818ab71a41
From-SVN: r232055
4459 lines
129 KiB
C
4459 lines
129 KiB
C
/* Inlining decision heuristics.
|
|
Copyright (C) 2003-2016 Free Software Foundation, Inc.
|
|
Contributed by Jan Hubicka
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* Analysis used by the inliner and other passes limiting code size growth.
|
|
|
|
We estimate for each function
|
|
- function body size
|
|
- average function execution time
|
|
- inlining size benefit (that is how much of function body size
|
|
and its call sequence is expected to disappear by inlining)
|
|
- inlining time benefit
|
|
- function frame size
|
|
For each call
|
|
- call statement size and time
|
|
|
|
inlinie_summary datastructures store above information locally (i.e.
|
|
parameters of the function itself) and globally (i.e. parameters of
|
|
the function created by applying all the inline decisions already
|
|
present in the callgraph).
|
|
|
|
We provide accestor to the inline_summary datastructure and
|
|
basic logic updating the parameters when inlining is performed.
|
|
|
|
The summaries are context sensitive. Context means
|
|
1) partial assignment of known constant values of operands
|
|
2) whether function is inlined into the call or not.
|
|
It is easy to add more variants. To represent function size and time
|
|
that depends on context (i.e. it is known to be optimized away when
|
|
context is known either by inlining or from IP-CP and clonning),
|
|
we use predicates. Predicates are logical formulas in
|
|
conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
|
|
specifying what conditions must be true. Conditions are simple test
|
|
of the form described above.
|
|
|
|
In order to make predicate (possibly) true, all of its clauses must
|
|
be (possibly) true. To make clause (possibly) true, one of conditions
|
|
it mentions must be (possibly) true. There are fixed bounds on
|
|
number of clauses and conditions and all the manipulation functions
|
|
are conservative in positive direction. I.e. we may lose precision
|
|
by thinking that predicate may be true even when it is not.
|
|
|
|
estimate_edge_size and estimate_edge_growth can be used to query
|
|
function size/time in the given context. inline_merge_summary merges
|
|
properties of caller and callee after inlining.
|
|
|
|
Finally pass_inline_parameters is exported. This is used to drive
|
|
computation of function parameters used by the early inliner. IPA
|
|
inlined performs analysis via its analyze_function method. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "alloc-pool.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "tree-streamer.h"
|
|
#include "cgraph.h"
|
|
#include "diagnostic.h"
|
|
#include "fold-const.h"
|
|
#include "print-tree.h"
|
|
#include "tree-inline.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "params.h"
|
|
#include "cfganal.h"
|
|
#include "gimple-iterator.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-ssa-loop-niter.h"
|
|
#include "tree-ssa-loop.h"
|
|
#include "symbol-summary.h"
|
|
#include "ipa-prop.h"
|
|
#include "ipa-inline.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "ipa-utils.h"
|
|
#include "cilk.h"
|
|
#include "cfgexpand.h"
|
|
#include "gimplify.h"
|
|
|
|
/* Estimate runtime of function can easilly run into huge numbers with many
|
|
nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
|
|
integer. For anything larger we use gcov_type. */
|
|
#define MAX_TIME 500000
|
|
|
|
/* Number of bits in integer, but we really want to be stable across different
|
|
hosts. */
|
|
#define NUM_CONDITIONS 32
|
|
|
|
enum predicate_conditions
|
|
{
|
|
predicate_false_condition = 0,
|
|
predicate_not_inlined_condition = 1,
|
|
predicate_first_dynamic_condition = 2
|
|
};
|
|
|
|
/* Special condition code we use to represent test that operand is compile time
|
|
constant. */
|
|
#define IS_NOT_CONSTANT ERROR_MARK
|
|
/* Special condition code we use to represent test that operand is not changed
|
|
across invocation of the function. When operand IS_NOT_CONSTANT it is always
|
|
CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
|
|
of executions even when they are not compile time constants. */
|
|
#define CHANGED IDENTIFIER_NODE
|
|
|
|
/* Holders of ipa cgraph hooks: */
|
|
static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
|
|
static struct cgraph_edge_hook_list *edge_removal_hook_holder;
|
|
static void inline_edge_removal_hook (struct cgraph_edge *, void *);
|
|
static void inline_edge_duplication_hook (struct cgraph_edge *,
|
|
struct cgraph_edge *, void *);
|
|
|
|
/* VECtor holding inline summaries.
|
|
In GGC memory because conditions might point to constant trees. */
|
|
function_summary <inline_summary *> *inline_summaries;
|
|
vec<inline_edge_summary_t> inline_edge_summary_vec;
|
|
|
|
/* Cached node/edge growths. */
|
|
vec<edge_growth_cache_entry> edge_growth_cache;
|
|
|
|
/* Edge predicates goes here. */
|
|
static object_allocator<predicate> edge_predicate_pool ("edge predicates");
|
|
|
|
/* Return true predicate (tautology).
|
|
We represent it by empty list of clauses. */
|
|
|
|
static inline struct predicate
|
|
true_predicate (void)
|
|
{
|
|
struct predicate p;
|
|
p.clause[0] = 0;
|
|
return p;
|
|
}
|
|
|
|
|
|
/* Return predicate testing single condition number COND. */
|
|
|
|
static inline struct predicate
|
|
single_cond_predicate (int cond)
|
|
{
|
|
struct predicate p;
|
|
p.clause[0] = 1 << cond;
|
|
p.clause[1] = 0;
|
|
return p;
|
|
}
|
|
|
|
|
|
/* Return false predicate. First clause require false condition. */
|
|
|
|
static inline struct predicate
|
|
false_predicate (void)
|
|
{
|
|
return single_cond_predicate (predicate_false_condition);
|
|
}
|
|
|
|
|
|
/* Return true if P is (true). */
|
|
|
|
static inline bool
|
|
true_predicate_p (struct predicate *p)
|
|
{
|
|
return !p->clause[0];
|
|
}
|
|
|
|
|
|
/* Return true if P is (false). */
|
|
|
|
static inline bool
|
|
false_predicate_p (struct predicate *p)
|
|
{
|
|
if (p->clause[0] == (1 << predicate_false_condition))
|
|
{
|
|
gcc_checking_assert (!p->clause[1]
|
|
&& p->clause[0] == 1 << predicate_false_condition);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Return predicate that is set true when function is not inlined. */
|
|
|
|
static inline struct predicate
|
|
not_inlined_predicate (void)
|
|
{
|
|
return single_cond_predicate (predicate_not_inlined_condition);
|
|
}
|
|
|
|
/* Simple description of whether a memory load or a condition refers to a load
|
|
from an aggregate and if so, how and where from in the aggregate.
|
|
Individual fields have the same meaning like fields with the same name in
|
|
struct condition. */
|
|
|
|
struct agg_position_info
|
|
{
|
|
HOST_WIDE_INT offset;
|
|
bool agg_contents;
|
|
bool by_ref;
|
|
};
|
|
|
|
/* Add condition to condition list CONDS. AGGPOS describes whether the used
|
|
oprand is loaded from an aggregate and where in the aggregate it is. It can
|
|
be NULL, which means this not a load from an aggregate. */
|
|
|
|
static struct predicate
|
|
add_condition (struct inline_summary *summary, int operand_num,
|
|
struct agg_position_info *aggpos,
|
|
enum tree_code code, tree val)
|
|
{
|
|
int i;
|
|
struct condition *c;
|
|
struct condition new_cond;
|
|
HOST_WIDE_INT offset;
|
|
bool agg_contents, by_ref;
|
|
|
|
if (aggpos)
|
|
{
|
|
offset = aggpos->offset;
|
|
agg_contents = aggpos->agg_contents;
|
|
by_ref = aggpos->by_ref;
|
|
}
|
|
else
|
|
{
|
|
offset = 0;
|
|
agg_contents = false;
|
|
by_ref = false;
|
|
}
|
|
|
|
gcc_checking_assert (operand_num >= 0);
|
|
for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
|
|
{
|
|
if (c->operand_num == operand_num
|
|
&& c->code == code
|
|
&& c->val == val
|
|
&& c->agg_contents == agg_contents
|
|
&& (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
|
|
return single_cond_predicate (i + predicate_first_dynamic_condition);
|
|
}
|
|
/* Too many conditions. Give up and return constant true. */
|
|
if (i == NUM_CONDITIONS - predicate_first_dynamic_condition)
|
|
return true_predicate ();
|
|
|
|
new_cond.operand_num = operand_num;
|
|
new_cond.code = code;
|
|
new_cond.val = val;
|
|
new_cond.agg_contents = agg_contents;
|
|
new_cond.by_ref = by_ref;
|
|
new_cond.offset = offset;
|
|
vec_safe_push (summary->conds, new_cond);
|
|
return single_cond_predicate (i + predicate_first_dynamic_condition);
|
|
}
|
|
|
|
|
|
/* Add clause CLAUSE into the predicate P. */
|
|
|
|
static inline void
|
|
add_clause (conditions conditions, struct predicate *p, clause_t clause)
|
|
{
|
|
int i;
|
|
int i2;
|
|
int insert_here = -1;
|
|
int c1, c2;
|
|
|
|
/* True clause. */
|
|
if (!clause)
|
|
return;
|
|
|
|
/* False clause makes the whole predicate false. Kill the other variants. */
|
|
if (clause == (1 << predicate_false_condition))
|
|
{
|
|
p->clause[0] = (1 << predicate_false_condition);
|
|
p->clause[1] = 0;
|
|
return;
|
|
}
|
|
if (false_predicate_p (p))
|
|
return;
|
|
|
|
/* No one should be silly enough to add false into nontrivial clauses. */
|
|
gcc_checking_assert (!(clause & (1 << predicate_false_condition)));
|
|
|
|
/* Look where to insert the clause. At the same time prune out
|
|
clauses of P that are implied by the new clause and thus
|
|
redundant. */
|
|
for (i = 0, i2 = 0; i <= MAX_CLAUSES; i++)
|
|
{
|
|
p->clause[i2] = p->clause[i];
|
|
|
|
if (!p->clause[i])
|
|
break;
|
|
|
|
/* If p->clause[i] implies clause, there is nothing to add. */
|
|
if ((p->clause[i] & clause) == p->clause[i])
|
|
{
|
|
/* We had nothing to add, none of clauses should've become
|
|
redundant. */
|
|
gcc_checking_assert (i == i2);
|
|
return;
|
|
}
|
|
|
|
if (p->clause[i] < clause && insert_here < 0)
|
|
insert_here = i2;
|
|
|
|
/* If clause implies p->clause[i], then p->clause[i] becomes redundant.
|
|
Otherwise the p->clause[i] has to stay. */
|
|
if ((p->clause[i] & clause) != clause)
|
|
i2++;
|
|
}
|
|
|
|
/* Look for clauses that are obviously true. I.e.
