SET hard_reg_preferences;
|
||
|
||
/* Similar, but just counts register preferences made in simple copy
|
||
operations, rather than arithmetic. These are given priority because
|
||
we can always eliminate an insn by using these, but using a register
|
||
in the above list won't always eliminate an insn. */
|
||
|
||
HARD_REG_SET hard_reg_copy_preferences;
|
||
|
||
/* Similar to hard_reg_preferences, but includes bits for subsequent
|
||
registers when an allocno is multi-word. The above variable is used for
|
||
allocation while this is used to build reg_someone_prefers, below. */
|
||
|
||
HARD_REG_SET hard_reg_full_preferences;
|
||
|
||
/* Set of hard registers that some later allocno has a preference for. */
|
||
|
||
HARD_REG_SET regs_someone_prefers;
|
||
|
||
#ifdef STACK_REGS
|
||
/* Set to true if allocno can't be allocated in the stack register. */
|
||
bool no_stack_reg;
|
||
#endif
|
||
};
|
||
|
||
static struct allocno *allocno;
|
||
|
||
/* A vector of the integers from 0 to max_allocno-1,
|
||
sorted in the order of first-to-be-allocated first. */
|
||
|
||
static int *allocno_order;
|
||
|
||
/* Indexed by (pseudo) reg number, gives the number of another
|
||
lower-numbered pseudo reg which can share a hard reg with this pseudo
|
||
*even if the two pseudos would otherwise appear to conflict*. */
|
||
|
||
static int *reg_may_share;
|
||
|
||
/* Define the number of bits in each element of `conflicts' and what
|
||
type that element has. We use the largest integer format on the
|
||
host machine. */
|
||
|
||
#define INT_BITS HOST_BITS_PER_WIDE_INT
|
||
#define INT_TYPE HOST_WIDE_INT
|
||
|
||
/* max_allocno by max_allocno array of bits,
|
||
recording whether two allocno's conflict (can't go in the same
|
||
hardware register).
|
||
|
||
`conflicts' is symmetric after the call to mirror_conflicts. */
|
||
|
||
static INT_TYPE *conflicts;
|
||
|
||
/* Number of ints required to hold max_allocno bits.
|
||
This is the length of a row in `conflicts'. */
|
||
|
||
static int allocno_row_words;
|
||
|
||
/* Two macros to test or store 1 in an element of `conflicts'. */
|
||
|
||
#define CONFLICTP(I, J) \
|
||
(conflicts[(I) * allocno_row_words + (unsigned) (J) / INT_BITS] \
|
||
& ((INT_TYPE) 1 << ((unsigned) (J) % INT_BITS)))
|
||
|
||
/* For any allocno set in ALLOCNO_SET, set ALLOCNO to that allocno,
|
||
and execute CODE. */
|
||
#define EXECUTE_IF_SET_IN_ALLOCNO_SET(ALLOCNO_SET, ALLOCNO, CODE) \
|
||
do { \
|
||
int i_; \
|
||
int allocno_; \
|
||
INT_TYPE *p_ = (ALLOCNO_SET); \
|
||
\
|
||
for (i_ = allocno_row_words - 1, allocno_ = 0; i_ >= 0; \
|
||
i_--, allocno_ += INT_BITS) \
|
||
{ \
|
||
unsigned INT_TYPE word_ = (unsigned INT_TYPE) *p_++; \
|
||
\
|
||
for ((ALLOCNO) = allocno_; word_; word_ >>= 1, (ALLOCNO)++) \
|
||
{ \
|
||
if (word_ & 1) \
|
||
{CODE;} \
|
||
} \
|
||
} \
|
||
} while (0)
|
||
|
||
/* This doesn't work for non-GNU C due to the way CODE is macro expanded. */
|
||
#if 0
|
||
/* For any allocno that conflicts with IN_ALLOCNO, set OUT_ALLOCNO to
|
||
the conflicting allocno, and execute CODE. This macro assumes that
|
||
mirror_conflicts has been run. */
|
||
#define EXECUTE_IF_CONFLICT(IN_ALLOCNO, OUT_ALLOCNO, CODE)\
|
||
EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + (IN_ALLOCNO) * allocno_row_words,\
|
||
OUT_ALLOCNO, (CODE))
|
||
#endif
|
||
|
||
/* Set of hard regs currently live (during scan of all insns). */
|
||
|
||
static HARD_REG_SET hard_regs_live;
|
||
|
||
/* Set of registers that global-alloc isn't supposed to use. */
|
||
|
||
static HARD_REG_SET no_global_alloc_regs;
|
||
|
||
/* Set of registers used so far. */
|
||
|
||
static HARD_REG_SET regs_used_so_far;
|
||
|
||
/* Number of refs to each hard reg, as used by local alloc.
|
||
It is zero for a reg that contains global pseudos or is explicitly used. */
|
||
|
||
static int local_reg_n_refs[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Frequency of uses of given hard reg. */
|
||
static int local_reg_freq[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Guess at live length of each hard reg, as used by local alloc.
|
||
This is actually the sum of the live lengths of the specific regs. */
|
||
|
||
static int local_reg_live_length[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Set to 1 a bit in a vector TABLE of HARD_REG_SETs, for vector
|
||
element I, and hard register number J. */
|
||
|
||
#define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (allocno[I].TABLE, J)
|
||
|
||
/* Bit mask for allocnos live at current point in the scan. */
|
||
|
||
static INT_TYPE *allocnos_live;
|
||
|
||
/* Test, set or clear bit number I in allocnos_live,
|
||
a bit vector indexed by allocno. */
|
||
|
||
#define SET_ALLOCNO_LIVE(I) \
|
||
(allocnos_live[(unsigned) (I) / INT_BITS] \
|
||
|= ((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS)))
|
||
|
||
#define CLEAR_ALLOCNO_LIVE(I) \
|
||
(allocnos_live[(unsigned) (I) / INT_BITS] \
|
||
&= ~((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS)))
|
||
|
||
/* This is turned off because it doesn't work right for DImode.
|
||
(And it is only used for DImode, so the other cases are worthless.)
|
||
The problem is that it isn't true that there is NO possibility of conflict;
|
||
only that there is no conflict if the two pseudos get the exact same regs.
|
||
If they were allocated with a partial overlap, there would be a conflict.
|
||
We can't safely turn off the conflict unless we have another way to
|
||
prevent the partial overlap.
|
||
|
||
Idea: change hard_reg_conflicts so that instead of recording which
|
||
hard regs the allocno may not overlap, it records where the allocno
|
||
may not start. Change both where it is used and where it is updated.
|
||
Then there is a way to record that (reg:DI 108) may start at 10
|
||
but not at 9 or 11. There is still the question of how to record
|
||
this semi-conflict between two pseudos. */
|
||
#if 0
|
||
/* Reg pairs for which conflict after the current insn
|
||
is inhibited by a REG_NO_CONFLICT note.
|
||
If the table gets full, we ignore any other notes--that is conservative. */
|
||
#define NUM_NO_CONFLICT_PAIRS 4
|
||
/* Number of pairs in use in this insn. */
|
||
int n_no_conflict_pairs;
|
||
static struct { int allocno1, allocno2;}
|
||
no_conflict_pairs[NUM_NO_CONFLICT_PAIRS];
|
||
#endif /* 0 */
|
||
|
||
/* Record all regs that are set in any one insn.
|
||
Communication from mark_reg_{store,clobber} and global_conflicts. */
|
||
|
||
static rtx *regs_set;
|
||
static int n_regs_set;
|
||
|
||
/* All registers that can be eliminated. */
|
||
|
||
static HARD_REG_SET eliminable_regset;
|
||
|
||
static int allocno_compare (const void *, const void *);
|
||
static void global_conflicts (void);
|
||
static void mirror_conflicts (void);
|
||
static void expand_preferences (void);
|
||
static void prune_preferences (void);
|
||
static void find_reg (int, HARD_REG_SET, int, int, int);
|
||
static void record_one_conflict (int);
|
||
static void record_conflicts (int *, int);
|
||
static void mark_reg_store (rtx, rtx, void *);
|
||
static void mark_reg_clobber (rtx, rtx, void *);
|
||
static void mark_reg_conflicts (rtx);
|
||
static void mark_reg_death (rtx);
|
||
static void mark_reg_live_nc (int, enum machine_mode);
|
||
static void set_preference (rtx, rtx);
|
||
static void dump_conflicts (FILE *);
|
||
static void reg_becomes_live (rtx, rtx, void *);
|
||
static void reg_dies (int, enum machine_mode, struct insn_chain *);
|
||
|
||
static void allocate_bb_info (void);
|
||
static void free_bb_info (void);
|
||
static bool check_earlyclobber (rtx);
|
||
static void mark_reg_use_for_earlyclobber_1 (rtx *, void *);
|
||
static int mark_reg_use_for_earlyclobber (rtx *, void *);
|
||
static void calculate_local_reg_bb_info (void);
|
||
static void set_up_bb_rts_numbers (void);
|
||
static int rpost_cmp (const void *, const void *);
|
||
static void calculate_reg_pav (void);
|
||
static void modify_reg_pav (void);
|
||
static void make_accurate_live_analysis (void);
|
||
|
||
|
||
|
||
/* Perform allocation of pseudo-registers not allocated by local_alloc.