|
|
op0 == 5 || op0 != 5. */
|
|
for (c1 = predicate_first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
|
|
{
|
|
condition *cc1;
|
|
if (!(clause & (1 << c1)))
|
|
continue;
|
|
cc1 = &(*conditions)[c1 - predicate_first_dynamic_condition];
|
|
/* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
|
|
and thus there is no point for looking for them. */
|
|
if (cc1->code == CHANGED || cc1->code == IS_NOT_CONSTANT)
|
|
continue;
|
|
for (c2 = c1 + 1; c2 < NUM_CONDITIONS; c2++)
|
|
if (clause & (1 << c2))
|
|
{
|
|
condition *cc1 =
|
|
&(*conditions)[c1 - predicate_first_dynamic_condition];
|
|
condition *cc2 =
|
|
&(*conditions)[c2 - predicate_first_dynamic_condition];
|
|
if (cc1->operand_num == cc2->operand_num
|
|
&& cc1->val == cc2->val
|
|
&& cc2->code != IS_NOT_CONSTANT
|
|
&& cc2->code != CHANGED
|
|
&& cc1->code == invert_tree_comparison (cc2->code,
|
|
HONOR_NANS (cc1->val)))
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
/* We run out of variants. Be conservative in positive direction. */
|
|
if (i2 == MAX_CLAUSES)
|
|
return;
|
|
/* Keep clauses in decreasing order. This makes equivalence testing easy. */
|
|
p->clause[i2 + 1] = 0;
|
|
if (insert_here >= 0)
|
|
for (; i2 > insert_here; i2--)
|
|
p->clause[i2] = p->clause[i2 - 1];
|
|
else
|
|
insert_here = i2;
|
|
p->clause[insert_here] = clause;
|
|
}
|
|
|
|
|
|
/* Return P & P2. */
|
|
|
|
static struct predicate
|
|
and_predicates (conditions conditions,
|
|
struct predicate *p, struct predicate *p2)
|
|
{
|
|
struct predicate out = *p;
|
|
int i;
|
|
|
|
/* Avoid busy work. */
|
|
if (false_predicate_p (p2) || true_predicate_p (p))
|
|
return *p2;
|
|
if (false_predicate_p (p) || true_predicate_p (p2))
|
|
return *p;
|
|
|
|
/* See how far predicates match. */
|
|
for (i = 0; p->clause[i] && p->clause[i] == p2->clause[i]; i++)
|
|
{
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
|
}
|
|
|
|
/* Combine the predicates rest. */
|
|
for (; p2->clause[i]; i++)
|
|
{
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
|
add_clause (conditions, &out, p2->clause[i]);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
/* Return true if predicates are obviously equal. */
|
|
|
|
static inline bool
|
|
predicates_equal_p (struct predicate *p, struct predicate *p2)
|
|
{
|
|
int i;
|
|
for (i = 0; p->clause[i]; i++)
|
|
{
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
|
gcc_checking_assert (p->clause[i] > p->clause[i + 1]);
|
|
gcc_checking_assert (!p2->clause[i]
|
|
|| p2->clause[i] > p2->clause[i + 1]);
|
|
if (p->clause[i] != p2->clause[i])
|
|
return false;
|
|
}
|
|
return !p2->clause[i];
|
|
}
|
|
|
|
|
|
/* Return P | P2. */
|
|
|
|
static struct predicate
|
|
or_predicates (conditions conditions,
|
|
struct predicate *p, struct predicate *p2)
|
|
{
|
|
struct predicate out = true_predicate ();
|
|
int i, j;
|
|
|
|
/* Avoid busy work. */
|
|
if (false_predicate_p (p2) || true_predicate_p (p))
|
|
return *p;
|
|
if (false_predicate_p (p) || true_predicate_p (p2))
|
|
return *p2;
|
|
if (predicates_equal_p (p, p2))
|
|
return *p;
|
|
|
|
/* OK, combine the predicates. */
|
|
for (i = 0; p->clause[i]; i++)
|
|
for (j = 0; p2->clause[j]; j++)
|
|
{
|
|
gcc_checking_assert (i < MAX_CLAUSES && j < MAX_CLAUSES);
|
|
add_clause (conditions, &out, p->clause[i] | p2->clause[j]);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
/* Having partial truth assignment in POSSIBLE_TRUTHS, return false
|
|
if predicate P is known to be false. */
|
|
|
|
static bool
|
|
evaluate_predicate (struct predicate *p, clause_t possible_truths)
|
|
{
|
|
int i;
|
|
|
|
/* True remains true. */
|
|
if (true_predicate_p (p))
|
|
return true;
|
|
|
|
gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
|
|
|
|
/* See if we can find clause we can disprove. */
|
|
for (i = 0; p->clause[i]; i++)
|
|
{
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
|
if (!(p->clause[i] & possible_truths))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
|
|
instruction will be recomputed per invocation of the inlined call. */
|
|
|
|
static int
|
|
predicate_probability (conditions conds,
|
|
struct predicate *p, clause_t possible_truths,
|
|
vec<inline_param_summary> inline_param_summary)
|
|
{
|
|
int i;
|
|
int combined_prob = REG_BR_PROB_BASE;
|
|
|
|
/* True remains true. */
|
|
if (true_predicate_p (p))
|
|
return REG_BR_PROB_BASE;
|
|
|
|
if (false_predicate_p (p))
|
|
return 0;
|
|
|
|
gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
|
|
|
|
/* See if we can find clause we can disprove. */
|
|
for (i = 0; p->clause[i]; i++)
|
|
{
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
|
if (!(p->clause[i] & possible_truths))
|
|
return 0;
|
|
else
|
|
{
|
|
int this_prob = 0;
|
|
int i2;
|
|
if (!inline_param_summary.exists ())
|
|
return REG_BR_PROB_BASE;
|
|
for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
|
|
if ((p->clause[i] & possible_truths) & (1 << i2))
|
|
{
|
|
if (i2 >= predicate_first_dynamic_condition)
|
|
{
|
|
condition *c =
|
|
&(*conds)[i2 - predicate_first_dynamic_condition];
|
|
if (c->code == CHANGED
|
|
&& (c->operand_num <
|
|
(int) inline_param_summary.length ()))
|
|
{
|
|
int iprob =
|
|
inline_param_summary[c->operand_num].change_prob;
|
|
this_prob = MAX (this_prob, iprob);
|
|
}
|
|
else
|
|
this_prob = REG_BR_PROB_BASE;
|
|
}
|
|
else
|
|
this_prob = REG_BR_PROB_BASE;
|
|
}
|
|
combined_prob = MIN (this_prob, combined_prob);
|
|
if (!combined_prob)
|
|
return 0;
|
|
}
|
|
}
|
|
return combined_prob;
|
|
}
|
|
|
|
|
|
/* Dump conditional COND. */
|
|
|
|
static void
|
|
dump_condition (FILE *f, conditions conditions, int cond)
|
|
{
|
|
condition *c;
|
|
if (cond == predicate_false_condition)
|
|
fprintf (f, "false");
|
|
else if (cond == predicate_not_inlined_condition)
|
|
fprintf (f, "not inlined");
|
|
else
|
|
{
|
|
c = &(*conditions)[cond - predicate_first_dynamic_condition];
|
|
fprintf (f, "op%i", c->operand_num);
|
|
if (c->agg_contents)
|
|
fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
|
|
c->by_ref ? "ref " : "", c->offset);
|
|
if (c->code == IS_NOT_CONSTANT)
|
|
{
|
|
fprintf (f, " not constant");
|
|
return;
|
|
}
|
|
if (c->code == CHANGED)
|
|
{
|
|
fprintf (f, " changed");
|
|
return;
|
|
}
|
|
fprintf (f, " %s ", op_symbol_code (c->code));
|
|
print_generic_expr (f, c->val, 1);
|
|
}
|
|
}
|
|
|
|
|
|
/* Dump clause CLAUSE. */
|
|
|
|
static void
|
|
dump_clause (FILE *f, conditions conds, clause_t clause)
|
|
{
|
|
int i;
|
|
bool found = false;
|
|
fprintf (f, "(");
|
|
if (!clause)
|
|
fprintf (f, "true");
|
|
for (i = 0; i < NUM_CONDITIONS; i++)
|
|
if (clause & (1 << i))
|
|
{
|
|
if (found)
|
|
fprintf (f, " || ");
|
|
found = true;
|
|
dump_condition (f, conds, i);
|
|
}
|
|
fprintf (f, ")");
|
|
}
|
|
|
|
|
|
/* Dump predicate PREDICATE. */
|
|
|
|
static void
|
|
dump_predicate (FILE *f, conditions conds, struct predicate *pred)
|
|
{
|
|
int i;
|
|
if (true_predicate_p (pred))
|
|
dump_clause (f, conds, 0);
|
|
else
|
|
for (i = 0; pred->clause[i]; i++)
|
|
{
|
|
if (i)
|
|
fprintf (f, " && ");
|
|
dump_clause (f, conds, pred->clause[i]);
|
|
}
|
|
fprintf (f, "\n");
|
|
}
|
|
|
|
|
|
/* Dump inline hints. */
|
|
void
|
|
dump_inline_hints (FILE *f, inline_hints hints)
|
|
{
|
|
if (!hints)
|
|
return;
|
|
fprintf (f, "inline hints:");
|
|
if (hints & INLINE_HINT_indirect_call)
|
|
{
|
|
hints &= ~INLINE_HINT_indirect_call;
|
|
fprintf (f, " indirect_call");
|
|
}
|
|
if (hints & INLINE_HINT_loop_iterations)
|
|
{
|
|
hints &= ~INLINE_HINT_loop_iterations;
|
|
fprintf (f, " loop_iterations");
|
|
}
|
|
if (hints & INLINE_HINT_loop_stride)
|
|
{
|
|
hints &= ~INLINE_HINT_loop_stride;
|
|
fprintf (f, " loop_stride");
|
|
}
|
|
if (hints & INLINE_HINT_same_scc)
|
|
{
|
|
hints &= ~INLINE_HINT_same_scc;
|
|
fprintf (f, " same_scc");
|
|
}
|
|
if (hints & INLINE_HINT_in_scc)
|
|
{
|
|
hints &= ~INLINE_HINT_in_scc;
|
|
fprintf (f, " in_scc");
|
|
}
|
|
if (hints & INLINE_HINT_cross_module)
|
|
{
|
|
hints &= ~INLINE_HINT_cross_module;
|
|
fprintf (f, " cross_module");
|
|
}
|
|
if (hints & INLINE_HINT_declared_inline)
|
|
{
|
|
hints &= ~INLINE_HINT_declared_inline;
|
|
fprintf (f, " declared_inline");
|
|
}
|
|
if (hints & INLINE_HINT_array_index)
|
|
{
|
|
hints &= ~INLINE_HINT_array_index;
|
|
fprintf (f, " array_index");
|
|
}
|
|
if (hints & INLINE_HINT_known_hot)
|
|
{
|
|
hints &= ~INLINE_HINT_known_hot;
|
|
fprintf (f, " known_hot");
|
|
}
|
|
gcc_assert (!hints);
|
|
}
|
|
|
|
|
|
/* Record SIZE and TIME under condition PRED into the inline summary. */
|
|
|
|
static void
|
|
account_size_time (struct inline_summary *summary, int size, int time,
|
|
struct predicate *pred)
|
|
{
|
|
size_time_entry *e;
|
|
bool found = false;
|
|
int i;
|
|
|
|
if (false_predicate_p (pred))
|
|
return;
|
|
|
|
/* We need to create initial empty unconitional clause, but otherwie
|
|
we don't need to account empty times and sizes. */
|
|
if (!size && !time && summary->entry)
|
|
return;
|
|
|
|
/* Watch overflow that might result from insane profiles. */
|
|
if (time > MAX_TIME * INLINE_TIME_SCALE)
|
|
time = MAX_TIME * INLINE_TIME_SCALE;
|
|
gcc_assert (time >= 0);
|
|
|
|
for (i = 0; vec_safe_iterate (summary->entry, i, &e); i++)
|
|
if (predicates_equal_p (&e->predicate, pred))
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
if (i == 256)
|
|
{
|
|
i = 0;
|
|
found = true;
|
|
e = &(*summary->entry)[0];
|
|
gcc_assert (!e->predicate.clause[0]);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"\t\tReached limit on number of entries, "
|
|
"ignoring the predicate.");
|
|
}
|
|
if (dump_file && (dump_flags & TDF_DETAILS) && (time || size))
|
|
{
|
|
fprintf (dump_file,
|
|
"\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
|
|
((double) size) / INLINE_SIZE_SCALE,
|
|
((double) time) / INLINE_TIME_SCALE, found ? "" : "new ");
|
|
dump_predicate (dump_file, summary->conds, pred);
|
|
}
|
|
if (!found)
|
|
{
|
|
struct size_time_entry new_entry;
|
|
new_entry.size = size;
|
|
new_entry.time = time;
|
|
new_entry.predicate = *pred;
|
|
vec_safe_push (summary->entry, new_entry);
|
|
}
|
|
else
|
|
{
|
|
e->size += size;
|
|
e->time += time;
|
|
if (e->time > MAX_TIME * INLINE_TIME_SCALE)
|
|
e->time = MAX_TIME * INLINE_TIME_SCALE;
|
|
}
|
|
}
|
|
|
|
/* We proved E to be unreachable, redirect it to __bultin_unreachable. */
|
|
|
|
static struct cgraph_edge *
|
|
redirect_to_unreachable (struct cgraph_edge *e)
|
|
{
|
|
struct cgraph_node *callee = !e->inline_failed ? e->callee : NULL;
|
|
struct cgraph_node *target = cgraph_node::get_create
|
|
(builtin_decl_implicit (BUILT_IN_UNREACHABLE));
|
|
|
|
if (e->speculative)
|
|
e = e->resolve_speculation (target->decl);
|
|
else if (!e->callee)
|
|
e->make_direct (target);
|
|
else
|
|
e->redirect_callee (target);
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
|
e->inline_failed = CIF_UNREACHABLE;
|
|
e->frequency = 0;
|
|
e->count = 0;
|
|
es->call_stmt_size = 0;
|
|
es->call_stmt_time = 0;
|
|
if (callee)
|
|
callee->remove_symbol_and_inline_clones ();
|
|
return e;
|
|
}
|
|
|
|
/* Set predicate for edge E. */
|
|
|
|
static void
|
|
edge_set_predicate (struct cgraph_edge *e, struct predicate *predicate)
|
|
{
|
|
/* If the edge is determined to be never executed, redirect it
|
|
to BUILTIN_UNREACHABLE to save inliner from inlining into it. */
|
|
if (predicate && false_predicate_p (predicate)
|
|
/* When handling speculative edges, we need to do the redirection
|
|
just once. Do it always on the direct edge, so we do not
|
|
attempt to resolve speculation while duplicating the edge. */
|
|
&& (!e->speculative || e->callee))
|
|
e = redirect_to_unreachable (e);
|
|
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
|
if (predicate && !true_predicate_p (predicate))
|
|
{
|
|
if (!es->predicate)
|
|
es->predicate = edge_predicate_pool.allocate ();
|
|
*es->predicate = *predicate;
|
|
}
|
|
else
|
|
{
|
|
if (es->predicate)
|
|
edge_predicate_pool.remove (es->predicate);
|
|
es->predicate = NULL;
|
|
}
|
|
}
|
|
|
|
/* Set predicate for hint *P. */
|
|
|
|
static void
|
|
set_hint_predicate (struct predicate **p, struct predicate new_predicate)
|
|
{
|
|
if (false_predicate_p (&new_predicate) || true_predicate_p (&new_predicate))
|
|
{
|
|
if (*p)
|
|
edge_predicate_pool.remove (*p);
|
|
*p = NULL;
|
|
}
|
|
else
|
|
{
|
|
if (!*p)
|
|
*p = edge_predicate_pool.allocate ();
|
|
**p = new_predicate;
|
|
}
|
|
}
|
|
|
|
|
|
/* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
|
|
KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
|
|
Return clause of possible truths. When INLINE_P is true, assume that we are
|
|
inlining.
|
|
|
|
ERROR_MARK means compile time invariant. */
|
|
|
|
static clause_t
|
|
evaluate_conditions_for_known_args (struct cgraph_node *node,
|
|
bool inline_p,
|
|
vec<tree> known_vals,
|
|
vec<ipa_agg_jump_function_p>
|
|
known_aggs)
|
|
{
|
|
clause_t clause = inline_p ? 0 : 1 << predicate_not_inlined_condition;
|
|
struct inline_summary *info = inline_summaries->get (node);
|
|
int i;
|
|
struct condition *c;
|
|
|
|
for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
|
|
{
|
|
tree val;
|
|
tree res;
|
|
|
|
/* We allow call stmt to have fewer arguments than the callee function
|
|
(especially for K&R style programs). So bound check here (we assume
|
|
known_aggs vector, if non-NULL, has the same length as
|
|
known_vals). */
|
|
gcc_checking_assert (!known_aggs.exists ()
|
|
|| (known_vals.length () == known_aggs.length ()));
|
|
if (c->operand_num >= (int) known_vals.length ())
|
|
{
|
|
clause |= 1 << (i + predicate_first_dynamic_condition);
|
|
continue;
|
|
}
|
|
|
|
if (c->agg_contents)
|
|
{
|
|
struct ipa_agg_jump_function *agg;
|
|
|
|
if (c->code == CHANGED
|
|
&& !c->by_ref
|
|
&& (known_vals[c->operand_num] == error_mark_node))
|
|
continue;
|
|
|
|
if (known_aggs.exists ())
|
|
{
|
|
agg = known_aggs[c->operand_num];
|
|
val = ipa_find_agg_cst_for_param (agg, c->offset, c->by_ref);
|
|
}
|
|
else
|
|
val = NULL_TREE;
|
|
}
|
|
else
|
|
{
|
|
val = known_vals[c->operand_num];
|
|
if (val == error_mark_node && c->code != CHANGED)
|
|
val = NULL_TREE;
|
|
}
|
|
|
|
if (!val)
|
|
{
|
|
clause |= 1 << (i + predicate_first_dynamic_condition);
|
|
continue;
|
|
}
|
|
if (c->code == IS_NOT_CONSTANT || c->code == CHANGED)
|
|
continue;
|
|
|
|
if (operand_equal_p (TYPE_SIZE (TREE_TYPE (c->val)),
|
|
TYPE_SIZE (TREE_TYPE (val)), 0))
|
|
{
|
|
val = fold_unary (VIEW_CONVERT_EXPR, TREE_TYPE (c->val), val);
|
|
|
|
res = val
|
|
? fold_binary_to_constant (c->code, boolean_type_node, val, c->val)
|
|
: NULL;
|
|
|
|
if (res && integer_zerop (res))
|
|
continue;
|
|
}
|
|
clause |= 1 << (i + predicate_first_dynamic_condition);
|
|
}
|
|
return clause;
|
|
}
|
|
|
|
|
|
/* Work out what conditions might be true at invocation of E. */
|
|
|
|
static void
|
|
evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
|
|
clause_t *clause_ptr,
|
|
vec<tree> *known_vals_ptr,
|
|
vec<ipa_polymorphic_call_context>
|
|
*known_contexts_ptr,
|
|
vec<ipa_agg_jump_function_p> *known_aggs_ptr)
|
|
{
|
|
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
|
|
struct inline_summary *info = inline_summaries->get (callee);
|
|
vec<tree> known_vals = vNULL;
|
|
vec<ipa_agg_jump_function_p> known_aggs = vNULL;
|
|
|
|
if (clause_ptr)
|
|
*clause_ptr = inline_p ? 0 : 1 << predicate_not_inlined_condition;
|
|
if (known_vals_ptr)
|
|
known_vals_ptr->create (0);
|
|
if (known_contexts_ptr)
|
|
known_contexts_ptr->create (0);
|
|
|
|
if (ipa_node_params_sum
|
|
&& !e->call_stmt_cannot_inline_p
|
|
&& ((clause_ptr && info->conds) || known_vals_ptr || known_contexts_ptr))
|
|
{
|
|
struct ipa_node_params *parms_info;
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
|
int i, count = ipa_get_cs_argument_count (args);
|
|
|
|
if (e->caller->global.inlined_to)
|
|
parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
|
|
else
|
|
parms_info = IPA_NODE_REF (e->caller);
|
|
|
|
if (count && (info->conds || known_vals_ptr))
|
|
known_vals.safe_grow_cleared (count);
|
|
if (count && (info->conds || known_aggs_ptr))
|
|
known_aggs.safe_grow_cleared (count);
|
|
if (count && known_contexts_ptr)
|
|
known_contexts_ptr->safe_grow_cleared (count);
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
|
|
tree cst = ipa_value_from_jfunc (parms_info, jf);
|
|
|
|
if (!cst && e->call_stmt
|
|
&& i < (int)gimple_call_num_args (e->call_stmt))
|
|
{
|
|
cst = gimple_call_arg (e->call_stmt, i);
|
|
if (!is_gimple_min_invariant (cst))
|
|
cst = NULL;
|
|
}
|
|
if (cst)
|
|
{
|
|
gcc_checking_assert (TREE_CODE (cst) != TREE_BINFO);
|
|
if (known_vals.exists ())
|
|
known_vals[i] = cst;
|
|
}
|
|
else if (inline_p && !es->param[i].change_prob)
|
|
known_vals[i] = error_mark_node;
|
|
|
|
if (known_contexts_ptr)
|
|
(*known_contexts_ptr)[i] = ipa_context_from_jfunc (parms_info, e,
|
|
i, jf);
|
|
/* TODO: When IPA-CP starts propagating and merging aggregate jump
|
|
functions, use its knowledge of the caller too, just like the
|
|
scalar case above. */
|
|
known_aggs[i] = &jf->agg;
|
|
}
|
|
}
|
|
else if (e->call_stmt && !e->call_stmt_cannot_inline_p
|
|
&& ((clause_ptr && info->conds) || known_vals_ptr))
|
|
{
|
|
int i, count = (int)gimple_call_num_args (e->call_stmt);
|
|
|
|
if (count && (info->conds || known_vals_ptr))
|
|
known_vals.safe_grow_cleared (count);
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
tree cst = gimple_call_arg (e->call_stmt, i);
|
|
if (!is_gimple_min_invariant (cst))
|
|
cst = NULL;
|
|
if (cst)
|
|
known_vals[i] = cst;
|
|
}
|
|
}
|
|
|
|
if (clause_ptr)
|
|
*clause_ptr = evaluate_conditions_for_known_args (callee, inline_p,
|
|
known_vals, known_aggs);
|
|
|
|
if (known_vals_ptr)
|
|
*known_vals_ptr = known_vals;
|
|
else
|
|
known_vals.release ();
|
|
|
|
if (known_aggs_ptr)
|
|
*known_aggs_ptr = known_aggs;
|
|
else
|
|
known_aggs.release ();
|
|
}
|
|
|
|
|
|
/* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
|
|
|
|
static void
|
|
inline_summary_alloc (void)
|
|
{
|
|
if (!edge_removal_hook_holder)
|
|
edge_removal_hook_holder =
|
|
symtab->add_edge_removal_hook (&inline_edge_removal_hook, NULL);
|
|
if (!edge_duplication_hook_holder)
|
|
edge_duplication_hook_holder =
|
|
symtab->add_edge_duplication_hook (&inline_edge_duplication_hook, NULL);
|
|
|
|
if (!inline_summaries)
|
|
inline_summaries = (inline_summary_t*) inline_summary_t::create_ggc (symtab);
|
|
|
|
if (inline_edge_summary_vec.length () <= (unsigned) symtab->edges_max_uid)
|
|
inline_edge_summary_vec.safe_grow_cleared (symtab->edges_max_uid + 1);
|
|
}
|
|
|
|
/* We are called multiple time for given function; clear
|
|
data from previous run so they are not cumulated. */
|
|
|
|
static void
|
|
reset_inline_edge_summary (struct cgraph_edge *e)
|
|
{
|
|
if (e->uid < (int) inline_edge_summary_vec.length ())
|
|
{
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
|
|
|
es->call_stmt_size = es->call_stmt_time = 0;
|
|
if (es->predicate)
|
|
edge_predicate_pool.remove (es->predicate);
|
|
es->predicate = NULL;
|
|
es->param.release ();
|
|
}
|
|
}
|
|
|
|
/* We are called multiple time for given function; clear
|
|
data from previous run so they are not cumulated. */
|
|
|
|
static void
|
|
reset_inline_summary (struct cgraph_node *node,
|
|
inline_summary *info)
|
|
{
|
|
struct cgraph_edge *e;
|
|
|
|
info->self_size = info->self_time = 0;
|
|
info->estimated_stack_size = 0;
|
|
info->estimated_self_stack_size = 0;
|
|
info->stack_frame_offset = 0;
|
|
info->size = 0;
|
|
info->time = 0;
|
|
info->growth = 0;
|
|
info->scc_no = 0;
|
|
if (info->loop_iterations)
|
|
{
|
|
edge_predicate_pool.remove (info->loop_iterations);
|
|
info->loop_iterations = NULL;
|
|
}
|
|
if (info->loop_stride)
|
|
{
|
|
edge_predicate_pool.remove (info->loop_stride);
|
|
info->loop_stride = NULL;
|
|
}
|
|
if (info->array_index)
|
|
{
|
|
edge_predicate_pool.remove (info->array_index);
|
|
info->array_index = NULL;
|
|
}
|
|
vec_free (info->conds);
|
|
vec_free (info->entry);
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
reset_inline_edge_summary (e);
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
reset_inline_edge_summary (e);
|
|
}
|
|
|
|
/* Hook that is called by cgraph.c when a node is removed. */
|
|
|
|
void
|
|
inline_summary_t::remove (cgraph_node *node, inline_summary *info)
|
|
{
|
|
reset_inline_summary (node, info);
|
|
}
|
|
|
|
/* Remap predicate P of former function to be predicate of duplicated function.
|
|
POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
|
|
INFO is inline summary of the duplicated node. */
|
|
|
|
static struct predicate
|
|
remap_predicate_after_duplication (struct predicate *p,
|
|
clause_t possible_truths,
|
|
struct inline_summary *info)
|
|
{
|
|
struct predicate new_predicate = true_predicate ();
|
|
int j;
|
|
for (j = 0; p->clause[j]; j++)
|
|
if (!(possible_truths & p->clause[j]))
|
|
{
|
|
new_predicate = false_predicate ();
|
|
break;
|
|
}
|
|
else
|
|
add_clause (info->conds, &new_predicate,
|
|
possible_truths & p->clause[j]);
|
|
return new_predicate;
|
|
}
|
|
|
|
/* Same as remap_predicate_after_duplication but handle hint predicate *P.
|
|
Additionally care about allocating new memory slot for updated predicate
|
|
and set it to NULL when it becomes true or false (and thus uninteresting).
|
|
*/
|
|
|
|
static void
|
|
remap_hint_predicate_after_duplication (struct predicate **p,
|
|
clause_t possible_truths,
|
|
struct inline_summary *info)
|
|
{
|
|
struct predicate new_predicate;
|
|
|
|
if (!*p)
|
|
return;
|
|
|
|
new_predicate = remap_predicate_after_duplication (*p,
|
|
possible_truths, info);
|
|
/* We do not want to free previous predicate; it is used by node origin. */
|
|
*p = NULL;
|
|
set_hint_predicate (p, new_predicate);
|
|
}
|
|
|
|
|
|
/* Hook that is called by cgraph.c when a node is duplicated. */
|
|
void
|
|
inline_summary_t::duplicate (cgraph_node *src,
|
|
cgraph_node *dst,
|
|
inline_summary *,
|
|
inline_summary *info)
|
|
{
|
|
inline_summary_alloc ();
|
|
memcpy (info, inline_summaries->get (src), sizeof (inline_summary));
|
|
/* TODO: as an optimization, we may avoid copying conditions
|
|
that are known to be false or true. */
|
|
info->conds = vec_safe_copy (info->conds);
|
|
|
|
/* When there are any replacements in the function body, see if we can figure
|
|
out that something was optimized out. */
|
|
if (ipa_node_params_sum && dst->clone.tree_map)
|
|
{
|
|
vec<size_time_entry, va_gc> *entry = info->entry;
|
|
/* Use SRC parm info since it may not be copied yet. */
|
|
struct ipa_node_params *parms_info = IPA_NODE_REF (src);
|
|
vec<tree> known_vals = vNULL;
|
|
int count = ipa_get_param_count (parms_info);
|
|
int i, j;
|
|
clause_t possible_truths;
|
|
struct predicate true_pred = true_predicate ();
|
|
size_time_entry *e;
|
|
int optimized_out_size = 0;
|
|
bool inlined_to_p = false;
|
|
struct cgraph_edge *edge, *next;
|
|
|
|
info->entry = 0;
|
|
known_vals.safe_grow_cleared (count);
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
struct ipa_replace_map *r;
|
|
|
|
for (j = 0; vec_safe_iterate (dst->clone.tree_map, j, &r); j++)
|
|
{
|
|
if (((!r->old_tree && r->parm_num == i)
|
|
|| (r->old_tree && r->old_tree == ipa_get_param (parms_info, i)))
|
|
&& r->replace_p && !r->ref_p)
|
|
{
|
|
known_vals[i] = r->new_tree;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
possible_truths = evaluate_conditions_for_known_args (dst, false,
|
|
known_vals,
|
|
vNULL);
|
|
known_vals.release ();
|
|
|
|
account_size_time (info, 0, 0, &true_pred);
|
|
|
|
/* Remap size_time vectors.
|
|
Simplify the predicate by prunning out alternatives that are known
|
|
to be false.
|
|
TODO: as on optimization, we can also eliminate conditions known
|
|
to be true. */
|
|
for (i = 0; vec_safe_iterate (entry, i, &e); i++)
|
|
{
|
|
struct predicate new_predicate;
|
|
new_predicate = remap_predicate_after_duplication (&e->predicate,
|
|
possible_truths,
|
|
info);
|
|
if (false_predicate_p (&new_predicate))
|
|
optimized_out_size += e->size;
|
|
else
|
|
account_size_time (info, e->size, e->time, &new_predicate);
|
|
}
|
|
|
|
/* Remap edge predicates with the same simplification as above.
|
|
Also copy constantness arrays. */
|
|
for (edge = dst->callees; edge; edge = next)
|
|
{
|
|
struct predicate new_predicate;
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
|
next = edge->next_callee;
|
|
|
|
if (!edge->inline_failed)
|
|
inlined_to_p = true;
|
|
if (!es->predicate)
|
|
continue;
|
|
new_predicate = remap_predicate_after_duplication (es->predicate,
|
|
possible_truths,
|
|
info);
|
|
if (false_predicate_p (&new_predicate)
|
|
&& !false_predicate_p (es->predicate))
|
|
optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
|
|
edge_set_predicate (edge, &new_predicate);
|
|
}
|
|
|
|
/* Remap indirect edge predicates with the same simplificaiton as above.