|
||
|
||
Return value is nonzero if reload failed
|
||
and we must not do any more for this function. */
|
||
|
||
static int
|
||
global_alloc (void)
|
||
{
|
||
int retval;
|
||
#ifdef ELIMINABLE_REGS
|
||
static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
|
||
#endif
|
||
int need_fp
|
||
= (! flag_omit_frame_pointer
|
||
|| (current_function_calls_alloca && EXIT_IGNORE_STACK)
|
||
|| FRAME_POINTER_REQUIRED);
|
||
|
||
size_t i;
|
||
rtx x;
|
||
|
||
make_accurate_live_analysis ();
|
||
|
||
max_allocno = 0;
|
||
|
||
/* A machine may have certain hard registers that
|
||
are safe to use only within a basic block. */
|
||
|
||
CLEAR_HARD_REG_SET (no_global_alloc_regs);
|
||
|
||
/* Build the regset of all eliminable registers and show we can't use those
|
||
that we already know won't be eliminated. */
|
||
#ifdef ELIMINABLE_REGS
|
||
for (i = 0; i < ARRAY_SIZE (eliminables); i++)
|
||
{
|
||
bool cannot_elim
|
||
= (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
|
||
|| (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
|
||
|
||
if (!regs_asm_clobbered[eliminables[i].from])
|
||
{
|
||
SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
|
||
|
||
if (cannot_elim)
|
||
SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from);
|
||
}
|
||
else if (cannot_elim)
|
||
error ("%s cannot be used in asm here",
|
||
reg_names[eliminables[i].from]);
|
||
else
|
||
regs_ever_live[eliminables[i].from] = 1;
|
||
}
|
||
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
||
if (!regs_asm_clobbered[HARD_FRAME_POINTER_REGNUM])
|
||
{
|
||
SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
|
||
if (need_fp)
|
||
SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM);
|
||
}
|
||
else if (need_fp)
|
||
error ("%s cannot be used in asm here",
|
||
reg_names[HARD_FRAME_POINTER_REGNUM]);
|
||
else
|
||
regs_ever_live[HARD_FRAME_POINTER_REGNUM] = 1;
|
||
#endif
|
||
|
||
#else
|
||
if (!regs_asm_clobbered[FRAME_POINTER_REGNUM])
|
||
{
|
||
SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
|
||
if (need_fp)
|
||
SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM);
|
||
}
|
||
else if (need_fp)
|
||
error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
|
||
else
|
||
regs_ever_live[FRAME_POINTER_REGNUM] = 1;
|
||
#endif
|
||
|
||
/* Track which registers have already been used. Start with registers
|
||
explicitly in the rtl, then registers allocated by local register
|
||
allocation. */
|
||
|
||
CLEAR_HARD_REG_SET (regs_used_so_far);
|
||
#ifdef LEAF_REGISTERS
|
||
/* If we are doing the leaf function optimization, and this is a leaf
|
||
function, it means that the registers that take work to save are those
|
||
that need a register window. So prefer the ones that can be used in
|
||
a leaf function. */
|
||
{
|
||
const char *cheap_regs;
|
||
const char *const leaf_regs = LEAF_REGISTERS;
|
||
|
||
if (only_leaf_regs_used () && leaf_function_p ())
|
||
cheap_regs = leaf_regs;
|
||
else
|
||
cheap_regs = call_used_regs;
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (regs_ever_live[i] || cheap_regs[i])
|
||
SET_HARD_REG_BIT (regs_used_so_far, i);
|
||
}
|
||
#else
|
||
/* We consider registers that do not have to be saved over calls as if
|
||
they were already used since there is no cost in using them. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (regs_ever_live[i] || call_used_regs[i])
|
||
SET_HARD_REG_BIT (regs_used_so_far, i);
|
||
#endif
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
|
||
if (reg_renumber[i] >= 0)
|
||
SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]);
|
||
|
||
/* Establish mappings from register number to allocation number
|
||
and vice versa. In the process, count the allocnos. */
|
||
|
||
reg_allocno = XNEWVEC (int, max_regno);
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
reg_allocno[i] = -1;
|
||
|
||
/* Initialize the shared-hard-reg mapping
|
||
from the list of pairs that may share. */
|
||
reg_may_share = XCNEWVEC (int, max_regno);
|
||
for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1))
|
||
{
|
||
int r1 = REGNO (XEXP (x, 0));
|
||
int r2 = REGNO (XEXP (XEXP (x, 1), 0));
|
||
if (r1 > r2)
|
||
reg_may_share[r1] = r2;
|
||
else
|
||
reg_may_share[r2] = r1;
|
||
}
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
|
||
/* Note that reg_live_length[i] < 0 indicates a "constant" reg
|
||
that we are supposed to refrain from putting in a hard reg.
|
||
-2 means do make an allocno but don't allocate it. */
|
||
if (REG_N_REFS (i) != 0 && REG_LIVE_LENGTH (i) != -1
|
||
/* Don't allocate pseudos that cross calls,
|
||
if this function receives a nonlocal goto. */
|
||
&& (! current_function_has_nonlocal_label
|
||
|| REG_N_CALLS_CROSSED (i) == 0))
|
||
{
|
||
if (reg_renumber[i] < 0
|
||
&& reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0)
|
||
reg_allocno[i] = reg_allocno[reg_may_share[i]];
|
||
else
|
||
reg_allocno[i] = max_allocno++;
|
||
gcc_assert (REG_LIVE_LENGTH (i));
|
||
}
|
||
else
|
||
reg_allocno[i] = -1;
|
||
|
||
allocno = XCNEWVEC (struct allocno, max_allocno);
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
|
||
if (reg_allocno[i] >= 0)
|
||
{
|
||
int num = reg_allocno[i];
|
||
allocno[num].reg = i;
|
||
allocno[num].size = PSEUDO_REGNO_SIZE (i);
|
||
allocno[num].calls_crossed += REG_N_CALLS_CROSSED (i);
|
||
allocno[num].throwing_calls_crossed
|
||
+= REG_N_THROWING_CALLS_CROSSED (i);
|
||
allocno[num].n_refs += REG_N_REFS (i);
|
||
allocno[num].freq += REG_FREQ (i);
|
||
if (allocno[num].live_length < REG_LIVE_LENGTH (i))
|
||
allocno[num].live_length = REG_LIVE_LENGTH (i);
|
||
}
|
||
|
||
/* Calculate amount of usage of each hard reg by pseudos
|
||
allocated by local-alloc. This is to see if we want to
|
||
override it. */
|
||
memset (local_reg_live_length, 0, sizeof local_reg_live_length);
|
||
memset (local_reg_n_refs, 0, sizeof local_reg_n_refs);
|
||
memset (local_reg_freq, 0, sizeof local_reg_freq);
|
||
for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
|
||
if (reg_renumber[i] >= 0)
|
||
{
|
||
int regno = reg_renumber[i];
|
||
int endregno = regno + hard_regno_nregs[regno][PSEUDO_REGNO_MODE (i)];
|
||
int j;
|
||
|
||
for (j = regno; j < endregno; j++)
|
||
{
|
||
local_reg_n_refs[j] += REG_N_REFS (i);
|
||
local_reg_freq[j] += REG_FREQ (i);
|
||
local_reg_live_length[j] += REG_LIVE_LENGTH (i);
|
||
}
|
||
}
|
||
|
||
/* We can't override local-alloc for a reg used not just by local-alloc. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (regs_ever_live[i])
|
||
local_reg_n_refs[i] = 0, local_reg_freq[i] = 0;
|
||
|
||
allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS;
|
||
|
||
/* We used to use alloca here, but the size of what it would try to
|
||
allocate would occasionally cause it to exceed the stack limit and
|
||
cause unpredictable core dumps. Some examples were > 2Mb in size. */
|
||
conflicts = XCNEWVEC (INT_TYPE, max_allocno * allocno_row_words);
|
||
|
||
allocnos_live = XNEWVEC (INT_TYPE, allocno_row_words);
|
||
|
||
/* If there is work to be done (at least one reg to allocate),
|
||
perform global conflict analysis and allocate the regs. */
|
||
|
||
if (max_allocno > 0)
|
||
{
|
||
/* Scan all the insns and compute the conflicts among allocnos
|
||
and between allocnos and hard regs. */
|
||
|
||
global_conflicts ();
|
||
|
||
mirror_conflicts ();
|
||
|
||
/* Eliminate conflicts between pseudos and eliminable registers. If
|
||
the register is not eliminated, the pseudo won't really be able to
|
||
live in the eliminable register, so the conflict doesn't matter.
|
||
If we do eliminate the register, the conflict will no longer exist.
|
||
So in either case, we can ignore the conflict. Likewise for
|
||
preferences. */
|
||
|
||
for (i = 0; i < (size_t) max_allocno; i++)
|
||
{
|
||
AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_conflicts,
|
||
eliminable_regset);
|
||
AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_copy_preferences,
|
||
eliminable_regset);
|
||
AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_preferences,
|
||
eliminable_regset);
|
||
}
|
||
|
||
/* Try to expand the preferences by merging them between allocnos. */
|
||
|
||
expand_preferences ();
|
||
|
||
/* Determine the order to allocate the remaining pseudo registers. */
|
||
|
||
allocno_order = XNEWVEC (int, max_allocno);
|
||
for (i = 0; i < (size_t) max_allocno; i++)
|
||
allocno_order[i] = i;
|
||
|
||
/* Default the size to 1, since allocno_compare uses it to divide by.
|
||
Also convert allocno_live_length of zero to -1. A length of zero
|
||
can occur when all the registers for that allocno have reg_live_length
|
||
equal to -2. In this case, we want to make an allocno, but not
|
||
allocate it. So avoid the divide-by-zero and set it to a low
|
||
priority. */
|
||
|
||
for (i = 0; i < (size_t) max_allocno; i++)
|
||
{
|
||
if (allocno[i].size == 0)
|
||
allocno[i].size = 1;
|
||
if (allocno[i].live_length == 0)
|
||
allocno[i].live_length = -1;
|
||
}
|
||
|
||
qsort (allocno_order, max_allocno, sizeof (int), allocno_compare);
|
||
|
||
prune_preferences ();
|
||
|
||
if (dump_file)
|
||
dump_conflicts (dump_file);
|
||
|
||
/* Try allocating them, one by one, in that order,
|
||
except for parameters marked with reg_live_length[regno] == -2. */
|
||
|
||
for (i = 0; i < (size_t) max_allocno; i++)
|
||
if (reg_renumber[allocno[allocno_order[i]].reg] < 0
|
||
&& REG_LIVE_LENGTH (allocno[allocno_order[i]].reg) >= 0)
|
||
{
|
||
/* If we have more than one register class,
|
||
first try allocating in the class that is cheapest
|
||
for this pseudo-reg. If that fails, try any reg. */
|
||
if (N_REG_CLASSES > 1)
|
||
{
|
||
find_reg (allocno_order[i], 0, 0, 0, 0);
|
||
if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
|
||
continue;
|
||
}
|
||
if (reg_alternate_class (allocno[allocno_order[i]].reg) != NO_REGS)
|
||
find_reg (allocno_order[i], 0, 1, 0, 0);
|
||
}
|
||
|
||
free (allocno_order);
|
||
}
|
||
|
||
/* Do the reloads now while the allocno data still exists, so that we can
|
||
try to assign new hard regs to any pseudo regs that are spilled. */
|
||
|
||
#if 0 /* We need to eliminate regs even if there is no rtl code,
|
||
for the sake of debugging information. */
|
||
if (n_basic_blocks > NUM_FIXED_BLOCKS)
|
||
#endif
|
||
{
|
||
build_insn_chain (get_insns ());
|
||
retval = reload (get_insns (), 1);
|
||
}
|
||
|
||
/* Clean up. */
|
||
free (reg_allocno);
|
||
free (reg_may_share);
|
||
free (allocno);
|
||
free (conflicts);
|
||
free (allocnos_live);
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Sort predicate for ordering the allocnos.
|
||
Returns -1 (1) if *v1 should be allocated before (after) *v2. */
|
||
|
||
static int
|
||
allocno_compare (const void *v1p, const void *v2p)
|
||
{
|
||
int v1 = *(const int *)v1p, v2 = *(const int *)v2p;
|
||
/* Note that the quotient will never be bigger than
|
||
the value of floor_log2 times the maximum number of
|
||
times a register can occur in one insn (surely less than 100)
|
||
weighted by the frequency (maximally REG_FREQ_MAX).
|
||
Multiplying this by 10000/REG_FREQ_MAX can't overflow. */
|
||
int pri1
|
||
= (((double) (floor_log2 (allocno[v1].n_refs) * allocno[v1].freq)
|
||
/ allocno[v1].live_length)
|
||
* (10000 / REG_FREQ_MAX) * allocno[v1].size);
|
||
int pri2
|
||
= (((double) (floor_log2 (allocno[v2].n_refs) * allocno[v2].freq)
|
||
/ allocno[v2].live_length)
|
||
* (10000 / REG_FREQ_MAX) * allocno[v2].size);
|
||
if (pri2 - pri1)
|
||
return pri2 - pri1;
|
||
|
||
/* If regs are equally good, sort by allocno,
|
||
so that the results of qsort leave nothing to chance. */
|
||
return v1 - v2;
|
||
}
|
||
|
||
/* Scan the rtl code and record all conflicts and register preferences in the
|
||
conflict matrices and preference tables. */
|
||
|
||
static void
|
||
global_conflicts (void)
|
||
{
|
||
unsigned i;
|
||
basic_block b;
|
||
rtx insn;
|
||
int *block_start_allocnos;
|
||
|
||
/* Make a vector that mark_reg_{store,clobber} will store in. */
|
||
regs_set = XNEWVEC (rtx, max_parallel * 2);
|
||
|
||
block_start_allocnos = XNEWVEC (int, max_allocno);
|
||
|
||
FOR_EACH_BB (b)
|
||
{
|
||
memset (allocnos_live, 0, allocno_row_words * sizeof (INT_TYPE));
|
||
|
||
/* Initialize table of registers currently live
|
||
to the state at the beginning of this basic block.