|
|
Also copy constantness arrays. */
|
|
for (edge = dst->indirect_calls; edge; edge = next)
|
|
{
|
|
struct predicate new_predicate;
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
|
next = edge->next_callee;
|
|
|
|
gcc_checking_assert (edge->inline_failed);
|
|
if (!es->predicate)
|
|
continue;
|
|
new_predicate = remap_predicate_after_duplication (es->predicate,
|
|
possible_truths,
|
|
info);
|
|
if (false_predicate_p (&new_predicate)
|
|
&& !false_predicate_p (es->predicate))
|
|
optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
|
|
edge_set_predicate (edge, &new_predicate);
|
|
}
|
|
remap_hint_predicate_after_duplication (&info->loop_iterations,
|
|
possible_truths, info);
|
|
remap_hint_predicate_after_duplication (&info->loop_stride,
|
|
possible_truths, info);
|
|
remap_hint_predicate_after_duplication (&info->array_index,
|
|
possible_truths, info);
|
|
|
|
/* If inliner or someone after inliner will ever start producing
|
|
non-trivial clones, we will get trouble with lack of information
|
|
about updating self sizes, because size vectors already contains
|
|
sizes of the calees. */
|
|
gcc_assert (!inlined_to_p || !optimized_out_size);
|
|
}
|
|
else
|
|
{
|
|
info->entry = vec_safe_copy (info->entry);
|
|
if (info->loop_iterations)
|
|
{
|
|
predicate p = *info->loop_iterations;
|
|
info->loop_iterations = NULL;
|
|
set_hint_predicate (&info->loop_iterations, p);
|
|
}
|
|
if (info->loop_stride)
|
|
{
|
|
predicate p = *info->loop_stride;
|
|
info->loop_stride = NULL;
|
|
set_hint_predicate (&info->loop_stride, p);
|
|
}
|
|
if (info->array_index)
|
|
{
|
|
predicate p = *info->array_index;
|
|
info->array_index = NULL;
|
|
set_hint_predicate (&info->array_index, p);
|
|
}
|
|
}
|
|
if (!dst->global.inlined_to)
|
|
inline_update_overall_summary (dst);
|
|
}
|
|
|
|
|
|
/* Hook that is called by cgraph.c when a node is duplicated. */
|
|
|
|
static void
|
|
inline_edge_duplication_hook (struct cgraph_edge *src,
|
|
struct cgraph_edge *dst,
|
|
ATTRIBUTE_UNUSED void *data)
|
|
{
|
|
struct inline_edge_summary *info;
|
|
struct inline_edge_summary *srcinfo;
|
|
inline_summary_alloc ();
|
|
info = inline_edge_summary (dst);
|
|
srcinfo = inline_edge_summary (src);
|
|
memcpy (info, srcinfo, sizeof (struct inline_edge_summary));
|
|
info->predicate = NULL;
|
|
edge_set_predicate (dst, srcinfo->predicate);
|
|
info->param = srcinfo->param.copy ();
|
|
if (!dst->indirect_unknown_callee && src->indirect_unknown_callee)
|
|
{
|
|
info->call_stmt_size -= (eni_size_weights.indirect_call_cost
|
|
- eni_size_weights.call_cost);
|
|
info->call_stmt_time -= (eni_time_weights.indirect_call_cost
|
|
- eni_time_weights.call_cost);
|
|
}
|
|
}
|
|
|
|
|
|
/* Keep edge cache consistent across edge removal. */
|
|
|
|
static void
|
|
inline_edge_removal_hook (struct cgraph_edge *edge,
|
|
void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
if (edge_growth_cache.exists ())
|
|
reset_edge_growth_cache (edge);
|
|
reset_inline_edge_summary (edge);
|
|
}
|
|
|
|
|
|
/* Initialize growth caches. */
|
|
|
|
void
|
|
initialize_growth_caches (void)
|
|
{
|
|
if (symtab->edges_max_uid)
|
|
edge_growth_cache.safe_grow_cleared (symtab->edges_max_uid);
|
|
}
|
|
|
|
|
|
/* Free growth caches. */
|
|
|
|
void
|
|
free_growth_caches (void)
|
|
{
|
|
edge_growth_cache.release ();
|
|
}
|
|
|
|
|
|
/* Dump edge summaries associated to NODE and recursively to all clones.
|
|
Indent by INDENT. */
|
|
|
|
static void
|
|
dump_inline_edge_summary (FILE *f, int indent, struct cgraph_node *node,
|
|
struct inline_summary *info)
|
|
{
|
|
struct cgraph_edge *edge;
|
|
for (edge = node->callees; edge; edge = edge->next_callee)
|
|
{
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
|
struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
|
|
int i;
|
|
|
|
fprintf (f,
|
|
"%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i"
|
|
" time: %2i callee size:%2i stack:%2i",
|
|
indent, "", callee->name (), callee->order,
|
|
!edge->inline_failed
|
|
? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
|
|
indent, "", es->loop_depth, edge->frequency,
|
|
es->call_stmt_size, es->call_stmt_time,
|
|
(int) inline_summaries->get (callee)->size / INLINE_SIZE_SCALE,
|
|
(int) inline_summaries->get (callee)->estimated_stack_size);
|
|
|
|
if (es->predicate)
|
|
{
|
|
fprintf (f, " predicate: ");
|
|
dump_predicate (f, info->conds, es->predicate);
|
|
}
|
|
else
|
|
fprintf (f, "\n");
|
|
if (es->param.exists ())
|
|
for (i = 0; i < (int) es->param.length (); i++)
|
|
{
|
|
int prob = es->param[i].change_prob;
|
|
|
|
if (!prob)
|
|
fprintf (f, "%*s op%i is compile time invariant\n",
|
|
indent + 2, "", i);
|
|
else if (prob != REG_BR_PROB_BASE)
|
|
fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
|
|
prob * 100.0 / REG_BR_PROB_BASE);
|
|
}
|
|
if (!edge->inline_failed)
|
|
{
|
|
fprintf (f, "%*sStack frame offset %i, callee self size %i,"
|
|
" callee size %i\n",
|
|
indent + 2, "",
|
|
(int) inline_summaries->get (callee)->stack_frame_offset,
|
|
(int) inline_summaries->get (callee)->estimated_self_stack_size,
|
|
(int) inline_summaries->get (callee)->estimated_stack_size);
|
|
dump_inline_edge_summary (f, indent + 2, callee, info);
|
|
}
|
|
}
|
|
for (edge = node->indirect_calls; edge; edge = edge->next_callee)
|
|
{
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
|
fprintf (f, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
|
|
" time: %2i",
|
|
indent, "",
|
|
es->loop_depth,
|
|
edge->frequency, es->call_stmt_size, es->call_stmt_time);
|
|
if (es->predicate)
|
|
{
|
|
fprintf (f, "predicate: ");
|
|
dump_predicate (f, info->conds, es->predicate);
|
|
}
|
|
else
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
dump_inline_summary (FILE *f, struct cgraph_node *node)
|
|
{
|
|
if (node->definition)
|
|
{
|
|
struct inline_summary *s = inline_summaries->get (node);
|
|
size_time_entry *e;
|
|
int i;
|
|
fprintf (f, "Inline summary for %s/%i", node->name (),
|
|
node->order);
|
|
if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
|
|
fprintf (f, " always_inline");
|
|
if (s->inlinable)
|
|
fprintf (f, " inlinable");
|
|
if (s->contains_cilk_spawn)
|
|
fprintf (f, " contains_cilk_spawn");
|
|
fprintf (f, "\n self time: %i\n", s->self_time);
|
|
fprintf (f, " global time: %i\n", s->time);
|
|
fprintf (f, " self size: %i\n", s->self_size);
|
|
fprintf (f, " global size: %i\n", s->size);
|
|
fprintf (f, " min size: %i\n", s->min_size);
|
|
fprintf (f, " self stack: %i\n",
|
|
(int) s->estimated_self_stack_size);
|
|
fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
|
|
if (s->growth)
|
|
fprintf (f, " estimated growth:%i\n", (int) s->growth);
|
|
if (s->scc_no)
|
|
fprintf (f, " In SCC: %i\n", (int) s->scc_no);
|
|
for (i = 0; vec_safe_iterate (s->entry, i, &e); i++)
|
|
{
|
|
fprintf (f, " size:%f, time:%f, predicate:",
|
|
(double) e->size / INLINE_SIZE_SCALE,
|
|
(double) e->time / INLINE_TIME_SCALE);
|
|
dump_predicate (f, s->conds, &e->predicate);
|
|
}
|
|
if (s->loop_iterations)
|
|
{
|
|
fprintf (f, " loop iterations:");
|
|
dump_predicate (f, s->conds, s->loop_iterations);
|
|
}
|
|
if (s->loop_stride)
|
|
{
|
|
fprintf (f, " loop stride:");
|
|
dump_predicate (f, s->conds, s->loop_stride);
|
|
}
|
|
if (s->array_index)
|
|
{
|
|
fprintf (f, " array index:");
|
|
dump_predicate (f, s->conds, s->array_index);
|
|
}
|
|
fprintf (f, " calls:\n");
|
|
dump_inline_edge_summary (f, 4, node, s);
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_inline_summary (struct cgraph_node *node)
|
|
{
|
|
dump_inline_summary (stderr, node);
|
|
}
|
|
|
|
void
|
|
dump_inline_summaries (FILE *f)
|
|
{
|
|
struct cgraph_node *node;
|
|
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
|
if (!node->global.inlined_to)
|
|
dump_inline_summary (f, node);
|
|
}
|
|
|
|
/* Give initial reasons why inlining would fail on EDGE. This gets either
|
|
nullified or usually overwritten by more precise reasons later. */
|
|
|
|
void
|
|
initialize_inline_failed (struct cgraph_edge *e)
|
|
{
|
|
struct cgraph_node *callee = e->callee;
|
|
|
|
if (e->indirect_unknown_callee)
|
|
e->inline_failed = CIF_INDIRECT_UNKNOWN_CALL;
|
|
else if (!callee->definition)
|
|
e->inline_failed = CIF_BODY_NOT_AVAILABLE;
|
|
else if (callee->local.redefined_extern_inline)
|
|
e->inline_failed = CIF_REDEFINED_EXTERN_INLINE;
|
|
else if (e->call_stmt_cannot_inline_p)
|
|
e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
|
|
else if (cfun && fn_contains_cilk_spawn_p (cfun))
|
|
/* We can't inline if the function is spawing a function. */
|
|
e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
|
|
else
|
|
e->inline_failed = CIF_FUNCTION_NOT_CONSIDERED;
|
|
}
|
|
|
|
/* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
|
|
boolean variable pointed to by DATA. */
|
|
|
|
static bool
|
|
mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
|
|
void *data)
|
|
{
|
|
bool *b = (bool *) data;
|
|
*b = true;
|
|
return true;
|
|
}
|
|
|
|
/* If OP refers to value of function parameter, return the corresponding
|
|
parameter. */
|
|
|
|
static tree
|
|
unmodified_parm_1 (gimple *stmt, tree op)
|
|
{
|
|
/* SSA_NAME referring to parm default def? */
|
|
if (TREE_CODE (op) == SSA_NAME
|
|
&& SSA_NAME_IS_DEFAULT_DEF (op)
|
|
&& TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
|
|
return SSA_NAME_VAR (op);
|
|
/* Non-SSA parm reference? */
|
|
if (TREE_CODE (op) == PARM_DECL)
|
|
{
|
|
bool modified = false;
|
|
|
|
ao_ref refd;
|
|
ao_ref_init (&refd, op);
|
|
walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
|
|
NULL);
|
|
if (!modified)
|
|
return op;
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* If OP refers to value of function parameter, return the corresponding
|
|
parameter. Also traverse chains of SSA register assignments. */
|
|
|
|
static tree
|
|
unmodified_parm (gimple *stmt, tree op)
|
|
{
|
|
tree res = unmodified_parm_1 (stmt, op);
|
|
if (res)
|
|
return res;
|
|
|
|
if (TREE_CODE (op) == SSA_NAME
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (op)
|
|
&& gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
|
|
return unmodified_parm (SSA_NAME_DEF_STMT (op),
|
|
gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)));
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* If OP refers to a value of a function parameter or value loaded from an
|
|
aggregate passed to a parameter (either by value or reference), return TRUE
|
|
and store the number of the parameter to *INDEX_P and information whether
|
|
and how it has been loaded from an aggregate into *AGGPOS. INFO describes
|
|
the function parameters, STMT is the statement in which OP is used or
|
|
loaded. */
|
|
|
|
static bool
|
|
unmodified_parm_or_parm_agg_item (struct ipa_func_body_info *fbi,
|
|
gimple *stmt, tree op, int *index_p,
|
|
struct agg_position_info *aggpos)
|
|
{
|
|
tree res = unmodified_parm_1 (stmt, op);
|
|
|
|
gcc_checking_assert (aggpos);
|
|
if (res)
|
|
{
|
|
*index_p = ipa_get_param_decl_index (fbi->info, res);
|
|
if (*index_p < 0)
|
|
return false;
|
|
aggpos->agg_contents = false;
|
|
aggpos->by_ref = false;
|
|
return true;
|
|
}
|
|
|
|
if (TREE_CODE (op) == SSA_NAME)
|
|
{
|
|
if (SSA_NAME_IS_DEFAULT_DEF (op)
|
|
|| !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
|
|
return false;
|
|
stmt = SSA_NAME_DEF_STMT (op);
|
|
op = gimple_assign_rhs1 (stmt);
|
|
if (!REFERENCE_CLASS_P (op))
|
|
return unmodified_parm_or_parm_agg_item (fbi, stmt, op, index_p,
|
|
aggpos);
|
|
}
|
|
|
|
aggpos->agg_contents = true;
|
|
return ipa_load_from_parm_agg (fbi, fbi->info->descriptors,
|
|
stmt, op, index_p, &aggpos->offset,
|
|
NULL, &aggpos->by_ref);
|
|
}
|
|
|
|
/* See if statement might disappear after inlining.
|
|
0 - means not eliminated
|
|
1 - half of statements goes away
|
|
2 - for sure it is eliminated.
|
|
We are not terribly sophisticated, basically looking for simple abstraction
|
|
penalty wrappers. */
|
|
|
|
static int
|
|
eliminated_by_inlining_prob (gimple *stmt)
|
|
{
|
|
enum gimple_code code = gimple_code (stmt);
|
|
enum tree_code rhs_code;
|
|
|
|
if (!optimize)
|
|
return 0;
|
|
|
|
switch (code)
|
|
{
|
|
case GIMPLE_RETURN:
|
|
return 2;
|
|
case GIMPLE_ASSIGN:
|
|
if (gimple_num_ops (stmt) != 2)
|
|
return 0;
|
|
|
|
rhs_code = gimple_assign_rhs_code (stmt);
|
|
|
|
/* Casts of parameters, loads from parameters passed by reference
|
|
and stores to return value or parameters are often free after
|
|
inlining dua to SRA and further combining.
|
|
Assume that half of statements goes away. */
|
|
if (CONVERT_EXPR_CODE_P (rhs_code)
|
|
|| rhs_code == VIEW_CONVERT_EXPR
|
|
|| rhs_code == ADDR_EXPR
|
|
|| gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree inner_rhs = get_base_address (rhs);
|
|
tree inner_lhs = get_base_address (lhs);
|
|
bool rhs_free = false;
|
|
bool lhs_free = false;
|
|
|
|
if (!inner_rhs)
|
|
inner_rhs = rhs;
|
|
if (!inner_lhs)
|
|
inner_lhs = lhs;
|
|
|
|
/* Reads of parameter are expected to be free. */
|
|
if (unmodified_parm (stmt, inner_rhs))
|
|
rhs_free = true;
|
|
/* Match expressions of form &this->field. Those will most likely
|
|
combine with something upstream after inlining. */
|
|
else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
|
|
{
|
|
tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
|
|
if (TREE_CODE (op) == PARM_DECL)
|
|
rhs_free = true;
|
|
else if (TREE_CODE (op) == MEM_REF
|
|
&& unmodified_parm (stmt, TREE_OPERAND (op, 0)))
|
|
rhs_free = true;
|
|
}
|
|
|
|
/* When parameter is not SSA register because its address is taken
|
|
and it is just copied into one, the statement will be completely
|
|
free after inlining (we will copy propagate backward). */
|
|
if (rhs_free && is_gimple_reg (lhs))
|
|
return 2;
|
|
|
|
/* Reads of parameters passed by reference
|
|
expected to be free (i.e. optimized out after inlining). */
|
|
if (TREE_CODE (inner_rhs) == MEM_REF
|
|
&& unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0)))
|
|
rhs_free = true;
|
|
|
|
/* Copying parameter passed by reference into gimple register is
|
|
probably also going to copy propagate, but we can't be quite
|
|
sure. */
|
|
if (rhs_free && is_gimple_reg (lhs))
|
|
lhs_free = true;
|
|
|
|
/* Writes to parameters, parameters passed by value and return value
|
|
(either dirrectly or passed via invisible reference) are free.
|
|
|
|
TODO: We ought to handle testcase like
|
|
struct a {int a,b;};
|
|
struct a
|
|
retrurnsturct (void)
|
|
{
|
|
struct a a ={1,2};
|
|
return a;
|
|
}
|
|
|
|
This translate into:
|
|
|
|
retrurnsturct ()
|
|
{
|
|
int a$b;
|
|
int a$a;
|
|
struct a a;
|
|
struct a D.2739;
|
|
|
|
<bb 2>:
|
|
D.2739.a = 1;
|
|
D.2739.b = 2;
|
|
return D.2739;
|
|
|
|
}
|
|
For that we either need to copy ipa-split logic detecting writes
|
|
to return value. */
|
|
if (TREE_CODE (inner_lhs) == PARM_DECL
|
|
|| TREE_CODE (inner_lhs) == RESULT_DECL
|
|
|| (TREE_CODE (inner_lhs) == MEM_REF
|
|
&& (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0))
|
|
|| (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
|
|
&& SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
|
|
&& TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
|
|
(inner_lhs,
|
|
0))) == RESULT_DECL))))
|
|
lhs_free = true;
|
|
if (lhs_free
|
|
&& (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
|
|
rhs_free = true;
|
|
if (lhs_free && rhs_free)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* If BB ends by a conditional we can turn into predicates, attach corresponding
|
|
predicates to the CFG edges. */
|
|
|
|
static void
|
|
set_cond_stmt_execution_predicate (struct ipa_func_body_info *fbi,
|
|
struct inline_summary *summary,
|
|
basic_block bb)
|
|
{
|
|
gimple *last;
|
|
tree op;
|
|
int index;
|
|
struct agg_position_info aggpos;
|
|
enum tree_code code, inverted_code;
|
|
edge e;
|
|
edge_iterator ei;
|
|
gimple *set_stmt;
|
|
tree op2;
|
|
|
|
last = last_stmt (bb);
|
|
if (!last || gimple_code (last) != GIMPLE_COND)
|
|
return;
|
|
if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
|
|
return;
|
|
op = gimple_cond_lhs (last);
|
|
/* TODO: handle conditionals like
|
|
var = op0 < 4;
|
|
if (var != 0). */
|
|
if (unmodified_parm_or_parm_agg_item (fbi, last, op, &index, &aggpos))
|
|
{
|
|
code = gimple_cond_code (last);
|
|
inverted_code = invert_tree_comparison (code, HONOR_NANS (op));
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
{
|
|
enum tree_code this_code = (e->flags & EDGE_TRUE_VALUE
|
|
? code : inverted_code);
|
|
/* invert_tree_comparison will return ERROR_MARK on FP
|
|
comparsions that are not EQ/NE instead of returning proper
|
|
unordered one. Be sure it is not confused with NON_CONSTANT. */
|
|
if (this_code != ERROR_MARK)
|
|
{
|
|
struct predicate p = add_condition
|
|
(summary, index, &aggpos, this_code,
|
|
unshare_expr_without_location (gimple_cond_rhs (last)));
|
|
e->aux = edge_predicate_pool.allocate ();
|
|
*(struct predicate *) e->aux = p;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (TREE_CODE (op) != SSA_NAME)
|
|
return;
|
|
/* Special case
|
|
if (builtin_constant_p (op))
|
|
constant_code
|
|
else
|
|
nonconstant_code.
|
|
Here we can predicate nonconstant_code. We can't
|
|
really handle constant_code since we have no predicate
|
|
for this and also the constant code is not known to be
|
|
optimized away when inliner doen't see operand is constant.
|
|
Other optimizers might think otherwise. */
|
|
if (gimple_cond_code (last) != NE_EXPR
|
|
|| !integer_zerop (gimple_cond_rhs (last)))
|
|
return;
|
|
set_stmt = SSA_NAME_DEF_STMT (op);
|
|
if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
|
|
|| gimple_call_num_args (set_stmt) != 1)
|
|
return;
|
|
op2 = gimple_call_arg (set_stmt, 0);
|
|
if (!unmodified_parm_or_parm_agg_item (fbi, set_stmt, op2, &index, &aggpos))
|
|
return;
|
|
FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
|
|
{
|
|
struct predicate p = add_condition (summary, index, &aggpos,
|
|
IS_NOT_CONSTANT, NULL_TREE);
|
|
e->aux = edge_predicate_pool.allocate ();
|
|
*(struct predicate *) e->aux = p;
|
|
}
|
|
}
|
|
|
|
|
|
/* If BB ends by a switch we can turn into predicates, attach corresponding
|
|
predicates to the CFG edges. */
|
|
|
|
static void
|
|
set_switch_stmt_execution_predicate (struct ipa_func_body_info *fbi,
|
|
struct inline_summary *summary,
|
|
basic_block bb)
|
|
{
|
|
gimple *lastg;
|
|
tree op;
|
|
int index;
|
|
struct agg_position_info aggpos;
|
|
edge e;
|
|
edge_iterator ei;
|
|
size_t n;
|
|
size_t case_idx;
|
|
|
|
lastg = last_stmt (bb);
|
|
if (!lastg || gimple_code (lastg) != GIMPLE_SWITCH)
|
|
return;
|
|
gswitch *last = as_a <gswitch *> (lastg);
|
|
op = gimple_switch_index (last);
|
|
if (!unmodified_parm_or_parm_agg_item (fbi, last, op, &index, &aggpos))
|
|
return;
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
{
|
|
e->aux = edge_predicate_pool.allocate ();
|
|
*(struct predicate *) e->aux = false_predicate ();
|
|
}
|
|
n = gimple_switch_num_labels (last);
|
|
for (case_idx = 0; case_idx < n; ++case_idx)
|
|
{
|
|
tree cl = gimple_switch_label (last, case_idx);
|
|
tree min, max;
|
|
struct predicate p;
|
|
|
|
e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
|
|
min = CASE_LOW (cl);
|
|
max = CASE_HIGH (cl);
|
|
|
|
/* For default we might want to construct predicate that none
|
|
of cases is met, but it is bit hard to do not having negations
|
|
of conditionals handy. */
|
|
if (!min && !max)
|
|
p = true_predicate ();
|
|
else if (!max)
|
|
p = add_condition (summary, index, &aggpos, EQ_EXPR,
|
|
unshare_expr_without_location (min));
|
|
else
|
|
{
|
|
struct predicate p1, p2;
|
|
p1 = add_condition (summary, index, &aggpos, GE_EXPR,
|
|
unshare_expr_without_location (min));
|
|
p2 = add_condition (summary, index, &aggpos, LE_EXPR,
|
|
unshare_expr_without_location (max));
|
|
p = and_predicates (summary->conds, &p1, &p2);
|
|
}
|
|
*(struct predicate *) e->aux
|
|
= or_predicates (summary->conds, &p, (struct predicate *) e->aux);
|
|
}
|
|
}
|
|
|
|
|
|
/* For each BB in NODE attach to its AUX pointer predicate under
|
|
which it is executable. */
|
|
|
|
static void
|
|
compute_bb_predicates (struct ipa_func_body_info *fbi,
|
|
struct cgraph_node *node,
|
|
struct inline_summary *summary)
|
|
{
|
|
struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
|
|
bool done = false;
|
|
basic_block bb;
|
|
|
|
FOR_EACH_BB_FN (bb, my_function)
|
|
{
|
|
set_cond_stmt_execution_predicate (fbi, summary, bb);
|
|
set_switch_stmt_execution_predicate (fbi, summary, bb);
|
|
}
|
|
|
|
/* Entry block is always executable. */
|
|
ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
|
|
= edge_predicate_pool.allocate ();
|
|
*(struct predicate *) ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
|
|
= true_predicate ();
|
|
|
|
/* A simple dataflow propagation of predicates forward in the CFG.
|
|
TODO: work in reverse postorder. */
|
|
while (!done)
|
|
{
|
|
done = true;
|
|
FOR_EACH_BB_FN (bb, my_function)
|
|
{
|
|
struct predicate p = false_predicate ();
|
|
edge e;
|
|
edge_iterator ei;
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
{
|
|
if (e->src->aux)
|
|
{
|
|
struct predicate this_bb_predicate
|
|
= *(struct predicate *) e->src->aux;
|
|
if (e->aux)
|
|
this_bb_predicate
|
|
= and_predicates (summary->conds, &this_bb_predicate,
|
|
(struct predicate *) e->aux);
|
|
p = or_predicates (summary->conds, &p, &this_bb_predicate);
|
|
if (true_predicate_p (&p))
|
|
break;
|
|
}
|
|
}
|
|
if (false_predicate_p (&p))
|
|
gcc_assert (!bb->aux);
|
|
else
|
|
{
|
|
if (!bb->aux)
|
|
{
|
|
done = false;
|
|
bb->aux = edge_predicate_pool.allocate ();
|
|
*((struct predicate *) bb->aux) = p;
|
|
}
|
|
else if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
|
|
{
|
|
/* This OR operation is needed to ensure monotonous data flow
|
|
in the case we hit the limit on number of clauses and the
|
|
and/or operations above give approximate answers. */
|
|
p = or_predicates (summary->conds, &p, (struct predicate *)bb->aux);
|
|
if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
|
|
{
|
|
done = false;
|
|
*((struct predicate *) bb->aux) = p;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* We keep info about constantness of SSA names. */
|
|
|
|
typedef struct predicate predicate_t;
|
|
/* Return predicate specifying when the STMT might have result that is not
|
|
a compile time constant. */
|
|
|
|
static struct predicate
|
|
will_be_nonconstant_expr_predicate (struct ipa_node_params *info,
|
|
struct inline_summary *summary,
|
|
tree expr,
|
|
vec<predicate_t> nonconstant_names)
|
|
{
|
|
tree parm;
|
|
int index;
|
|
|
|
while (UNARY_CLASS_P (expr))
|
|
expr = TREE_OPERAND (expr, 0);
|
|
|
|
parm = unmodified_parm (NULL, expr);
|
|
if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
|
|
return add_condition (summary, index, NULL, CHANGED, NULL_TREE);
|
|
if (is_gimple_min_invariant (expr))
|
|
return false_predicate ();
|
|
if (TREE_CODE (expr) == SSA_NAME)
|
|
return nonconstant_names[SSA_NAME_VERSION (expr)];
|
|
if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
|
|
{
|
|
struct predicate p1 = will_be_nonconstant_expr_predicate
|
|
(info, summary, TREE_OPERAND (expr, 0),
|
|
nonconstant_names);
|
|
struct predicate p2;
|
|
if (true_predicate_p (&p1))
|
|
return p1;
|
|
p2 = will_be_nonconstant_expr_predicate (info, summary,
|
|
TREE_OPERAND (expr, 1),
|
|
nonconstant_names);
|
|
return or_predicates (summary->conds, &p1, &p2);
|
|
}
|
|
else if (TREE_CODE (expr) == COND_EXPR)
|
|
{
|
|
struct predicate p1 = will_be_nonconstant_expr_predicate
|
|
(info, summary, TREE_OPERAND (expr, 0),
|
|
nonconstant_names);
|
|
struct predicate p2;
|
|
if (true_predicate_p (&p1))
|
|
return p1;
|
|
p2 = will_be_nonconstant_expr_predicate (info, summary,
|
|
TREE_OPERAND (expr, 1),
|
|
nonconstant_names);
|
|
if (true_predicate_p (&p2))
|
|
return p2;
|
|
p1 = or_predicates (summary->conds, &p1, &p2);
|
|
p2 = will_be_nonconstant_expr_predicate (info, summary,
|
|
TREE_OPERAND (expr, 2),
|
|
nonconstant_names);
|
|
return or_predicates (summary->conds, &p1, &p2);
|
|
}
|
|
else
|
|
{
|
|
debug_tree (expr);
|
|
gcc_unreachable ();
|
|
}
|
|
return false_predicate ();
|
|
}
|
|
|
|
|
|
/* Return predicate specifying when the STMT might have result that is not
|
|
a compile time constant. */
|
|
|
|
static struct predicate
|
|
will_be_nonconstant_predicate (struct ipa_func_body_info *fbi,
|
|
struct inline_summary *summary,
|
|
gimple *stmt,
|
|
vec<predicate_t> nonconstant_names)
|
|
{
|
|
struct predicate p = true_predicate ();
|
|
ssa_op_iter iter;
|
|
tree use;
|
|
struct predicate op_non_const;
|
|
bool is_load;
|
|
int base_index;
|
|
struct agg_position_info aggpos;
|
|
|
|
/* What statments might be optimized away
|
|
when their arguments are constant. */
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN
|
|
&& gimple_code (stmt) != GIMPLE_COND
|
|
&& gimple_code (stmt) != GIMPLE_SWITCH
|
|
&& (gimple_code (stmt) != GIMPLE_CALL
|
|
|| !(gimple_call_flags (stmt) & ECF_CONST)))
|
|
return p;
|
|
|
|
/* Stores will stay anyway. */
|
|
if (gimple_store_p (stmt))
|
|
return p;
|
|
|
|
is_load = gimple_assign_load_p (stmt);
|
|
|
|
/* Loads can be optimized when the value is known. */
|
|
if (is_load)
|
|
{
|
|
tree op;
|
|
gcc_assert (gimple_assign_single_p (stmt));
|
|
op = gimple_assign_rhs1 (stmt);
|
|
if (!unmodified_parm_or_parm_agg_item (fbi, stmt, op, &base_index,
|
|
&aggpos))
|
|
return p;
|
|
}
|
|
else
|
|
base_index = -1;
|
|
|
|
/* See if we understand all operands before we start
|
|
adding conditionals. */
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
|
{
|
|
tree parm = unmodified_parm (stmt, use);
|
|
/* For arguments we can build a condition. */
|
|
if (parm && ipa_get_param_decl_index (fbi->info, parm) >= 0)
|
|
continue;
|
|
if (TREE_CODE (use) != SSA_NAME)
|
|
return p;
|
|
/* If we know when operand is constant,
|
|
we still can say something useful. */
|
|
if (!true_predicate_p (&nonconstant_names[SSA_NAME_VERSION (use)]))
|
|
continue;
|
|
return p;
|
|
}
|
|
|
|
if (is_load)
|
|
op_non_const =
|
|
add_condition (summary, base_index, &aggpos, CHANGED, NULL);
|
|
else
|
|
op_non_const = false_predicate ();
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
|
{
|
|
tree parm = unmodified_parm (stmt, use);
|
|
int index;
|
|
|
|
if (parm && (index = ipa_get_param_decl_index (fbi->info, parm)) >= 0)
|
|
{
|
|
if (index != base_index)
|
|
p = add_condition (summary, index, NULL, CHANGED, NULL_TREE);
|
|
else
|
|
continue;
|
|
}
|
|
else
|
|
p = nonconstant_names[SSA_NAME_VERSION (use)];
|
|
op_non_const = or_predicates (summary->conds, &p, &op_non_const);
|
|
}
|
|
if ((gimple_code (stmt) == GIMPLE_ASSIGN || gimple_code (stmt) == GIMPLE_CALL)
|
|
&& gimple_op (stmt, 0)
|
|
&& TREE_CODE (gimple_op (stmt, 0)) == SSA_NAME)
|
|
nonconstant_names[SSA_NAME_VERSION (gimple_op (stmt, 0))]
|
|
= op_non_const;
|
|
return op_non_const;
|
|
}
|
|
|
|
struct record_modified_bb_info
|
|
{
|
|
bitmap bb_set;
|
|
gimple *stmt;
|
|
};
|
|
|
|
/* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
|
|
set except for info->stmt. */
|
|
|
|
static bool
|
|
record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
|
|
{
|
|
struct record_modified_bb_info *info =
|
|
(struct record_modified_bb_info *) data;
|
|
if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
|
|
return false;
|
|
bitmap_set_bit (info->bb_set,
|
|
SSA_NAME_IS_DEFAULT_DEF (vdef)
|
|
? ENTRY_BLOCK_PTR_FOR_FN (cfun)->index
|
|
: gimple_bb (SSA_NAME_DEF_STMT (vdef))->index);
|
|
return false;
|
|
}
|
|
|
|
/* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
|
|
will change since last invocation of STMT.