|
||
This also marks the conflicts among hard registers
|
||
and any allocnos that are live.
|
||
|
||
For pseudo-regs, there is only one bit for each one
|
||
no matter how many hard regs it occupies.
|
||
This is ok; we know the size from PSEUDO_REGNO_SIZE.
|
||
For explicit hard regs, we cannot know the size that way
|
||
since one hard reg can be used with various sizes.
|
||
Therefore, we must require that all the hard regs
|
||
implicitly live as part of a multi-word hard reg
|
||
be explicitly marked in basic_block_live_at_start. */
|
||
|
||
{
|
||
regset old = b->il.rtl->global_live_at_start;
|
||
int ax = 0;
|
||
reg_set_iterator rsi;
|
||
|
||
REG_SET_TO_HARD_REG_SET (hard_regs_live, old);
|
||
EXECUTE_IF_SET_IN_REG_SET (old, FIRST_PSEUDO_REGISTER, i, rsi)
|
||
{
|
||
int a = reg_allocno[i];
|
||
if (a >= 0)
|
||
{
|
||
SET_ALLOCNO_LIVE (a);
|
||
block_start_allocnos[ax++] = a;
|
||
}
|
||
else if ((a = reg_renumber[i]) >= 0)
|
||
mark_reg_live_nc (a, PSEUDO_REGNO_MODE (i));
|
||
}
|
||
|
||
/* Record that each allocno now live conflicts with each hard reg
|
||
now live.
|
||
|
||
It is not necessary to mark any conflicts between pseudos at
|
||
this point, even for pseudos which are live at the start of
|
||
the basic block.
|
||
|
||
Given two pseudos X and Y and any point in the CFG P.
|
||
|
||
On any path to point P where X and Y are live one of the
|
||
following conditions must be true:
|
||
|
||
1. X is live at some instruction on the path that
|
||
evaluates Y.
|
||
|
||
2. Y is live at some instruction on the path that
|
||
evaluates X.
|
||
|
||
3. Either X or Y is not evaluated on the path to P
|
||
(i.e. it is used uninitialized) and thus the
|
||
conflict can be ignored.
|
||
|
||
In cases #1 and #2 the conflict will be recorded when we
|
||
scan the instruction that makes either X or Y become live. */
|
||
record_conflicts (block_start_allocnos, ax);
|
||
|
||
#ifdef EH_RETURN_DATA_REGNO
|
||
if (bb_has_eh_pred (b))
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; ; ++i)
|
||
{
|
||
unsigned int regno = EH_RETURN_DATA_REGNO (i);
|
||
if (regno == INVALID_REGNUM)
|
||
break;
|
||
record_one_conflict (regno);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Pseudos can't go in stack regs at the start of a basic block that
|
||
is reached by an abnormal edge. Likewise for call clobbered regs,
|
||
because caller-save, fixup_abnormal_edges and possibly the table
|
||
driven EH machinery are not quite ready to handle such regs live
|
||
across such edges. */
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, b->preds)
|
||
if (e->flags & EDGE_ABNORMAL)
|
||
break;
|
||
|
||
if (e != NULL)
|
||
{
|
||
#ifdef STACK_REGS
|
||
EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, ax,
|
||
{
|
||
allocno[ax].no_stack_reg = 1;
|
||
});
|
||
for (ax = FIRST_STACK_REG; ax <= LAST_STACK_REG; ax++)
|
||
record_one_conflict (ax);
|
||
#endif
|
||
|
||
/* No need to record conflicts for call clobbered regs if we have
|
||
nonlocal labels around, as we don't ever try to allocate such
|
||
regs in this case. */
|
||
if (! current_function_has_nonlocal_label)
|
||
for (ax = 0; ax < FIRST_PSEUDO_REGISTER; ax++)
|
||
if (call_used_regs [ax])
|
||
record_one_conflict (ax);
|
||
}
|
||
}
|
||
}
|
||
|
||
insn = BB_HEAD (b);
|
||
|
||
/* Scan the code of this basic block, noting which allocnos
|
||
and hard regs are born or die. When one is born,
|
||
record a conflict with all others currently live. */
|
||
|
||
while (1)
|
||
{
|
||
RTX_CODE code = GET_CODE (insn);
|
||
rtx link;
|
||
|
||
/* Make regs_set an empty set. */
|
||
|
||
n_regs_set = 0;
|
||
|
||
if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
|
||
{
|
||
|
||
#if 0
|
||
int i = 0;
|
||
for (link = REG_NOTES (insn);
|
||
link && i < NUM_NO_CONFLICT_PAIRS;
|
||
link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_NO_CONFLICT)
|
||
{
|
||
no_conflict_pairs[i].allocno1
|
||
= reg_allocno[REGNO (SET_DEST (PATTERN (insn)))];
|
||
no_conflict_pairs[i].allocno2
|
||
= reg_allocno[REGNO (XEXP (link, 0))];
|
||
i++;
|
||
}
|
||
#endif /* 0 */
|
||
|
||
/* Mark any registers clobbered by INSN as live,
|
||
so they conflict with the inputs. */
|
||
|
||
note_stores (PATTERN (insn), mark_reg_clobber, NULL);
|
||
|
||
/* Mark any registers dead after INSN as dead now. */
|
||
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_DEAD)
|
||
mark_reg_death (XEXP (link, 0));
|
||
|
||
/* Mark any registers set in INSN as live,
|
||
and mark them as conflicting with all other live regs.
|
||
Clobbers are processed again, so they conflict with
|
||
the registers that are set. */
|
||
|
||
note_stores (PATTERN (insn), mark_reg_store, NULL);
|
||
|
||
#ifdef AUTO_INC_DEC
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_INC)
|
||
mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
|
||
#endif
|
||
|
||
/* If INSN has multiple outputs, then any reg that dies here
|
||
and is used inside of an output
|
||
must conflict with the other outputs.
|
||
|
||
It is unsafe to use !single_set here since it will ignore an
|
||
unused output. Just because an output is unused does not mean
|
||
the compiler can assume the side effect will not occur.
|
||
Consider if REG appears in the address of an output and we
|
||
reload the output. If we allocate REG to the same hard
|
||
register as an unused output we could set the hard register
|
||
before the output reload insn. */
|
||
if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_DEAD)
|
||
{
|
||
int used_in_output = 0;
|
||
int i;
|
||
rtx reg = XEXP (link, 0);
|
||
|
||
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
|
||
{
|
||
rtx set = XVECEXP (PATTERN (insn), 0, i);
|
||
if (GET_CODE (set) == SET
|
||
&& !REG_P (SET_DEST (set))
|
||
&& !rtx_equal_p (reg, SET_DEST (set))
|
||
&& reg_overlap_mentioned_p (reg, SET_DEST (set)))
|
||
used_in_output = 1;
|
||
}
|
||
if (used_in_output)
|
||
mark_reg_conflicts (reg);
|
||
}
|
||
|
||
/* Mark any registers set in INSN and then never used. */
|
||
|
||
while (n_regs_set-- > 0)
|
||
{
|
||
rtx note = find_regno_note (insn, REG_UNUSED,
|
||
REGNO (regs_set[n_regs_set]));
|
||
if (note)
|
||
mark_reg_death (XEXP (note, 0));
|
||
}
|
||
}
|
||
|
||
if (insn == BB_END (b))
|
||
break;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
}
|
||
|
||
/* Clean up. */
|
||
free (block_start_allocnos);
|
||
free (regs_set);
|
||
}
|
||
/* Expand the preference information by looking for cases where one allocno
|
||
dies in an insn that sets an allocno. If those two allocnos don't conflict,
|
||
merge any preferences between those allocnos. */
|
||
|
||
static void
|
||
expand_preferences (void)
|
||
{
|
||
rtx insn;
|
||
rtx link;
|
||
rtx set;
|
||
|
||
/* We only try to handle the most common cases here. Most of the cases
|
||
where this wins are reg-reg copies. */
|
||
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn)
|
||
&& (set = single_set (insn)) != 0
|
||
&& REG_P (SET_DEST (set))
|
||
&& reg_allocno[REGNO (SET_DEST (set))] >= 0)
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_DEAD
|
||
&& REG_P (XEXP (link, 0))
|
||
&& reg_allocno[REGNO (XEXP (link, 0))] >= 0
|
||
&& ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))],
|
||
reg_allocno[REGNO (XEXP (link, 0))]))
|
||
{
|
||
int a1 = reg_allocno[REGNO (SET_DEST (set))];
|
||
int a2 = reg_allocno[REGNO (XEXP (link, 0))];
|
||
|
||
if (XEXP (link, 0) == SET_SRC (set))
|
||
{
|
||
IOR_HARD_REG_SET (allocno[a1].hard_reg_copy_preferences,
|
||
allocno[a2].hard_reg_copy_preferences);
|
||
IOR_HARD_REG_SET (allocno[a2].hard_reg_copy_preferences,
|
||
allocno[a1].hard_reg_copy_preferences);
|
||
}
|
||
|
||
IOR_HARD_REG_SET (allocno[a1].hard_reg_preferences,
|
||
allocno[a2].hard_reg_preferences);
|
||
IOR_HARD_REG_SET (allocno[a2].hard_reg_preferences,
|
||
allocno[a1].hard_reg_preferences);
|
||
IOR_HARD_REG_SET (allocno[a1].hard_reg_full_preferences,
|
||
allocno[a2].hard_reg_full_preferences);
|
||
IOR_HARD_REG_SET (allocno[a2].hard_reg_full_preferences,
|
||
allocno[a1].hard_reg_full_preferences);
|
||
}
|
||
}
|
||
|
||
/* Prune the preferences for global registers to exclude registers that cannot
|
||
be used.
|
||
|
||
Compute `regs_someone_prefers', which is a bitmask of the hard registers
|
||
that are preferred by conflicting registers of lower priority. If possible,
|
||
we will avoid using these registers. */
|
||
|
||
static void
|
||
prune_preferences (void)
|
||
{
|
||
int i;
|
||
int num;
|
||
int *allocno_to_order = XNEWVEC (int, max_allocno);
|
||
|
||
/* Scan least most important to most important.