|
|
|
|
Value 0 is reserved for compile time invariants.
|
|
For common parameters it is REG_BR_PROB_BASE. For loop invariants it
|
|
ought to be REG_BR_PROB_BASE / estimated_iters. */
|
|
|
|
static int
|
|
param_change_prob (gimple *stmt, int i)
|
|
{
|
|
tree op = gimple_call_arg (stmt, i);
|
|
basic_block bb = gimple_bb (stmt);
|
|
tree base;
|
|
|
|
/* Global invariants neve change. */
|
|
if (is_gimple_min_invariant (op))
|
|
return 0;
|
|
/* We would have to do non-trivial analysis to really work out what
|
|
is the probability of value to change (i.e. when init statement
|
|
is in a sibling loop of the call).
|
|
|
|
We do an conservative estimate: when call is executed N times more often
|
|
than the statement defining value, we take the frequency 1/N. */
|
|
if (TREE_CODE (op) == SSA_NAME)
|
|
{
|
|
int init_freq;
|
|
|
|
if (!bb->frequency)
|
|
return REG_BR_PROB_BASE;
|
|
|
|
if (SSA_NAME_IS_DEFAULT_DEF (op))
|
|
init_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
|
|
else
|
|
init_freq = gimple_bb (SSA_NAME_DEF_STMT (op))->frequency;
|
|
|
|
if (!init_freq)
|
|
init_freq = 1;
|
|
if (init_freq < bb->frequency)
|
|
return MAX (GCOV_COMPUTE_SCALE (init_freq, bb->frequency), 1);
|
|
else
|
|
return REG_BR_PROB_BASE;
|
|
}
|
|
|
|
base = get_base_address (op);
|
|
if (base)
|
|
{
|
|
ao_ref refd;
|
|
int max;
|
|
struct record_modified_bb_info info;
|
|
bitmap_iterator bi;
|
|
unsigned index;
|
|
tree init = ctor_for_folding (base);
|
|
|
|
if (init != error_mark_node)
|
|
return 0;
|
|
if (!bb->frequency)
|
|
return REG_BR_PROB_BASE;
|
|
ao_ref_init (&refd, op);
|
|
info.stmt = stmt;
|
|
info.bb_set = BITMAP_ALLOC (NULL);
|
|
walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
|
|
NULL);
|
|
if (bitmap_bit_p (info.bb_set, bb->index))
|
|
{
|
|
BITMAP_FREE (info.bb_set);
|
|
return REG_BR_PROB_BASE;
|
|
}
|
|
|
|
/* Assume that every memory is initialized at entry.
|
|
TODO: Can we easilly determine if value is always defined
|
|
and thus we may skip entry block? */
|
|
if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
|
|
max = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
|
|
else
|
|
max = 1;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
|
|
max = MIN (max, BASIC_BLOCK_FOR_FN (cfun, index)->frequency);
|
|
|
|
BITMAP_FREE (info.bb_set);
|
|
if (max < bb->frequency)
|
|
return MAX (GCOV_COMPUTE_SCALE (max, bb->frequency), 1);
|
|
else
|
|
return REG_BR_PROB_BASE;
|
|
}
|
|
return REG_BR_PROB_BASE;
|
|
}
|
|
|
|
/* Find whether a basic block BB is the final block of a (half) diamond CFG
|
|
sub-graph and if the predicate the condition depends on is known. If so,
|
|
return true and store the pointer the predicate in *P. */
|
|
|
|
static bool
|
|
phi_result_unknown_predicate (struct ipa_node_params *info,
|
|
inline_summary *summary, basic_block bb,
|
|
struct predicate *p,
|
|
vec<predicate_t> nonconstant_names)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
basic_block first_bb = NULL;
|
|
gimple *stmt;
|
|
|
|
if (single_pred_p (bb))
|
|
{
|
|
*p = false_predicate ();
|
|
return true;
|
|
}
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
{
|
|
if (single_succ_p (e->src))
|
|
{
|
|
if (!single_pred_p (e->src))
|
|
return false;
|
|
if (!first_bb)
|
|
first_bb = single_pred (e->src);
|
|
else if (single_pred (e->src) != first_bb)
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if (!first_bb)
|
|
first_bb = e->src;
|
|
else if (e->src != first_bb)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!first_bb)
|
|
return false;
|
|
|
|
stmt = last_stmt (first_bb);
|
|
if (!stmt
|
|
|| gimple_code (stmt) != GIMPLE_COND
|
|
|| !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
|
|
return false;
|
|
|
|
*p = will_be_nonconstant_expr_predicate (info, summary,
|
|
gimple_cond_lhs (stmt),
|
|
nonconstant_names);
|
|
if (true_predicate_p (p))
|
|
return false;
|
|
else
|
|
return true;
|
|
}
|
|
|
|
/* Given a PHI statement in a function described by inline properties SUMMARY
|
|
and *P being the predicate describing whether the selected PHI argument is
|
|
known, store a predicate for the result of the PHI statement into
|
|
NONCONSTANT_NAMES, if possible. */
|
|
|
|
static void
|
|
predicate_for_phi_result (struct inline_summary *summary, gphi *phi,
|
|
struct predicate *p,
|
|
vec<predicate_t> nonconstant_names)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
tree arg = gimple_phi_arg (phi, i)->def;
|
|
if (!is_gimple_min_invariant (arg))
|
|
{
|
|
gcc_assert (TREE_CODE (arg) == SSA_NAME);
|
|
*p = or_predicates (summary->conds, p,
|
|
&nonconstant_names[SSA_NAME_VERSION (arg)]);
|
|
if (true_predicate_p (p))
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\t\tphi predicate: ");
|
|
dump_predicate (dump_file, summary->conds, p);
|
|
}
|
|
nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
|
|
}
|
|
|
|
/* Return predicate specifying when array index in access OP becomes non-constant. */
|
|
|
|
static struct predicate
|
|
array_index_predicate (inline_summary *info,
|
|
vec< predicate_t> nonconstant_names, tree op)
|
|
{
|
|
struct predicate p = false_predicate ();
|
|
while (handled_component_p (op))
|
|
{
|
|
if (TREE_CODE (op) == ARRAY_REF || TREE_CODE (op) == ARRAY_RANGE_REF)
|
|
{
|
|
if (TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
|
|
p = or_predicates (info->conds, &p,
|
|
&nonconstant_names[SSA_NAME_VERSION
|
|
(TREE_OPERAND (op, 1))]);
|
|
}
|
|
op = TREE_OPERAND (op, 0);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/* For a typical usage of __builtin_expect (a<b, 1), we
|
|
may introduce an extra relation stmt:
|
|
With the builtin, we have
|
|
t1 = a <= b;
|
|
t2 = (long int) t1;
|
|
t3 = __builtin_expect (t2, 1);
|
|
if (t3 != 0)
|
|
goto ...
|
|
Without the builtin, we have
|
|
if (a<=b)
|
|
goto...
|
|
This affects the size/time estimation and may have
|
|
an impact on the earlier inlining.
|
|
Here find this pattern and fix it up later. */
|
|
|
|
static gimple *
|
|
find_foldable_builtin_expect (basic_block bb)
|
|
{
|
|
gimple_stmt_iterator bsi;
|
|
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (bsi);
|
|
if (gimple_call_builtin_p (stmt, BUILT_IN_EXPECT)
|
|
|| (is_gimple_call (stmt)
|
|
&& gimple_call_internal_p (stmt)
|
|
&& gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
|
|
{
|
|
tree var = gimple_call_lhs (stmt);
|
|
tree arg = gimple_call_arg (stmt, 0);
|
|
use_operand_p use_p;
|
|
gimple *use_stmt;
|
|
bool match = false;
|
|
bool done = false;
|
|
|
|
if (!var || !arg)
|
|
continue;
|
|
gcc_assert (TREE_CODE (var) == SSA_NAME);
|
|
|
|
while (TREE_CODE (arg) == SSA_NAME)
|
|
{
|
|
gimple *stmt_tmp = SSA_NAME_DEF_STMT (arg);
|
|
if (!is_gimple_assign (stmt_tmp))
|
|
break;
|
|
switch (gimple_assign_rhs_code (stmt_tmp))
|
|
{
|
|
case LT_EXPR:
|
|
case LE_EXPR:
|
|
case GT_EXPR:
|
|
case GE_EXPR:
|
|
case EQ_EXPR:
|
|
case NE_EXPR:
|
|
match = true;
|
|
done = true;
|
|
break;
|
|
CASE_CONVERT:
|
|
break;
|
|
default:
|
|
done = true;
|
|
break;
|
|
}
|
|
if (done)
|
|
break;
|
|
arg = gimple_assign_rhs1 (stmt_tmp);
|
|
}
|
|
|
|
if (match && single_imm_use (var, &use_p, &use_stmt)
|
|
&& gimple_code (use_stmt) == GIMPLE_COND)
|
|
return use_stmt;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Return true when the basic blocks contains only clobbers followed by RESX.
|
|
Such BBs are kept around to make removal of dead stores possible with
|
|
presence of EH and will be optimized out by optimize_clobbers later in the
|
|
game.
|
|
|
|
NEED_EH is used to recurse in case the clobber has non-EH predecestors
|
|
that can be clobber only, too.. When it is false, the RESX is not necessary
|
|
on the end of basic block. */
|
|
|
|
static bool
|
|
clobber_only_eh_bb_p (basic_block bb, bool need_eh = true)
|
|
{
|
|
gimple_stmt_iterator gsi = gsi_last_bb (bb);
|
|
edge_iterator ei;
|
|
edge e;
|
|
|
|
if (need_eh)
|
|
{
|
|
if (gsi_end_p (gsi))
|
|
return false;
|
|
if (gimple_code (gsi_stmt (gsi)) != GIMPLE_RESX)
|
|
return false;
|
|
gsi_prev (&gsi);
|
|
}
|
|
else if (!single_succ_p (bb))
|
|
return false;
|
|
|
|
for (; !gsi_end_p (gsi); gsi_prev (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
if (gimple_clobber_p (stmt))
|
|
continue;
|
|
if (gimple_code (stmt) == GIMPLE_LABEL)
|
|
break;
|
|
return false;
|
|
}
|
|
|
|
/* See if all predecestors are either throws or clobber only BBs. */
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
if (!(e->flags & EDGE_EH)
|
|
&& !clobber_only_eh_bb_p (e->src, false))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Compute function body size parameters for NODE.
|
|
When EARLY is true, we compute only simple summaries without
|
|
non-trivial predicates to drive the early inliner. */
|
|
|
|
static void
|
|
estimate_function_body_sizes (struct cgraph_node *node, bool early)
|
|
{
|
|
gcov_type time = 0;
|
|
/* Estimate static overhead for function prologue/epilogue and alignment. */
|
|
int size = 2;
|
|
/* Benefits are scaled by probability of elimination that is in range
|
|
<0,2>. */
|
|
basic_block bb;
|
|
struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
|
|
int freq;
|
|
struct inline_summary *info = inline_summaries->get (node);
|
|
struct predicate bb_predicate;
|
|
struct ipa_func_body_info fbi;
|
|
vec<predicate_t> nonconstant_names = vNULL;
|
|
int nblocks, n;
|
|
int *order;
|
|
predicate array_index = true_predicate ();
|
|
gimple *fix_builtin_expect_stmt;
|
|
|
|
gcc_assert (my_function && my_function->cfg);
|
|
gcc_assert (cfun == my_function);
|
|
|
|
memset(&fbi, 0, sizeof(fbi));
|
|
info->conds = NULL;
|
|
info->entry = NULL;
|
|
|
|
/* When optimizing and analyzing for IPA inliner, initialize loop optimizer
|
|
so we can produce proper inline hints.