|
||
For each allocno, remove from preferences registers that cannot be used,
|
||
either because of conflicts or register type. Then compute all registers
|
||
preferred by each lower-priority register that conflicts. */
|
||
|
||
for (i = max_allocno - 1; i >= 0; i--)
|
||
{
|
||
HARD_REG_SET temp;
|
||
|
||
num = allocno_order[i];
|
||
allocno_to_order[num] = i;
|
||
COPY_HARD_REG_SET (temp, allocno[num].hard_reg_conflicts);
|
||
|
||
if (allocno[num].calls_crossed == 0)
|
||
IOR_HARD_REG_SET (temp, fixed_reg_set);
|
||
else
|
||
IOR_HARD_REG_SET (temp, call_used_reg_set);
|
||
|
||
IOR_COMPL_HARD_REG_SET
|
||
(temp,
|
||
reg_class_contents[(int) reg_preferred_class (allocno[num].reg)]);
|
||
|
||
AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, temp);
|
||
AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, temp);
|
||
AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_full_preferences, temp);
|
||
}
|
||
|
||
for (i = max_allocno - 1; i >= 0; i--)
|
||
{
|
||
/* Merge in the preferences of lower-priority registers (they have
|
||
already been pruned). If we also prefer some of those registers,
|
||
don't exclude them unless we are of a smaller size (in which case
|
||
we want to give the lower-priority allocno the first chance for
|
||
these registers). */
|
||
HARD_REG_SET temp, temp2;
|
||
int allocno2;
|
||
|
||
num = allocno_order[i];
|
||
|
||
CLEAR_HARD_REG_SET (temp);
|
||
CLEAR_HARD_REG_SET (temp2);
|
||
|
||
EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + num * allocno_row_words,
|
||
allocno2,
|
||
{
|
||
if (allocno_to_order[allocno2] > i)
|
||
{
|
||
if (allocno[allocno2].size <= allocno[num].size)
|
||
IOR_HARD_REG_SET (temp,
|
||
allocno[allocno2].hard_reg_full_preferences);
|
||
else
|
||
IOR_HARD_REG_SET (temp2,
|
||
allocno[allocno2].hard_reg_full_preferences);
|
||
}
|
||
});
|
||
|
||
AND_COMPL_HARD_REG_SET (temp, allocno[num].hard_reg_full_preferences);
|
||
IOR_HARD_REG_SET (temp, temp2);
|
||
COPY_HARD_REG_SET (allocno[num].regs_someone_prefers, temp);
|
||
}
|
||
free (allocno_to_order);
|
||
}
|
||
|
||
/* Assign a hard register to allocno NUM; look for one that is the beginning
|
||
of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
|
||
The registers marked in PREFREGS are tried first.
|
||
|
||
LOSERS, if nonzero, is a HARD_REG_SET indicating registers that cannot
|
||
be used for this allocation.
|
||
|
||
If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
|
||
Otherwise ignore that preferred class and use the alternate class.
|
||
|
||
If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
|
||
will have to be saved and restored at calls.
|
||
|
||
RETRYING is nonzero if this is called from retry_global_alloc.
|
||
|
||
If we find one, record it in reg_renumber.
|
||
If not, do nothing. */
|
||
|
||
static void
|
||
find_reg (int num, HARD_REG_SET losers, int alt_regs_p, int accept_call_clobbered, int retrying)
|
||
{
|
||
int i, best_reg, pass;
|
||
HARD_REG_SET used, used1, used2;
|
||
|
||
enum reg_class class = (alt_regs_p
|
||
? reg_alternate_class (allocno[num].reg)
|
||
: reg_preferred_class (allocno[num].reg));
|
||
enum machine_mode mode = PSEUDO_REGNO_MODE (allocno[num].reg);
|
||
|
||
if (accept_call_clobbered)
|
||
COPY_HARD_REG_SET (used1, call_fixed_reg_set);
|
||
else if (allocno[num].calls_crossed == 0)
|
||
COPY_HARD_REG_SET (used1, fixed_reg_set);
|
||
else
|
||
COPY_HARD_REG_SET (used1, call_used_reg_set);
|
||
|
||
/* Some registers should not be allocated in global-alloc. */
|
||
IOR_HARD_REG_SET (used1, no_global_alloc_regs);
|
||
if (losers)
|
||
IOR_HARD_REG_SET (used1, losers);
|
||
|
||
IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]);
|
||
COPY_HARD_REG_SET (used2, used1);
|
||
|
||
IOR_HARD_REG_SET (used1, allocno[num].hard_reg_conflicts);
|
||
|
||
#ifdef CANNOT_CHANGE_MODE_CLASS
|
||
cannot_change_mode_set_regs (&used1, mode, allocno[num].reg);
|
||
#endif
|
||
|
||
/* Try each hard reg to see if it fits. Do this in two passes.
|
||
In the first pass, skip registers that are preferred by some other pseudo
|
||
to give it a better chance of getting one of those registers. Only if
|
||
we can't get a register when excluding those do we take one of them.
|
||
However, we never allocate a register for the first time in pass 0. */
|
||
|
||
COPY_HARD_REG_SET (used, used1);
|
||
IOR_COMPL_HARD_REG_SET (used, regs_used_so_far);
|
||
IOR_HARD_REG_SET (used, allocno[num].regs_someone_prefers);
|
||
|
||
best_reg = -1;
|
||
for (i = FIRST_PSEUDO_REGISTER, pass = 0;
|
||
pass <= 1 && i >= FIRST_PSEUDO_REGISTER;
|
||
pass++)
|
||
{
|
||
if (pass == 1)
|
||
COPY_HARD_REG_SET (used, used1);
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
#ifdef REG_ALLOC_ORDER
|
||
int regno = reg_alloc_order[i];
|
||
#else
|
||
int regno = i;
|
||
#endif
|
||
if (! TEST_HARD_REG_BIT (used, regno)
|
||
&& HARD_REGNO_MODE_OK (regno, mode)
|
||
&& (allocno[num].calls_crossed == 0
|
||
|| accept_call_clobbered
|
||
|| ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
|
||
{
|
||
int j;
|
||
int lim = regno + hard_regno_nregs[regno][mode];
|
||
for (j = regno + 1;
|
||
(j < lim
|
||
&& ! TEST_HARD_REG_BIT (used, j));
|
||
j++);
|
||
if (j == lim)
|
||
{
|
||
best_reg = regno;
|
||
break;
|
||
}
|
||
#ifndef REG_ALLOC_ORDER
|
||
i = j; /* Skip starting points we know will lose */
|
||
#endif
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See if there is a preferred register with the same class as the register
|
||
we allocated above. Making this restriction prevents register
|
||
preferencing from creating worse register allocation.
|
||
|
||
Remove from the preferred registers and conflicting registers. Note that
|
||
additional conflicts may have been added after `prune_preferences' was
|
||
called.
|
||
|
||
First do this for those register with copy preferences, then all
|
||
preferred registers. */
|
||
|
||
AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, used);
|
||
GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_copy_preferences,
|
||
reg_class_contents[(int) NO_REGS], no_copy_prefs);
|
||
|
||
if (best_reg >= 0)
|
||
{
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (allocno[num].hard_reg_copy_preferences, i)
|
||
&& HARD_REGNO_MODE_OK (i, mode)
|
||
&& (allocno[num].calls_crossed == 0
|
||
|| accept_call_clobbered
|
||
|| ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode))
|
||
&& (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
|
||
|| reg_class_subset_p (REGNO_REG_CLASS (i),
|
||
REGNO_REG_CLASS (best_reg))
|
||
|| reg_class_subset_p (REGNO_REG_CLASS (best_reg),
|
||
REGNO_REG_CLASS (i))))
|
||
{
|
||
int j;
|
||
int lim = i + hard_regno_nregs[i][mode];
|
||
for (j = i + 1;
|
||
(j < lim
|
||
&& ! TEST_HARD_REG_BIT (used, j)
|
||
&& (REGNO_REG_CLASS (j)
|
||
== REGNO_REG_CLASS (best_reg + (j - i))
|
||
|| reg_class_subset_p (REGNO_REG_CLASS (j),
|
||
REGNO_REG_CLASS (best_reg + (j - i)))
|
||
|| reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
|
||
REGNO_REG_CLASS (j))));
|
||
j++);
|
||
if (j == lim)
|
||
{
|
||
best_reg = i;
|
||
goto no_prefs;
|
||
}
|
||
}
|
||
}
|
||
no_copy_prefs:
|
||
|
||
AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, used);
|
||
GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_preferences,
|
||
reg_class_contents[(int) NO_REGS], no_prefs);
|
||
|
||
if (best_reg >= 0)
|
||
{
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (allocno[num].hard_reg_preferences, i)
|
||
&& HARD_REGNO_MODE_OK (i, mode)
|
||
&& (allocno[num].calls_crossed == 0
|
||
|| accept_call_clobbered
|
||
|| ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode))
|
||
&& (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
|
||
|| reg_class_subset_p (REGNO_REG_CLASS (i),
|
||
REGNO_REG_CLASS (best_reg))
|
||
|| reg_class_subset_p (REGNO_REG_CLASS (best_reg),
|
||
REGNO_REG_CLASS (i))))
|
||
{
|
||
int j;
|
||
int lim = i + hard_regno_nregs[i][mode];
|
||
for (j = i + 1;
|
||
(j < lim
|
||
&& ! TEST_HARD_REG_BIT (used, j)
|
||
&& (REGNO_REG_CLASS (j)
|
||
== REGNO_REG_CLASS (best_reg + (j - i))
|
||
|| reg_class_subset_p (REGNO_REG_CLASS (j),
|
||
REGNO_REG_CLASS (best_reg + (j - i)))
|
||
|| reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
|
||
REGNO_REG_CLASS (j))));
|
||
j++);
|
||
if (j == lim)
|
||
{
|
||
best_reg = i;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
no_prefs:
|
||
|
||
/* If we haven't succeeded yet, try with caller-saves.
|
||
We need not check to see if the current function has nonlocal
|
||
labels because we don't put any pseudos that are live over calls in
|
||
registers in that case. */
|
||
|
||
if (flag_caller_saves && best_reg < 0)
|
||
{
|
||
/* Did not find a register. If it would be profitable to
|
||
allocate a call-clobbered register and save and restore it
|
||
around calls, do that. Don't do this if it crosses any calls
|
||
that might throw. */
|
||
if (! accept_call_clobbered
|
||
&& allocno[num].calls_crossed != 0
|
||
&& allocno[num].throwing_calls_crossed == 0
|
||
&& CALLER_SAVE_PROFITABLE (allocno[num].n_refs,
|
||
allocno[num].calls_crossed))
|
||
{
|
||
HARD_REG_SET new_losers;
|
||
if (! losers)
|
||
CLEAR_HARD_REG_SET (new_losers);
|
||
else
|
||
COPY_HARD_REG_SET (new_losers, losers);
|
||
|
||
IOR_HARD_REG_SET(new_losers, losing_caller_save_reg_set);
|
||
find_reg (num, new_losers, alt_regs_p, 1, retrying);
|
||
if (reg_renumber[allocno[num].reg] >= 0)
|
||
{
|
||
caller_save_needed = 1;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we haven't succeeded yet,
|
||
see if some hard reg that conflicts with us
|
||
was utilized poorly by local-alloc.
|
||
If so, kick out the regs that were put there by local-alloc
|
||
so we can use it instead. */
|
||
if (best_reg < 0 && !retrying
|
||
/* Let's not bother with multi-reg allocnos. */
|
||
&& allocno[num].size == 1
|
||
&& REG_BASIC_BLOCK (allocno[num].reg) == REG_BLOCK_GLOBAL)
|
||
{
|
||
/* Count from the end, to find the least-used ones first. */
|
||
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
|
||
{
|
||
#ifdef REG_ALLOC_ORDER
|
||
int regno = reg_alloc_order[i];
|
||
#else
|
||
int regno = i;
|
||
#endif
|
||
|
||
if (local_reg_n_refs[regno] != 0
|
||
/* Don't use a reg no good for this pseudo. */
|
||
&& ! TEST_HARD_REG_BIT (used2, regno)
|
||
&& HARD_REGNO_MODE_OK (regno, mode)
|
||
/* The code below assumes that we need only a single
|
||
register, but the check of allocno[num].size above
|
||
was not enough. Sometimes we need more than one
|
||
register for a single-word value. */
|
||
&& hard_regno_nregs[regno][mode] == 1
|
||
&& (allocno[num].calls_crossed == 0
|
||
|| accept_call_clobbered
|
||
|| ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
|
||
#ifdef CANNOT_CHANGE_MODE_CLASS
|
||
&& ! invalid_mode_change_p (regno, REGNO_REG_CLASS (regno),
|
||
mode)
|
||
#endif
|
||
#ifdef STACK_REGS
|
||
&& (!allocno[num].no_stack_reg
|
||
|| regno < FIRST_STACK_REG || regno > LAST_STACK_REG)
|
||
#endif
|
||
)
|
||
{
|
||
/* We explicitly evaluate the divide results into temporary
|
||
variables so as to avoid excess precision problems that occur
|
||
on an i386-unknown-sysv4.2 (unixware) host. */
|
||
|
||
double tmp1 = ((double) local_reg_freq[regno] * local_reg_n_refs[regno]
|
||
/ local_reg_live_length[regno]);
|
||
double tmp2 = ((double) allocno[num].freq * allocno[num].n_refs
|
||
/ allocno[num].live_length);
|
||
|
||
if (tmp1 < tmp2)
|
||
{
|
||
/* Hard reg REGNO was used less in total by local regs
|
||
than it would be used by this one allocno! */
|
||
int k;
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Regno %d better for global %d, ",
|
||
regno, allocno[num].reg);
|
||
fprintf (dump_file, "fr:%d, ll:%d, nr:%d ",
|
||
allocno[num].freq, allocno[num].live_length,
|
||
allocno[num].n_refs);
|
||
fprintf (dump_file, "(was: fr:%d, ll:%d, nr:%d)\n",
|
||
local_reg_freq[regno],
|
||
local_reg_live_length[regno],
|
||
local_reg_n_refs[regno]);
|
||
}
|
||
|
||
for (k = 0; k < max_regno; k++)
|
||
if (reg_renumber[k] >= 0)
|
||
{
|
||
int r = reg_renumber[k];
|
||
int endregno
|
||
= r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (k)];
|
||
|
||
if (regno >= r && regno < endregno)
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"Local Reg %d now on stack\n", k);
|
||
reg_renumber[k] = -1;
|
||
}
|
||
}
|
||
|
||
best_reg = regno;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Did we find a register? */
|
||
|
||
if (best_reg >= 0)
|
||
{
|
||
int lim, j;
|
||
HARD_REG_SET this_reg;
|
||
|
||
/* Yes. Record it as the hard register of this pseudo-reg. */
|
||
reg_renumber[allocno[num].reg] = best_reg;
|
||
/* Also of any pseudo-regs that share with it. */
|
||
if (reg_may_share[allocno[num].reg])
|
||
for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++)
|
||
if (reg_allocno[j] == num)
|
||
reg_renumber[j] = best_reg;
|
||
|
||
/* Make a set of the hard regs being allocated. */
|
||
CLEAR_HARD_REG_SET (this_reg);
|
||
lim = best_reg + hard_regno_nregs[best_reg][mode];
|
||
for (j = best_reg; j < lim; j++)
|
||
{
|
||
SET_HARD_REG_BIT (this_reg, j);
|
||
SET_HARD_REG_BIT (regs_used_so_far, j);
|
||
/* This is no longer a reg used just by local regs. */
|
||
local_reg_n_refs[j] = 0;
|
||
local_reg_freq[j] = 0;
|
||
}
|
||
/* For each other pseudo-reg conflicting with this one,
|
||
mark it as conflicting with the hard regs this one occupies. */
|
||
lim = num;
|
||
EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + lim * allocno_row_words, j,
|
||
{
|
||
IOR_HARD_REG_SET (allocno[j].hard_reg_conflicts, this_reg);
|
||
});
|
||
}
|
||
}
|
||
|
||
/* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
|
||
Perhaps it had previously seemed not worth a hard reg,
|
||
or perhaps its old hard reg has been commandeered for reloads.
|
||
FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
|
||
they do not appear to be allocated.
|
||
If FORBIDDEN_REGS is zero, no regs are forbidden. */
|
||
|
||
void
|
||
retry_global_alloc (int regno, HARD_REG_SET forbidden_regs)
|
||
{
|
||
int alloc_no = reg_allocno[regno];
|
||
if (alloc_no >= 0)
|
||
{
|
||
/* If we have more than one register class,
|
||
first try allocating in the class that is cheapest
|
||
for this pseudo-reg. If that fails, try any reg. */
|
||
if (N_REG_CLASSES > 1)
|
||
find_reg (alloc_no, forbidden_regs, 0, 0, 1);
|
||
if (reg_renumber[regno] < 0
|
||
&& reg_alternate_class (regno) != NO_REGS)
|
||
find_reg (alloc_no, forbidden_regs, 1, 0, 1);
|
||
|
||
/* If we found a register, modify the RTL for the register to
|
||
show the hard register, and mark that register live. */
|
||
if (reg_renumber[regno] >= 0)
|
||
{
|
||
REGNO (regno_reg_rtx[regno]) = reg_renumber[regno];
|
||
mark_home_live (regno);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Record a conflict between register REGNO
|
||
and everything currently live.
|
||
REGNO must not be a pseudo reg that was allocated
|
||
by local_alloc; such numbers must be translated through
|
||
reg_renumber before calling here. */
|
||
|
||
static void
|
||
record_one_conflict (int regno)
|
||
{
|
||
int j;
|
||
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
/* When a hard register becomes live,
|
||
record conflicts with live pseudo regs. */
|
||
EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, j,
|
||
{
|
||
SET_HARD_REG_BIT (allocno[j].hard_reg_conflicts, regno);
|
||
});
|
||
else
|
||
/* When a pseudo-register becomes live,
|
||
record conflicts first with hard regs,
|
||
then with other pseudo regs. */
|
||
{
|
||
int ialloc = reg_allocno[regno];
|
||
int ialloc_prod = ialloc * allocno_row_words;
|
||
|
||
IOR_HARD_REG_SET (allocno[ialloc].hard_reg_conflicts, hard_regs_live);
|
||
for (j = allocno_row_words - 1; j >= 0; j--)
|
||
conflicts[ialloc_prod + j] |= allocnos_live[j];
|
||
}
|
||
}
|
||
|
||
/* Record all allocnos currently live as conflicting
|
||
with all hard regs currently live.
|
||
|
||
ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
|
||
are currently live. Their bits are also flagged in allocnos_live. */
|
||
|
||
static void
|
||
record_conflicts (int *allocno_vec, int len)
|
||
{
|
||
while (--len >= 0)
|
||
IOR_HARD_REG_SET (allocno[allocno_vec[len]].hard_reg_conflicts,
|
||
hard_regs_live);
|
||
}
|
||
|
||
/* If CONFLICTP (i, j) is true, make sure CONFLICTP (j, i) is also true. */
|
||
static void
|
||
mirror_conflicts (void)
|
||
{
|
||
int i, j;
|
||
int rw = allocno_row_words;
|
||
int rwb = rw * INT_BITS;
|
||
INT_TYPE *p = conflicts;
|
||
INT_TYPE *q0 = conflicts, *q1, *q2;
|
||
unsigned INT_TYPE mask;
|
||
|
||
for (i = max_allocno - 1, mask = 1; i >= 0; i--, mask <<= 1)
|
||
{
|
||
if (! mask)
|
||
{
|
||
mask = 1;
|
||
q0++;
|
||
}
|
||
for (j = allocno_row_words - 1, q1 = q0; j >= 0; j--, q1 += rwb)
|
||
{
|
||
unsigned INT_TYPE word;
|
||
|
||
for (word = (unsigned INT_TYPE) *p++, q2 = q1; word;
|
||
word >>= 1, q2 += rw)
|
||
{
|
||
if (word & 1)
|
||
*q2 |= mask;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Handle the case where REG is set by the insn being scanned,
|
||
during the forward scan to accumulate conflicts.
|
||
Store a 1 in regs_live or allocnos_live for this register, record how many
|
||
consecutive hardware registers it actually needs,
|
||
and record a conflict with all other registers already live.
|
||
|
||
Note that even if REG does not remain alive after this insn,
|
||
we must mark it here as live, to ensure a conflict between
|
||
REG and any other regs set in this insn that really do live.
|
||
This is because those other regs could be considered after this.
|
||
|
||
REG might actually be something other than a register;
|
||
if so, we do nothing.
|
||
|
||
SETTER is 0 if this register was modified by an auto-increment (i.e.,
|
||
a REG_INC note was found for it). */
|
||
|
||
static void
|
||
mark_reg_store (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
int regno;
|
||
|
||
if (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
|
||
if (!REG_P (reg))
|
||
return;
|
||
|
||
regs_set[n_regs_set++] = reg;
|
||
|
||
if (setter && GET_CODE (setter) != CLOBBER)
|
||
set_preference (reg, SET_SRC (setter));
|
||
|
||
regno = REGNO (reg);
|
||
|
||
/* Either this is one of the max_allocno pseudo regs not allocated,
|
||
or it is or has a hardware reg. First handle the pseudo-regs. */
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
if (reg_allocno[regno] >= 0)
|
||
{
|
||
SET_ALLOCNO_LIVE (reg_allocno[regno]);
|
||
record_one_conflict (regno);
|
||
}
|
||
}
|
||
|
||
if (reg_renumber[regno] >= 0)
|
||
regno = reg_renumber[regno];
|
||
|
||
/* Handle hardware regs (and pseudos allocated to hard regs). */
|
||
if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
|
||
{
|
||
int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
|
||
while (regno < last)
|
||
{
|
||
record_one_conflict (regno);
|
||
SET_HARD_REG_BIT (hard_regs_live, regno);
|
||
regno++;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Like mark_reg_store except notice just CLOBBERs; ignore SETs. */
|
||
|
||
static void
|
||
mark_reg_clobber (rtx reg, rtx setter, void *data)
|
||
{
|
||
if (GET_CODE (setter) == CLOBBER)
|
||
mark_reg_store (reg, setter, data);
|
||
}
|
||
|
||
/* Record that REG has conflicts with all the regs currently live.
|
||
Do not mark REG itself as live. */
|
||
|
||
static void
|
||
mark_reg_conflicts (rtx reg)
|
||
{
|
||
int regno;
|
||
|
||
if (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
|
||
if (!REG_P (reg))
|
||
return;
|
||
|
||
regno = REGNO (reg);
|
||
|
||
/* Either this is one of the max_allocno pseudo regs not allocated,
|
||
or it is or has a hardware reg. First handle the pseudo-regs. */
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
if (reg_allocno[regno] >= 0)
|
||
record_one_conflict (regno);
|
||
}
|
||
|
||
if (reg_renumber[regno] >= 0)
|
||
regno = reg_renumber[regno];
|
||
|
||
/* Handle hardware regs (and pseudos allocated to hard regs). */
|
||
if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
|
||
{
|
||
int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
|
||
while (regno < last)
|
||
{
|
||
record_one_conflict (regno);
|
||
regno++;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Mark REG as being dead (following the insn being scanned now).