|
|
|
|
When optimizing and analyzing for early inliner, initialize node params
|
|
so we can produce correct BB predicates. */
|
|
|
|
if (opt_for_fn (node->decl, optimize))
|
|
{
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
if (!early)
|
|
loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
|
|
else
|
|
{
|
|
ipa_check_create_node_params ();
|
|
ipa_initialize_node_params (node);
|
|
}
|
|
|
|
if (ipa_node_params_sum)
|
|
{
|
|
fbi.node = node;
|
|
fbi.info = IPA_NODE_REF (node);
|
|
fbi.bb_infos = vNULL;
|
|
fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
|
|
fbi.param_count = count_formal_params(node->decl);
|
|
nonconstant_names.safe_grow_cleared
|
|
(SSANAMES (my_function)->length ());
|
|
}
|
|
}
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nAnalyzing function body size: %s\n",
|
|
node->name ());
|
|
|
|
/* When we run into maximal number of entries, we assign everything to the
|
|
constant truth case. Be sure to have it in list. */
|
|
bb_predicate = true_predicate ();
|
|
account_size_time (info, 0, 0, &bb_predicate);
|
|
|
|
bb_predicate = not_inlined_predicate ();
|
|
account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &bb_predicate);
|
|
|
|
if (fbi.info)
|
|
compute_bb_predicates (&fbi, node, info);
|
|
order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
|
|
nblocks = pre_and_rev_post_order_compute (NULL, order, false);
|
|
for (n = 0; n < nblocks; n++)
|
|
{
|
|
bb = BASIC_BLOCK_FOR_FN (cfun, order[n]);
|
|
freq = compute_call_stmt_bb_frequency (node->decl, bb);
|
|
if (clobber_only_eh_bb_p (bb))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "\n Ignoring BB %i;"
|
|
" it will be optimized away by cleanup_clobbers\n",
|
|
bb->index);
|
|
continue;
|
|
}
|
|
|
|
/* TODO: Obviously predicates can be propagated down across CFG. */
|
|
if (fbi.info)
|
|
{
|
|
if (bb->aux)
|
|
bb_predicate = *(struct predicate *) bb->aux;
|
|
else
|
|
bb_predicate = false_predicate ();
|
|
}
|
|
else
|
|
bb_predicate = true_predicate ();
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\n BB %i predicate:", bb->index);
|
|
dump_predicate (dump_file, info->conds, &bb_predicate);
|
|
}
|
|
|
|
if (fbi.info && nonconstant_names.exists ())
|
|
{
|
|
struct predicate phi_predicate;
|
|
bool first_phi = true;
|
|
|
|
for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
|
|
gsi_next (&bsi))
|
|
{
|
|
if (first_phi
|
|
&& !phi_result_unknown_predicate (fbi.info, info, bb,
|
|
&phi_predicate,
|
|
nonconstant_names))
|
|
break;
|
|
first_phi = false;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " ");
|
|
print_gimple_stmt (dump_file, gsi_stmt (bsi), 0, 0);
|
|
}
|
|
predicate_for_phi_result (info, bsi.phi (), &phi_predicate,
|
|
nonconstant_names);
|
|
}
|
|
}
|
|
|
|
fix_builtin_expect_stmt = find_foldable_builtin_expect (bb);
|
|
|
|
for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
|
|
gsi_next (&bsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (bsi);
|
|
int this_size = estimate_num_insns (stmt, &eni_size_weights);
|
|
int this_time = estimate_num_insns (stmt, &eni_time_weights);
|
|
int prob;
|
|
struct predicate will_be_nonconstant;
|
|
|
|
/* This relation stmt should be folded after we remove
|
|
buildin_expect call. Adjust the cost here. */
|
|
if (stmt == fix_builtin_expect_stmt)
|
|
{
|
|
this_size--;
|
|
this_time--;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " ");
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
|
fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
|
|
((double) freq) / CGRAPH_FREQ_BASE, this_size,
|
|
this_time);
|
|
}
|
|
|
|
if (gimple_assign_load_p (stmt) && nonconstant_names.exists ())
|
|
{
|
|
struct predicate this_array_index;
|
|
this_array_index =
|
|
array_index_predicate (info, nonconstant_names,
|
|
gimple_assign_rhs1 (stmt));
|
|
if (!false_predicate_p (&this_array_index))
|
|
array_index =
|
|
and_predicates (info->conds, &array_index,
|
|
&this_array_index);
|
|
}
|
|
if (gimple_store_p (stmt) && nonconstant_names.exists ())
|
|
{
|
|
struct predicate this_array_index;
|
|
this_array_index =
|
|
array_index_predicate (info, nonconstant_names,
|
|
gimple_get_lhs (stmt));
|
|
if (!false_predicate_p (&this_array_index))
|
|
array_index =
|
|
and_predicates (info->conds, &array_index,
|
|
&this_array_index);
|
|
}
|
|
|
|
|
|
if (is_gimple_call (stmt)
|
|
&& !gimple_call_internal_p (stmt))
|
|
{
|
|
struct cgraph_edge *edge = node->get_edge (stmt);
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
|
|
|
/* Special case: results of BUILT_IN_CONSTANT_P will be always
|
|
resolved as constant. We however don't want to optimize
|
|
out the cgraph edges. */
|
|
if (nonconstant_names.exists ()
|
|
&& gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
|
|
&& gimple_call_lhs (stmt)
|
|
&& TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
|
|
{
|
|
struct predicate false_p = false_predicate ();
|
|
nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
|
|
= false_p;
|
|
}
|
|
if (ipa_node_params_sum)
|
|
{
|
|
int count = gimple_call_num_args (stmt);
|
|
int i;
|
|
|
|
if (count)
|
|
es->param.safe_grow_cleared (count);
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
int prob = param_change_prob (stmt, i);
|
|
gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
|
|
es->param[i].change_prob = prob;
|
|
}
|
|
}
|
|
|
|
es->call_stmt_size = this_size;
|
|
es->call_stmt_time = this_time;
|
|
es->loop_depth = bb_loop_depth (bb);
|
|
edge_set_predicate (edge, &bb_predicate);
|
|
}
|
|
|
|
/* TODO: When conditional jump or swithc is known to be constant, but
|
|
we did not translate it into the predicates, we really can account
|
|
just maximum of the possible paths. */
|
|
if (fbi.info)
|
|
will_be_nonconstant
|
|
= will_be_nonconstant_predicate (&fbi, info,
|
|
stmt, nonconstant_names);
|
|
if (this_time || this_size)
|
|
{
|
|
struct predicate p;
|
|
|
|
this_time *= freq;
|
|
|
|
prob = eliminated_by_inlining_prob (stmt);
|
|
if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"\t\t50%% will be eliminated by inlining\n");
|
|
if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
|
|
|
|
if (fbi.info)
|
|
p = and_predicates (info->conds, &bb_predicate,
|
|
&will_be_nonconstant);
|
|
else
|
|
p = true_predicate ();
|
|
|
|
if (!false_predicate_p (&p)
|
|
|| (is_gimple_call (stmt)
|
|
&& !false_predicate_p (&bb_predicate)))
|
|
{
|
|
time += this_time;
|
|
size += this_size;
|
|
if (time > MAX_TIME * INLINE_TIME_SCALE)
|
|
time = MAX_TIME * INLINE_TIME_SCALE;
|
|
}
|
|
|
|
/* We account everything but the calls. Calls have their own
|
|
size/time info attached to cgraph edges. This is necessary
|
|
in order to make the cost disappear after inlining. */
|
|
if (!is_gimple_call (stmt))
|
|
{
|
|
if (prob)
|
|
{
|
|
struct predicate ip = not_inlined_predicate ();
|
|
ip = and_predicates (info->conds, &ip, &p);
|
|
account_size_time (info, this_size * prob,
|
|
this_time * prob, &ip);
|
|
}
|
|
if (prob != 2)
|
|
account_size_time (info, this_size * (2 - prob),
|
|
this_time * (2 - prob), &p);
|
|
}
|
|
|
|
gcc_assert (time >= 0);
|
|
gcc_assert (size >= 0);
|
|
}
|
|
}
|
|
}
|
|
set_hint_predicate (&inline_summaries->get (node)->array_index, array_index);
|
|
time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
|
|
if (time > MAX_TIME)
|
|
time = MAX_TIME;
|
|
free (order);
|
|
|
|
if (nonconstant_names.exists () && !early)
|
|
{
|
|
struct loop *loop;
|
|
predicate loop_iterations = true_predicate ();
|
|
predicate loop_stride = true_predicate ();
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
flow_loops_dump (dump_file, NULL, 0);
|
|
scev_initialize ();
|
|
FOR_EACH_LOOP (loop, 0)
|
|
{
|
|
vec<edge> exits;
|
|
edge ex;
|
|
unsigned int j;
|
|
struct tree_niter_desc niter_desc;
|
|
bb_predicate = *(struct predicate *) loop->header->aux;
|
|
|
|
exits = get_loop_exit_edges (loop);
|
|
FOR_EACH_VEC_ELT (exits, j, ex)
|
|
if (number_of_iterations_exit (loop, ex, &niter_desc, false)
|
|
&& !is_gimple_min_invariant (niter_desc.niter))
|
|
{
|
|
predicate will_be_nonconstant
|
|
= will_be_nonconstant_expr_predicate (fbi.info, info,
|
|
niter_desc.niter,
|
|
nonconstant_names);
|
|
if (!true_predicate_p (&will_be_nonconstant))
|
|
will_be_nonconstant = and_predicates (info->conds,
|
|
&bb_predicate,
|
|
&will_be_nonconstant);
|
|
if (!true_predicate_p (&will_be_nonconstant)
|
|
&& !false_predicate_p (&will_be_nonconstant))
|
|
/* This is slightly inprecise. We may want to represent each
|
|
loop with independent predicate. */
|
|
loop_iterations =
|
|
and_predicates (info->conds, &loop_iterations,
|
|
&will_be_nonconstant);
|
|
}
|
|
exits.release ();
|
|
}
|
|
|
|
/* To avoid quadratic behavior we analyze stride predicates only
|
|
with respect to the containing loop. Thus we simply iterate
|
|
over all defs in the outermost loop body. */
|
|
for (loop = loops_for_fn (cfun)->tree_root->inner;
|
|
loop != NULL; loop = loop->next)
|
|
{
|
|
basic_block *body = get_loop_body (loop);
|
|
for (unsigned i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
bb_predicate = *(struct predicate *) body[i]->aux;
|
|
for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
|
|
if (!is_gimple_assign (stmt))
|
|
continue;
|
|
|
|
tree def = gimple_assign_lhs (stmt);
|
|
if (TREE_CODE (def) != SSA_NAME)
|
|
continue;
|
|
|
|
affine_iv iv;
|
|
if (!simple_iv (loop_containing_stmt (stmt),
|
|
loop_containing_stmt (stmt),
|
|
def, &iv, true)
|
|
|| is_gimple_min_invariant (iv.step))
|
|
continue;
|
|
|
|
predicate will_be_nonconstant
|
|
= will_be_nonconstant_expr_predicate (fbi.info, info,
|
|
iv.step,
|
|
nonconstant_names);
|
|
if (!true_predicate_p (&will_be_nonconstant))
|
|
will_be_nonconstant
|
|
= and_predicates (info->conds, &bb_predicate,
|
|
&will_be_nonconstant);
|
|
if (!true_predicate_p (&will_be_nonconstant)
|
|
&& !false_predicate_p (&will_be_nonconstant))
|
|
/* This is slightly inprecise. We may want to represent
|
|
each loop with independent predicate. */
|
|
loop_stride = and_predicates (info->conds, &loop_stride,
|
|
&will_be_nonconstant);
|
|
}
|
|
}
|
|
free (body);
|
|
}
|
|
set_hint_predicate (&inline_summaries->get (node)->loop_iterations,
|
|
loop_iterations);
|
|
set_hint_predicate (&inline_summaries->get (node)->loop_stride,
|
|
loop_stride);
|
|
scev_finalize ();
|
|
}
|
|
FOR_ALL_BB_FN (bb, my_function)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
if (bb->aux)
|
|
edge_predicate_pool.remove ((predicate *)bb->aux);
|
|
bb->aux = NULL;
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
{
|
|
if (e->aux)
|
|
edge_predicate_pool.remove ((predicate *) e->aux);
|
|
e->aux = NULL;
|
|
}
|
|
}
|
|
inline_summaries->get (node)->self_time = time;
|
|
inline_summaries->get (node)->self_size = size;
|
|
nonconstant_names.release ();
|
|
ipa_release_body_info (&fbi);
|
|
if (opt_for_fn (node->decl, optimize))
|
|
{
|
|
if (!early)
|
|
loop_optimizer_finalize ();
|
|
else if (!ipa_edge_args_vector)
|
|
ipa_free_all_node_params ();
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
}
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "\n");
|
|
dump_inline_summary (dump_file, node);
|
|
}
|
|
}
|
|
|
|
|
|
/* Compute parameters of functions used by inliner.
|
|
EARLY is true when we compute parameters for the early inliner */
|
|
|
|
void
|
|
compute_inline_parameters (struct cgraph_node *node, bool early)
|
|
{
|
|
HOST_WIDE_INT self_stack_size;
|
|
struct cgraph_edge *e;
|
|
struct inline_summary *info;
|
|
|
|
gcc_assert (!node->global.inlined_to);
|
|
|
|
inline_summary_alloc ();
|
|
|
|
info = inline_summaries->get (node);
|
|
reset_inline_summary (node, info);
|
|
|
|
/* FIXME: Thunks are inlinable, but tree-inline don't know how to do that.