|
||
Store a 0 in regs_live or allocnos_live for this register. */
|
||
|
||
static void
|
||
mark_reg_death (rtx reg)
|
||
{
|
||
int regno = REGNO (reg);
|
||
|
||
/* Either this is one of the max_allocno pseudo regs not allocated,
|
||
or it is a hardware reg. First handle the pseudo-regs. */
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
if (reg_allocno[regno] >= 0)
|
||
CLEAR_ALLOCNO_LIVE (reg_allocno[regno]);
|
||
}
|
||
|
||
/* For pseudo reg, see if it has been assigned a hardware reg. */
|
||
if (reg_renumber[regno] >= 0)
|
||
regno = reg_renumber[regno];
|
||
|
||
/* Handle hardware regs (and pseudos allocated to hard regs). */
|
||
if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
|
||
{
|
||
/* Pseudo regs already assigned hardware regs are treated
|
||
almost the same as explicit hardware regs. */
|
||
int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
|
||
while (regno < last)
|
||
{
|
||
CLEAR_HARD_REG_BIT (hard_regs_live, regno);
|
||
regno++;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Mark hard reg REGNO as currently live, assuming machine mode MODE
|
||
for the value stored in it. MODE determines how many consecutive
|
||
registers are actually in use. Do not record conflicts;
|
||
it is assumed that the caller will do that. */
|
||
|
||
static void
|
||
mark_reg_live_nc (int regno, enum machine_mode mode)
|
||
{
|
||
int last = regno + hard_regno_nregs[regno][mode];
|
||
while (regno < last)
|
||
{
|
||
SET_HARD_REG_BIT (hard_regs_live, regno);
|
||
regno++;
|
||
}
|
||
}
|
||
|
||
/* Try to set a preference for an allocno to a hard register.
|
||
We are passed DEST and SRC which are the operands of a SET. It is known
|
||
that SRC is a register. If SRC or the first operand of SRC is a register,
|
||
try to set a preference. If one of the two is a hard register and the other
|
||
is a pseudo-register, mark the preference.
|
||
|
||
Note that we are not as aggressive as local-alloc in trying to tie a
|
||
pseudo-register to a hard register. */
|
||
|
||
static void
|
||
set_preference (rtx dest, rtx src)
|
||
{
|
||
unsigned int src_regno, dest_regno;
|
||
/* Amount to add to the hard regno for SRC, or subtract from that for DEST,
|
||
to compensate for subregs in SRC or DEST. */
|
||
int offset = 0;
|
||
unsigned int i;
|
||
int copy = 1;
|
||
|
||
if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e')
|
||
src = XEXP (src, 0), copy = 0;
|
||
|
||
/* Get the reg number for both SRC and DEST.
|
||
If neither is a reg, give up. */
|
||
|
||
if (REG_P (src))
|
||
src_regno = REGNO (src);
|
||
else if (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src)))
|
||
{
|
||
src_regno = REGNO (SUBREG_REG (src));
|
||
|
||
if (REGNO (SUBREG_REG (src)) < FIRST_PSEUDO_REGISTER)
|
||
offset += subreg_regno_offset (REGNO (SUBREG_REG (src)),
|
||
GET_MODE (SUBREG_REG (src)),
|
||
SUBREG_BYTE (src),
|
||
GET_MODE (src));
|
||
else
|
||
offset += (SUBREG_BYTE (src)
|
||
/ REGMODE_NATURAL_SIZE (GET_MODE (src)));
|
||
}
|
||
else
|
||
return;
|
||
|
||
if (REG_P (dest))
|
||
dest_regno = REGNO (dest);
|
||
else if (GET_CODE (dest) == SUBREG && REG_P (SUBREG_REG (dest)))
|
||
{
|
||
dest_regno = REGNO (SUBREG_REG (dest));
|
||
|
||
if (REGNO (SUBREG_REG (dest)) < FIRST_PSEUDO_REGISTER)
|
||
offset -= subreg_regno_offset (REGNO (SUBREG_REG (dest)),
|
||
GET_MODE (SUBREG_REG (dest)),
|
||
SUBREG_BYTE (dest),
|
||
GET_MODE (dest));
|
||
else
|
||
offset -= (SUBREG_BYTE (dest)
|
||
/ REGMODE_NATURAL_SIZE (GET_MODE (dest)));
|
||
}
|
||
else
|
||
return;
|
||
|
||
/* Convert either or both to hard reg numbers. */
|
||
|
||
if (reg_renumber[src_regno] >= 0)
|
||
src_regno = reg_renumber[src_regno];
|
||
|
||
if (reg_renumber[dest_regno] >= 0)
|
||
dest_regno = reg_renumber[dest_regno];
|
||
|
||
/* Now if one is a hard reg and the other is a global pseudo
|
||
then give the other a preference. */
|
||
|
||
if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER
|
||
&& reg_allocno[src_regno] >= 0)
|
||
{
|
||
dest_regno -= offset;
|
||
if (dest_regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
if (copy)
|
||
SET_REGBIT (hard_reg_copy_preferences,
|
||
reg_allocno[src_regno], dest_regno);
|
||
|
||
SET_REGBIT (hard_reg_preferences,
|
||
reg_allocno[src_regno], dest_regno);
|
||
for (i = dest_regno;
|
||
i < dest_regno + hard_regno_nregs[dest_regno][GET_MODE (dest)];
|
||
i++)
|
||
SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i);
|
||
}
|
||
}
|
||
|
||
if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER
|
||
&& reg_allocno[dest_regno] >= 0)
|
||
{
|
||
src_regno += offset;
|
||
if (src_regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
if (copy)
|
||
SET_REGBIT (hard_reg_copy_preferences,
|
||
reg_allocno[dest_regno], src_regno);
|
||
|
||
SET_REGBIT (hard_reg_preferences,
|
||
reg_allocno[dest_regno], src_regno);
|
||
for (i = src_regno;
|
||
i < src_regno + hard_regno_nregs[src_regno][GET_MODE (src)];
|
||
i++)
|
||
SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Indicate that hard register number FROM was eliminated and replaced with
|
||
an offset from hard register number TO. The status of hard registers live
|
||
at the start of a basic block is updated by replacing a use of FROM with
|
||
a use of TO. */
|
||
|
||
void
|
||
mark_elimination (int from, int to)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
regset r = bb->il.rtl->global_live_at_start;
|
||
if (REGNO_REG_SET_P (r, from))
|
||
{
|
||
CLEAR_REGNO_REG_SET (r, from);
|
||
SET_REGNO_REG_SET (r, to);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Used for communication between the following functions. Holds the
|
||
current life information. */
|
||
static regset live_relevant_regs;
|
||
|
||
/* Record in live_relevant_regs and REGS_SET that register REG became live.
|
||
This is called via note_stores. */
|
||
static void
|
||
reg_becomes_live (rtx reg, rtx setter ATTRIBUTE_UNUSED, void *regs_set)
|
||
{
|
||
int regno;
|
||
|
||
if (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
|
||
if (!REG_P (reg))
|
||
return;
|
||
|
||
regno = REGNO (reg);
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
|
||
while (nregs-- > 0)
|
||
{
|
||
SET_REGNO_REG_SET (live_relevant_regs, regno);
|
||
if (! fixed_regs[regno])
|
||
SET_REGNO_REG_SET ((regset) regs_set, regno);
|
||
regno++;
|
||
}
|
||
}
|
||
else if (reg_renumber[regno] >= 0)
|
||
{
|
||
SET_REGNO_REG_SET (live_relevant_regs, regno);
|
||
SET_REGNO_REG_SET ((regset) regs_set, regno);
|
||
}
|
||
}
|
||
|
||
/* Record in live_relevant_regs that register REGNO died. */
|
||
static void
|
||
reg_dies (int regno, enum machine_mode mode, struct insn_chain *chain)
|
||
{
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int nregs = hard_regno_nregs[regno][mode];
|
||
while (nregs-- > 0)
|
||
{
|
||
CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
|
||
if (! fixed_regs[regno])
|
||
SET_REGNO_REG_SET (&chain->dead_or_set, regno);
|
||
regno++;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
|
||
if (reg_renumber[regno] >= 0)
|
||
SET_REGNO_REG_SET (&chain->dead_or_set, regno);
|
||
}
|
||
}
|
||
|
||
/* Walk the insns of the current function and build reload_insn_chain,
|
||
and record register life information. */
|
||
void
|
||
build_insn_chain (rtx first)
|
||
{
|
||
struct insn_chain **p = &reload_insn_chain;
|
||
struct insn_chain *prev = 0;
|
||
basic_block b = ENTRY_BLOCK_PTR->next_bb;
|
||
|
||
live_relevant_regs = ALLOC_REG_SET (®_obstack);
|
||
|
||
for (; first; first = NEXT_INSN (first))
|
||
{
|
||
struct insn_chain *c;
|
||
|
||
if (first == BB_HEAD (b))
|
||
{
|
||
unsigned i;
|
||
bitmap_iterator bi;
|
||
|
||
CLEAR_REG_SET (live_relevant_regs);
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (b->il.rtl->global_live_at_start, 0, i, bi)
|
||
{
|
||
if (i < FIRST_PSEUDO_REGISTER
|
||
? ! TEST_HARD_REG_BIT (eliminable_regset, i)
|
||
: reg_renumber[i] >= 0)
|
||
SET_REGNO_REG_SET (live_relevant_regs, i);
|
||
}
|
||
}
|
||
|
||
if (!NOTE_P (first) && !BARRIER_P (first))
|
||
{
|
||
c = new_insn_chain ();
|
||
c->prev = prev;
|
||
prev = c;
|
||
*p = c;
|
||
p = &c->next;
|
||
c->insn = first;
|
||
c->block = b->index;
|
||
|
||
if (INSN_P (first))
|
||
{
|
||
rtx link;
|
||
|
||
/* Mark the death of everything that dies in this instruction. */
|
||
|
||
for (link = REG_NOTES (first); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_DEAD
|
||
&& REG_P (XEXP (link, 0)))
|
||
reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)),
|
||
c);
|
||
|
||
COPY_REG_SET (&c->live_throughout, live_relevant_regs);
|
||
|
||
/* Mark everything born in this instruction as live. */
|
||
|
||
note_stores (PATTERN (first), reg_becomes_live,
|
||
&c->dead_or_set);
|
||
}
|
||
else
|
||
COPY_REG_SET (&c->live_throughout, live_relevant_regs);
|
||
|
||
if (INSN_P (first))
|
||
{
|
||
rtx link;
|
||
|
||
/* Mark anything that is set in this insn and then unused as dying. */
|
||
|
||
for (link = REG_NOTES (first); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_UNUSED
|
||
&& REG_P (XEXP (link, 0)))
|
||
reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)),
|
||
c);
|
||
}
|
||
}
|
||
|
||
if (first == BB_END (b))
|
||
b = b->next_bb;
|
||
|
||
/* Stop after we pass the end of the last basic block. Verify that
|
||
no real insns are after the end of the last basic block.
|
||
|
||
We may want to reorganize the loop somewhat since this test should
|
||
always be the right exit test. Allow an ADDR_VEC or ADDR_DIF_VEC if
|
||
the previous real insn is a JUMP_INSN. */
|
||
if (b == EXIT_BLOCK_PTR)
|
||
{
|
||
#ifdef ENABLE_CHECKING
|
||
for (first = NEXT_INSN (first); first; first = NEXT_INSN (first))
|
||
gcc_assert (!INSN_P (first)
|
||
|| GET_CODE (PATTERN (first)) == USE
|
||
|| ((GET_CODE (PATTERN (first)) == ADDR_VEC
|
||
|| GET_CODE (PATTERN (first)) == ADDR_DIFF_VEC)
|
||
&& prev_real_insn (first) != 0
|
||
&& JUMP_P (prev_real_insn (first))));
|
||
#endif
|
||
break;
|
||
}
|
||
}
|
||
FREE_REG_SET (live_relevant_regs);
|
||
*p = 0;
|
||
}
|
||
|
||
/* Print debugging trace information if -dg switch is given,
|
||
showing the information on which the allocation decisions are based. */
|
||
|
||
static void
|
||
dump_conflicts (FILE *file)
|
||
{
|
||
int i;
|
||
int has_preferences;
|
||
int nregs;
|
||
nregs = 0;
|
||
for (i = 0; i < max_allocno; i++)
|
||
{
|
||
if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
|
||
continue;
|
||
nregs++;
|
||
}
|
||
fprintf (file, ";; %d regs to allocate:", nregs);
|
||
for (i = 0; i < max_allocno; i++)
|
||
{
|
||
int j;
|
||
if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
|
||
continue;
|
||
fprintf (file, " %d", allocno[allocno_order[i]].reg);
|
||
for (j = 0; j < max_regno; j++)
|
||
if (reg_allocno[j] == allocno_order[i]
|
||
&& j != allocno[allocno_order[i]].reg)
|
||
fprintf (file, "+%d", j);
|
||
if (allocno[allocno_order[i]].size != 1)
|
||
fprintf (file, " (%d)", allocno[allocno_order[i]].size);
|
||
}
|
||
fprintf (file, "\n");
|
||
|
||
for (i = 0; i < max_allocno; i++)
|
||
{
|
||
int j;
|
||
fprintf (file, ";; %d conflicts:", allocno[i].reg);
|
||
for (j = 0; j < max_allocno; j++)
|
||
if (CONFLICTP (j, i))
|
||
fprintf (file, " %d", allocno[j].reg);
|
||
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
||
if (TEST_HARD_REG_BIT (allocno[i].hard_reg_conflicts, j))
|
||
fprintf (file, " %d", j);
|
||
fprintf (file, "\n");
|
||
|
||
has_preferences = 0;
|
||
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
||
if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j))
|
||
has_preferences = 1;
|
||
|
||
if (! has_preferences)
|
||
continue;
|
||
fprintf (file, ";; %d preferences:", allocno[i].reg);
|
||
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
||
if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j))
|
||
fprintf (file, " %d", j);
|
||
fprintf (file, "\n");
|
||
}
|
||
fprintf (file, "\n");
|
||
}
|
||
|
||
void
|
||
dump_global_regs (FILE *file)
|
||
{
|
||
int i, j;
|
||
|
||
fprintf (file, ";; Register dispositions:\n");
|
||
for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++)
|
||
if (reg_renumber[i] >= 0)
|
||
{
|
||
fprintf (file, "%d in %d ", i, reg_renumber[i]);
|
||
if (++j % 6 == 0)
|
||
fprintf (file, "\n");
|
||
}
|
||
|
||
fprintf (file, "\n\n;; Hard regs used: ");
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (regs_ever_live[i])
|
||
fprintf (file, " %d", i);
|
||
fprintf (file, "\n\n");
|
||
}
|
||
|
||
|
||
|
||
/* This page contains code to make live information more accurate.
|
||
The accurate register liveness at program point P means:
|
||
o there is a path from P to usage of the register and the
|
||
register is not redefined or killed on the path.
|
||
o register at P is partially available, i.e. there is a path from
|
||
a register definition to the point P and the register is not
|
||
killed (clobbered) on the path
|
||
|
||
The standard GCC live information means only the first condition.
|
||
Without the partial availability, there will be more register
|
||
conflicts and as a consequence worse register allocation. The
|
||
typical example where the information can be different is a
|
||
register initialized in the loop at the basic block preceding the
|
||
loop in CFG. */
|
||
|
||
/* The following structure contains basic block data flow information
|
||
used to calculate partial availability of registers. */
|
||
|
||
struct bb_info
|
||
{
|
||
/* The basic block reverse post-order number. */
|
||
int rts_number;
|
||
/* Registers used uninitialized in an insn in which there is an
|
||
early clobbered register might get the same hard register. */
|
||
bitmap earlyclobber;
|
||
/* Registers correspondingly killed (clobbered) and defined but not
|
||
killed afterward in the basic block. */
|
||
bitmap killed, avloc;
|
||
/* Registers partially available and living (in other words whose
|
||
values were calculated and used) correspondingly at the start
|
||
and end of the basic block. */
|
||
bitmap live_pavin, live_pavout;
|
||
};
|
||
|
||
/* Macros for accessing data flow information of basic blocks. */
|
||
|
||
#define BB_INFO(BB) ((struct bb_info *) (BB)->aux)
|
||
#define BB_INFO_BY_INDEX(N) BB_INFO (BASIC_BLOCK(N))
|
||
|
||
static struct bitmap_obstack greg_obstack;
|
||
/* The function allocates the info structures of each basic block. It
|
||
also initialized LIVE_PAVIN and LIVE_PAVOUT as if all hard
|
||
registers were partially available. */
|
||
|
||
static void
|
||
allocate_bb_info (void)
|
||
{
|
||
int i;
|
||
basic_block bb;
|
||
struct bb_info *bb_info;
|
||
bitmap init;
|
||
|
||
alloc_aux_for_blocks (sizeof (struct bb_info));
|
||
init = BITMAP_ALLOC (NULL);
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
bitmap_set_bit (init, i);
|
||
bitmap_obstack_initialize (&greg_obstack);
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
bb_info = bb->aux;
|
||
bb_info->earlyclobber = BITMAP_ALLOC (&greg_obstack);
|
||
bb_info->avloc = BITMAP_ALLOC (&greg_obstack);
|
||
bb_info->killed = BITMAP_ALLOC (&greg_obstack);
|
||
bb_info->live_pavin = BITMAP_ALLOC (&greg_obstack);
|
||
bb_info->live_pavout = BITMAP_ALLOC (&greg_obstack);
|
||
bitmap_copy (bb_info->live_pavin, init);
|
||
bitmap_copy (bb_info->live_pavout, init);
|
||
}
|
||
BITMAP_FREE (init);
|
||
}
|
||
|
||
/* The function frees the allocated info of all basic blocks. */
|
||
|
||
static void
|
||
free_bb_info (void)
|
||
{
|
||
bitmap_obstack_release (&greg_obstack);
|
||
free_aux_for_blocks ();
|
||
}
|
||
|
||
/* The function modifies local info for register REG being changed in
|
||
SETTER. DATA is used to pass the current basic block info. */
|
||
|
||
static void
|
||
mark_reg_change (rtx reg, rtx setter, void *data)
|
||
{
|
||
int regno;
|
||
basic_block bb = data;
|
||
struct bb_info *bb_info = BB_INFO (bb);
|
||
|
||
if (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
|
||
if (!REG_P (reg))
|
||
return;
|
||
|
||
regno = REGNO (reg);
|
||
bitmap_set_bit (bb_info->killed, regno);
|
||
|
||
if (GET_CODE (setter) != CLOBBER)
|
||
bitmap_set_bit (bb_info->avloc, regno);
|
||
else
|
||
bitmap_clear_bit (bb_info->avloc, regno);
|
||
}
|
||
|
||
/* Classes of registers which could be early clobbered in the current
|
||
insn. */
|
||
|
||
static VEC(int,heap) *earlyclobber_regclass;
|
||
|
||
/* This function finds and stores register classes that could be early
|
||
clobbered in INSN. If any earlyclobber classes are found, the function
|
||
returns TRUE, in all other cases it returns FALSE. */
|
||
|
||
static bool
|
||
check_earlyclobber (rtx insn)
|
||
{
|
||
int opno;
|
||
bool found = false;
|
||
|
||
extract_insn (insn);
|
||
|
||
VEC_truncate (int, earlyclobber_regclass, 0);
|
||
for (opno = 0; opno < recog_data.n_operands; opno++)
|
||
{
|
||
char c;
|
||
bool amp_p;
|
||
int i;
|
||
enum reg_class class;
|
||
const char *p = recog_data.constraints[opno];
|
||
|
||
class = NO_REGS;
|
||
amp_p = false;
|
||
for (;;)
|
||
{
|
||
c = *p;
|
||
switch (c)
|
||
{
|
||
case '=': case '+': case '?':
|
||
case '#': case '!':
|
||
case '*': case '%':
|
||
case 'm': case '<': case '>': case 'V': case 'o':
|
||
case 'E': case 'F': case 'G': case 'H':
|
||
case 's': case 'i': case 'n':
|
||
case 'I': case 'J': case 'K': case 'L':
|
||
case 'M': case 'N': case 'O': case 'P':
|
||
case 'X':
|
||
case '0': case '1': case '2': case '3': case '4':
|
||
case '5': case '6': case '7': case '8': case '9':
|
||
/* These don't say anything we care about. */
|
||
break;
|
||
|
||
case '&':
|
||
amp_p = true;
|
||
break;
|
||
case '\0':
|
||
case ',':
|
||
if (amp_p && class != NO_REGS)
|
||
{
|
||
int rc;
|
||
|
||
found = true;
|
||
for (i = 0;
|
||
VEC_iterate (int, earlyclobber_regclass, i, rc);
|
||
i++)
|
||
{
|
||
if (rc == (int) class)
|
||
goto found_rc;
|
||
}
|
||
|
||
/* We use VEC_quick_push here because
|
||
earlyclobber_regclass holds no more than
|
||
N_REG_CLASSES elements. */
|
||
VEC_quick_push (int, earlyclobber_regclass, (int) class);
|
||
found_rc:
|
||
;
|
||
}
|
||
|
||
amp_p = false;
|
||
class = NO_REGS;
|
||
break;
|
||
|
||
case 'r':
|
||
class = GENERAL_REGS;
|
||
break;
|
||
|
||
default:
|
||
class = REG_CLASS_FROM_CONSTRAINT (c, p);
|
||
break;
|
||
}
|
||
if (c == '\0')
|
||
break;
|
||
p += CONSTRAINT_LEN (c, p);
|
||
}
|
||
}
|
||
|
||
return found;
|
||
}
|
||
|
||
/* The function checks that pseudo-register *X has a class
|
||
intersecting with the class of pseudo-register could be early
|
||
clobbered in the same insn.
|
||
This function is a no-op if earlyclobber_regclass is empty. */
|
||
|
||
static int
|
||
mark_reg_use_for_earlyclobber (rtx *x, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
enum reg_class pref_class, alt_class;
|
||
int i, regno;
|
||
basic_block bb = data;
|
||
struct bb_info *bb_info = BB_INFO (bb);
|
||
|
||
if (REG_P (*x) && REGNO (*x) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int rc;
|
||
|
||
regno = REGNO (*x);
|
||
if (bitmap_bit_p (bb_info->killed, regno)
|
||
|| bitmap_bit_p (bb_info->avloc, regno))
|
||
return 0;
|
||
pref_class = reg_preferred_class (regno);
|
||
alt_class = reg_alternate_class (regno);
|
||
for (i = 0; VEC_iterate (int, earlyclobber_regclass, i, rc); i++)
|
||
{
|
||
if (reg_classes_intersect_p (rc, pref_class)
|
||
|| (rc != NO_REGS
|
||
&& reg_classes_intersect_p (rc, alt_class)))
|
||
{
|
||
bitmap_set_bit (bb_info->earlyclobber, regno);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* The function processes all pseudo-registers in *X with the aid of
|
||
previous function. */
|
||
|
||
static void
|
||
mark_reg_use_for_earlyclobber_1 (rtx *x, void *data)
|
||
{
|
||
for_each_rtx (x, mark_reg_use_for_earlyclobber, data);
|
||
}
|
||
|
||
/* The function calculates local info for each basic block. */
|
||
|
||
static void
|
||
calculate_local_reg_bb_info (void)
|
||
{
|
||
basic_block bb;
|
||
rtx insn, bound;
|
||
|
||
/* We know that earlyclobber_regclass holds no more than
|
||
N_REG_CLASSES elements. See check_earlyclobber. */
|
||
earlyclobber_regclass = VEC_alloc (int, heap, N_REG_CLASSES);
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
bound = NEXT_INSN (BB_END (bb));
|
||
for (insn = BB_HEAD (bb); insn != bound; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn))
|
||
{
|
||
note_stores (PATTERN (insn), mark_reg_change, bb);
|
||
if (check_earlyclobber (insn))
|
||
note_uses (&PATTERN (insn), mark_reg_use_for_earlyclobber_1, bb);
|
||
}
|
||
}
|
||
VEC_free (int, heap, earlyclobber_regclass);
|
||
}
|
||
|
||
/* The function sets up reverse post-order number of each basic
|
||
block. */
|
||
|
||
static void
|
||
set_up_bb_rts_numbers (void)
|
||
{
|
||
int i;
|
||
int *rts_order;
|
||
|
||
rts_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
|
||
post_order_compute (rts_order, false);
|
||
for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
|
||
BB_INFO_BY_INDEX (rts_order [i])->rts_number = i;
|
||
free (rts_order);
|
||
}
|
||
|
||
/* Compare function for sorting blocks in reverse postorder. */
|
||
|
||
static int
|
||
rpost_cmp (const void *bb1, const void *bb2)
|
||
{
|
||
basic_block b1 = *(basic_block *) bb1, b2 = *(basic_block *) bb2;
|
||
|
||
return BB_INFO (b2)->rts_number - BB_INFO (b1)->rts_number;
|
||
}
|
||
|
||
/* Temporary bitmap used for live_pavin, live_pavout calculation. */
|
||
static bitmap temp_bitmap;
|
||
|
||
/* The function calculates partial register availability according to
|
||
the following equations:
|
||
|
||
bb.live_pavin
|
||
= empty for entry block
|
||
| union (live_pavout of predecessors) & global_live_at_start
|
||
bb.live_pavout = union (bb.live_pavin - bb.killed, bb.avloc)
|
||
& global_live_at_end */
|
||
|
||
static void
|
||
calculate_reg_pav (void)
|
||
{
|
||
basic_block bb, succ;
|
||
edge e;
|
||
int i, nel;
|
||
VEC(basic_block,heap) *bbs, *new_bbs, *temp;
|
||
basic_block *bb_array;
|
||
sbitmap wset;
|
||
|
||
bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
|
||
new_bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
|
||
temp_bitmap = BITMAP_ALLOC (NULL);
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
VEC_quick_push (basic_block, bbs, bb);
|
||
}
|
||
wset = sbitmap_alloc (n_basic_blocks + 1);
|
||
while (VEC_length (basic_block, bbs))
|
||
{
|
||
bb_array = VEC_address (basic_block, bbs);
|
||
nel = VEC_length (basic_block, bbs);
|
||
qsort (bb_array, nel, sizeof (basic_block), rpost_cmp);
|
||
sbitmap_zero (wset);
|
||
for (i = 0; i < nel; i++)
|
||
{
|
||
edge_iterator ei;
|
||
struct bb_info *bb_info;
|
||
bitmap bb_live_pavin, bb_live_pavout;
|
||
|
||
bb = bb_array [i];
|
||
bb_info = BB_INFO (bb);
|
||
bb_live_pavin = bb_info->live_pavin;
|
||
bb_live_pavout = bb_info->live_pavout;
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
basic_block pred = e->src;
|
||
|
||
if (pred->index != ENTRY_BLOCK)
|
||
bitmap_ior_into (bb_live_pavin, BB_INFO (pred)->live_pavout);
|
||
}
|
||
bitmap_and_into (bb_live_pavin, bb->il.rtl->global_live_at_start);
|
||
bitmap_ior_and_compl (temp_bitmap, bb_info->avloc,
|
||
bb_live_pavin, bb_info->killed);
|
||
bitmap_and_into (temp_bitmap, bb->il.rtl->global_live_at_end);
|
||
if (! bitmap_equal_p (temp_bitmap, bb_live_pavout))
|
||
{
|
||
bitmap_copy (bb_live_pavout, temp_bitmap);
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
succ = e->dest;
|
||
if (succ->index != EXIT_BLOCK
|
||
&& !TEST_BIT (wset, succ->index))
|
||
{
|
||
SET_BIT (wset, succ->index);
|
||
VEC_quick_push (basic_block, new_bbs, succ);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
temp = bbs;
|
||
bbs = new_bbs;
|
||
new_bbs = temp;
|
||
VEC_truncate (basic_block, new_bbs, 0);
|
||
}
|
||
sbitmap_free (wset);
|
||
BITMAP_FREE (temp_bitmap);
|
||
VEC_free (basic_block, heap, new_bbs);
|
||
VEC_free (basic_block, heap, bbs);
|
||
}
|
||
|
||
/* The function modifies partial availability information for two
|
||
special cases to prevent incorrect work of the subsequent passes
|
||
with the accurate live information based on the partial
|
||
availability. */
|
||
|
||
static void
|
||
modify_reg_pav (void)
|
||
{
|
||
basic_block bb;
|
||
struct bb_info *bb_info;
|
||
#ifdef STACK_REGS
|
||
int i;
|
||
HARD_REG_SET zero, stack_hard_regs, used;
|
||
bitmap stack_regs;
|
||
|
||
CLEAR_HARD_REG_SET (zero);
|
||
CLEAR_HARD_REG_SET (stack_hard_regs);
|
||
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
|
||
SET_HARD_REG_BIT(stack_hard_regs, i);
|
||
stack_regs = BITMAP_ALLOC (&greg_obstack);
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
{
|
||
COPY_HARD_REG_SET (used, reg_class_contents[reg_preferred_class (i)]);
|
||
IOR_HARD_REG_SET (used, reg_class_contents[reg_alternate_class (i)]);
|
||
AND_HARD_REG_SET (used, stack_hard_regs);
|
||
GO_IF_HARD_REG_EQUAL(used, zero, skip);
|
||
bitmap_set_bit (stack_regs, i);
|
||
skip:
|
||
;
|
||
}
|
||
#endif
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
bb_info = BB_INFO (bb);
|
||
|
||
/* Reload can assign the same hard register to uninitialized
|
||
pseudo-register and early clobbered pseudo-register in an
|
||
insn if the pseudo-register is used first time in given BB
|
||
and not lived at the BB start. To prevent this we don't
|
||
change life information for such pseudo-registers. */
|
||
bitmap_ior_into (bb_info->live_pavin, bb_info->earlyclobber);
|
||
#ifdef STACK_REGS
|
||
/* We can not use the same stack register for uninitialized
|
||
pseudo-register and another living pseudo-register because if the
|
||
uninitialized pseudo-register dies, subsequent pass reg-stack
|
||
will be confused (it will believe that the other register
|
||
dies). */
|
||
bitmap_ior_into (bb_info->live_pavin, stack_regs);
|
||
#endif
|
||
}
|
||
#ifdef STACK_REGS
|
||
BITMAP_FREE (stack_regs);
|
||
#endif
|
||
}
|
||
|
||
/* The following function makes live information more accurate by
|
||
modifying global_live_at_start and global_live_at_end of basic
|
||
blocks.
|
||
|
||
The standard GCC life analysis permits registers to live
|
||
uninitialized, for example:
|
||
|
||
R is never used
|
||
.....
|
||
Loop:
|
||
R is defined
|
||
...
|
||
R is used.
|
||
|
||
With normal life_analysis, R would be live before "Loop:".
|
||
The result is that R causes many interferences that do not
|
||
serve any purpose.
|
||
|
||
After the function call a register lives at a program point
|
||
only if it is initialized on a path from CFG entry to the
|
||
program point. */
|
||
|
||
static void
|
||
make_accurate_live_analysis (void)
|
||
{
|
||
basic_block bb;
|
||
struct bb_info *bb_info;
|
||
|
||
max_regno = max_reg_num ();
|
||
compact_blocks ();
|
||
allocate_bb_info ();
|
||
calculate_local_reg_bb_info ();
|
||
set_up_bb_rts_numbers ();
|
||
calculate_reg_pav ();
|
||
modify_reg_pav ();
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
bb_info = BB_INFO (bb);
|
||
|
||
bitmap_and_into (bb->il.rtl->global_live_at_start, bb_info->live_pavin);
|
||
bitmap_and_into (bb->il.rtl->global_live_at_end, bb_info->live_pavout);
|
||
}
|
||
free_bb_info ();
|
||
}
|
||
/* Run old register allocator. Return TRUE if we must exit
|
||
rest_of_compilation upon return. */
|
||
static unsigned int
|
||
rest_of_handle_global_alloc (void)
|
||
{
|
||
bool failure;
|
||
|
||
/* If optimizing, allocate remaining pseudo-regs. Do the reload
|
||
pass fixing up any insns that are invalid. */
|
||
|
||
if (optimize)
|
||
failure = global_alloc ();
|
||
else
|
||
{
|
||
build_insn_chain (get_insns ());
|
||
failure = reload (get_insns (), 0);
|
||
}
|
||
|
||
if (dump_enabled_p (pass_global_alloc.static_pass_number))
|
||
{
|
||
timevar_push (TV_DUMP);
|
||
dump_global_regs (dump_file);
|
||
timevar_pop (TV_DUMP);
|
||
}
|
||
|
||
gcc_assert (reload_completed || failure);
|
||
reload_completed = !failure;
|
||
return 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_global_alloc =
|
||
{
|
||
"greg", /* name */
|
||
NULL, /* gate */
|
||
rest_of_handle_global_alloc, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_GLOBAL_ALLOC, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func |
|
||
TODO_ggc_collect, /* todo_flags_finish */
|
||
'g' /* letter */
|
||
};
|
||
|