|
|
Once this happen, we will need to more curefully predict call
|
|
statement size. */
|
|
if (node->thunk.thunk_p)
|
|
{
|
|
struct inline_edge_summary *es = inline_edge_summary (node->callees);
|
|
struct predicate t = true_predicate ();
|
|
|
|
info->inlinable = 0;
|
|
node->callees->call_stmt_cannot_inline_p = true;
|
|
node->local.can_change_signature = false;
|
|
es->call_stmt_time = 1;
|
|
es->call_stmt_size = 1;
|
|
account_size_time (info, 0, 0, &t);
|
|
return;
|
|
}
|
|
|
|
/* Even is_gimple_min_invariant rely on current_function_decl. */
|
|
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
|
|
|
/* Estimate the stack size for the function if we're optimizing. */
|
|
self_stack_size = optimize ? estimated_stack_frame_size (node) : 0;
|
|
info->estimated_self_stack_size = self_stack_size;
|
|
info->estimated_stack_size = self_stack_size;
|
|
info->stack_frame_offset = 0;
|
|
|
|
/* Can this function be inlined at all? */
|
|
if (!opt_for_fn (node->decl, optimize)
|
|
&& !lookup_attribute ("always_inline",
|
|
DECL_ATTRIBUTES (node->decl)))
|
|
info->inlinable = false;
|
|
else
|
|
info->inlinable = tree_inlinable_function_p (node->decl);
|
|
|
|
info->contains_cilk_spawn = fn_contains_cilk_spawn_p (cfun);
|
|
|
|
/* Type attributes can use parameter indices to describe them. */
|
|
if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
|
|
node->local.can_change_signature = false;
|
|
else
|
|
{
|
|
/* Otherwise, inlinable functions always can change signature. */
|
|
if (info->inlinable)
|
|
node->local.can_change_signature = true;
|
|
else
|
|
{
|
|
/* Functions calling builtin_apply can not change signature. */
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
tree cdecl = e->callee->decl;
|
|
if (DECL_BUILT_IN (cdecl)
|
|
&& DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
|
|
&& (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
|
|
|| DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START))
|
|
break;
|
|
}
|
|
node->local.can_change_signature = !e;
|
|
}
|
|
}
|
|
estimate_function_body_sizes (node, early);
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (e->callee->comdat_local_p ())
|
|
break;
|
|
node->calls_comdat_local = (e != NULL);
|
|
|
|
/* Inlining characteristics are maintained by the cgraph_mark_inline. */
|
|
info->time = info->self_time;
|
|
info->size = info->self_size;
|
|
info->stack_frame_offset = 0;
|
|
info->estimated_stack_size = info->estimated_self_stack_size;
|
|
if (flag_checking)
|
|
{
|
|
inline_update_overall_summary (node);
|
|
gcc_assert (info->time == info->self_time
|
|
&& info->size == info->self_size);
|
|
}
|
|
|
|
pop_cfun ();
|
|
}
|
|
|
|
|
|
/* Compute parameters of functions used by inliner using
|
|
current_function_decl. */
|
|
|
|
static unsigned int
|
|
compute_inline_parameters_for_current (void)
|
|
{
|
|
compute_inline_parameters (cgraph_node::get (current_function_decl), true);
|
|
return 0;
|
|
}
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_inline_parameters =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"inline_param", /* name */
|
|
OPTGROUP_INLINE, /* optinfo_flags */
|
|
TV_INLINE_PARAMETERS, /* tv_id */
|
|
0, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_inline_parameters : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_inline_parameters (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_inline_parameters, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
opt_pass * clone () { return new pass_inline_parameters (m_ctxt); }
|
|
virtual unsigned int execute (function *)
|
|
{
|
|
return compute_inline_parameters_for_current ();
|
|
}
|
|
|
|
}; // class pass_inline_parameters
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_inline_parameters (gcc::context *ctxt)
|
|
{
|
|
return new pass_inline_parameters (ctxt);
|
|
}
|
|
|
|
|
|
/* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS,
|
|
KNOWN_CONTEXTS and KNOWN_AGGS. */
|
|
|
|
static bool
|
|
estimate_edge_devirt_benefit (struct cgraph_edge *ie,
|
|
int *size, int *time,
|
|
vec<tree> known_vals,
|
|
vec<ipa_polymorphic_call_context> known_contexts,
|
|
vec<ipa_agg_jump_function_p> known_aggs)
|
|
{
|
|
tree target;
|
|
struct cgraph_node *callee;
|
|
struct inline_summary *isummary;
|
|
enum availability avail;
|
|
bool speculative;
|
|
|
|
if (!known_vals.exists () && !known_contexts.exists ())
|
|
return false;
|
|
if (!opt_for_fn (ie->caller->decl, flag_indirect_inlining))
|
|
return false;
|
|
|
|
target = ipa_get_indirect_edge_target (ie, known_vals, known_contexts,
|
|
known_aggs, &speculative);
|
|
if (!target || speculative)
|
|
return false;
|
|
|
|
/* Account for difference in cost between indirect and direct calls. */
|
|
*size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
|
|
*time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
|
|
gcc_checking_assert (*time >= 0);
|
|
gcc_checking_assert (*size >= 0);
|
|
|
|
callee = cgraph_node::get (target);
|
|
if (!callee || !callee->definition)
|
|
return false;
|
|
callee = callee->function_symbol (&avail);
|
|
if (avail < AVAIL_AVAILABLE)
|
|
return false;
|
|
isummary = inline_summaries->get (callee);
|
|
return isummary->inlinable;
|
|
}
|
|
|
|
/* Increase SIZE, MIN_SIZE (if non-NULL) and TIME for size and time needed to
|
|
handle edge E with probability PROB.
|
|
Set HINTS if edge may be devirtualized.
|
|
KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS describe context of the call
|
|
site. */
|
|
|
|
static inline void
|
|
estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *min_size,
|
|
int *time,
|
|
int prob,
|
|
vec<tree> known_vals,
|
|
vec<ipa_polymorphic_call_context> known_contexts,
|
|
vec<ipa_agg_jump_function_p> known_aggs,
|
|
inline_hints *hints)
|
|
{
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
|
int call_size = es->call_stmt_size;
|
|
int call_time = es->call_stmt_time;
|
|
int cur_size;
|
|
if (!e->callee
|
|
&& estimate_edge_devirt_benefit (e, &call_size, &call_time,
|
|
known_vals, known_contexts, known_aggs)
|
|
&& hints && e->maybe_hot_p ())
|
|
*hints |= INLINE_HINT_indirect_call;
|
|
cur_size = call_size * INLINE_SIZE_SCALE;
|
|
*size += cur_size;
|
|
if (min_size)
|
|
*min_size += cur_size;
|
|
*time += apply_probability ((gcov_type) call_time, prob)
|
|
* e->frequency * (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE);
|
|
if (*time > MAX_TIME * INLINE_TIME_SCALE)
|
|
*time = MAX_TIME * INLINE_TIME_SCALE;
|
|
}
|
|
|
|
|
|
|
|
/* Increase SIZE, MIN_SIZE and TIME for size and time needed to handle all
|
|
calls in NODE. POSSIBLE_TRUTHS, KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
|
|
describe context of the call site. */
|
|
|
|
static void
|
|
estimate_calls_size_and_time (struct cgraph_node *node, int *size,
|
|
int *min_size, int *time,
|
|
inline_hints *hints,
|
|
clause_t possible_truths,
|
|
vec<tree> known_vals,
|
|
vec<ipa_polymorphic_call_context> known_contexts,
|
|
vec<ipa_agg_jump_function_p> known_aggs)
|
|
{
|
|
struct cgraph_edge *e;
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
if (inline_edge_summary_vec.length () <= (unsigned) e->uid)
|
|
continue;
|
|
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
|
|
|
/* Do not care about zero sized builtins. */
|
|
if (e->inline_failed && !es->call_stmt_size)
|
|
{
|
|
gcc_checking_assert (!es->call_stmt_time);
|
|
continue;
|
|
}
|
|
if (!es->predicate
|
|
|| evaluate_predicate (es->predicate, possible_truths))
|
|
{
|
|
if (e->inline_failed)
|
|
{
|
|
/* Predicates of calls shall not use NOT_CHANGED codes,
|
|
sowe do not need to compute probabilities. */
|
|
estimate_edge_size_and_time (e, size,
|
|
es->predicate ? NULL : min_size,
|
|
time, REG_BR_PROB_BASE,
|
|
known_vals, known_contexts,
|
|
known_aggs, hints);
|
|
}
|
|
else
|
|
estimate_calls_size_and_time (e->callee, size, min_size, time,
|
|
hints,
|
|
possible_truths,
|
|
known_vals, known_contexts,
|
|
known_aggs);
|
|
}
|
|
}
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
{
|
|
if (inline_edge_summary_vec.length () <= (unsigned) e->uid)
|
|
continue;
|
|
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
|
if (!es->predicate
|
|
|| evaluate_predicate (es->predicate, possible_truths))
|
|
estimate_edge_size_and_time (e, size,
|
|
es->predicate ? NULL : min_size,
|
|
time, REG_BR_PROB_BASE,
|
|
known_vals, known_contexts, known_aggs,
|
|
hints);
|
|
}
|
|
}
|
|
|
|
|
|
/* Estimate size and time needed to execute NODE assuming
|
|
POSSIBLE_TRUTHS clause, and KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
|
|
information about NODE's arguments. If non-NULL use also probability
|
|
information present in INLINE_PARAM_SUMMARY vector.
|
|
Additionally detemine hints determined by the context. Finally compute
|
|
minimal size needed for the call that is independent on the call context and
|
|
can be used for fast estimates. Return the values in RET_SIZE,
|
|
RET_MIN_SIZE, RET_TIME and RET_HINTS. */
|
|
|
|
static void
|
|
estimate_node_size_and_time (struct cgraph_node *node,
|
|
clause_t possible_truths,
|
|
vec<tree> known_vals,
|
|
vec<ipa_polymorphic_call_context> known_contexts,
|
|
vec<ipa_agg_jump_function_p> known_aggs,
|
|
int *ret_size, int *ret_min_size, int *ret_time,
|
|
inline_hints *ret_hints,
|
|
vec<inline_param_summary>
|
|
inline_param_summary)
|
|
{
|
|
struct inline_summary *info = inline_summaries->get (node);
|
|
size_time_entry *e;
|
|
int size = 0;
|
|
int time = 0;
|
|
int min_size = 0;
|
|
inline_hints hints = 0;
|
|
int i;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
bool found = false;
|
|
fprintf (dump_file, " Estimating body: %s/%i\n"
|
|
" Known to be false: ", node->name (),
|
|
node->order);
|
|
|
|
for (i = predicate_not_inlined_condition;
|
|
i < (predicate_first_dynamic_condition
|
|
+ (int) vec_safe_length (info->conds)); i++)
|
|
if (!(possible_truths & (1 << i)))
|
|
{
|
|
if (found)
|
|
fprintf (dump_file, ", ");
|
|
found = true;
|
|
dump_condition (dump_file, info->conds, i);
|
|
}
|
|
}
|
|
|
|
for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
|
|
if (evaluate_predicate (&e->predicate, possible_truths))
|
|
{
|
|
size += e->size;
|
|
gcc_checking_assert (e->time >= 0);
|
|
gcc_checking_assert (time >= 0);
|
|
if (!inline_param_summary.exists ())
|
|
time += e->time;
|
|
else
|
|
{
|
|
int prob = predicate_probability (info->conds,
|
|
&e->predicate,
|
|
possible_truths,
|
|
inline_param_summary);
|
|
gcc_checking_assert (prob >= 0);
|
|
gcc_checking_assert (prob <= REG_BR_PROB_BASE);
|
|
time += apply_probability ((gcov_type) e->time, prob);
|
|
}
|
|
if (time > MAX_TIME * INLINE_TIME_SCALE)
|
|
time = MAX_TIME * INLINE_TIME_SCALE;
|
|
gcc_checking_assert (time >= 0);
|
|
|
|
}
|
|
gcc_checking_assert (true_predicate_p (&(*info->entry)[0].predicate));
|
|
min_size = (*info->entry)[0].size;
|
|
gcc_checking_assert (size >= 0);
|
|
gcc_checking_assert (time >= 0);
|
|
|
|
if (info->loop_iterations
|
|
&& !evaluate_predicate (info->loop_iterations, possible_truths))
|
|
hints |= INLINE_HINT_loop_iterations;
|
|
if (info->loop_stride
|
|
&& !evaluate_predicate (info->loop_stride, possible_truths))
|
|
hints |= INLINE_HINT_loop_stride;
|
|
if (info->array_index
|
|
&& !evaluate_predicate (info->array_index, possible_truths))
|
|
hints |= INLINE_HINT_array_index;
|
|
if (info->scc_no)
|
|
hints |= INLINE_HINT_in_scc;
|
|
if (DECL_DECLARED_INLINE_P (node->decl))
|
|
hints |= INLINE_HINT_declared_inline;
|
|
|
|
estimate_calls_size_and_time (node, &size, &min_size, &time, &hints, possible_truths,
|
|
known_vals, known_contexts, known_aggs);
|
|
gcc_checking_assert (size >= 0);
|
|
gcc_checking_assert (time >= 0);
|
|
time = RDIV (time, INLINE_TIME_SCALE);
|
|
size = RDIV (size, INLINE_SIZE_SCALE);
|
|
min_size = RDIV (min_size, INLINE_SIZE_SCALE);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "\n size:%i time:%i\n", (int) size, (int) time);
|
|
if (ret_time)
|
|
*ret_time = time;
|
|
if (ret_size)
|
|
*ret_size = size;
|
|
if (ret_min_size)
|
|
*ret_min_size = min_size;
|
|
if (ret_hints)
|
|
*ret_hints = hints;
|
|
return;
|
|
}
|
|
|
|
|
|
/* Estimate size and time needed to execute callee of EDGE assuming that
|
|
parameters known to be constant at caller of EDGE are propagated.
|
|
KNOWN_VALS and KNOWN_CONTEXTS are vectors of assumed known constant values
|
|
and types for parameters. */
|
|
|
|
void
|
|
estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
|
|
vec<tree> known_vals,
|
|
vec<ipa_polymorphic_call_context>
|
|
known_contexts,
|
|
vec<ipa_agg_jump_function_p> known_aggs,
|
|
int *ret_size, int *ret_time,
|
|
inline_hints *hints)
|
|
{
|
|
clause_t clause;
|
|
|
|
clause = evaluate_conditions_for_known_args (node, false, known_vals,
|
|
known_aggs);
|
|
estimate_node_size_and_time (node, clause, known_vals, known_contexts,
|
|
known_aggs, ret_size, NULL, ret_time, hints, vNULL);
|
|
}
|
|
|
|
/* Translate all conditions from callee representation into caller
|
|
representation and symbolically evaluate predicate P into new predicate.
|
|
|
|
INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
|
|
is summary of function predicate P is from. OPERAND_MAP is array giving
|
|
callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
|
|
callee conditions that may be true in caller context. TOPLEV_PREDICATE is
|
|
predicate under which callee is executed. OFFSET_MAP is an array of of
|
|
offsets that need to be added to conditions, negative offset means that
|
|
conditions relying on values passed by reference have to be discarded
|
|
because they might not be preserved (and should be considered offset zero
|
|
for other purposes). */
|
|
|
|
static struct predicate
|
|
remap_predicate (struct inline_summary *info,
|
|
struct inline_summary *callee_info,
|
|
struct predicate *p,
|
|
vec<int> operand_map,
|
|
vec<int> offset_map,
|
|
clause_t possible_truths, struct predicate *toplev_predicate)
|
|
{
|
|
int i;
|
|
struct predicate out = true_predicate ();
|
|
|
|
/* True predicate is easy. */
|
|
if (true_predicate_p (p))
|
|
return *toplev_predicate;
|
|
for (i = 0; p->clause[i]; i++)
|
|
{
|
|
clause_t clause = p->clause[i];
|
|
int cond;
|
|
struct predicate clause_predicate = false_predicate ();
|
|
|
|
gcc_assert (i < MAX_CLAUSES);
|
|
|
|
for (cond = 0; cond < NUM_CONDITIONS; cond++)
|
|
/* Do we have condition we can't disprove? */
|
|
if (clause & possible_truths & (1 << cond))
|
|
{
|
|
struct predicate cond_predicate;
|
|
/* Work out if the condition can translate to predicate in the
|
|
inlined function. */
|
|
if (cond >= predicate_first_dynamic_condition)
|
|
{
|
|
struct condition *c;
|
|
|
|
c = &(*callee_info->conds)[cond
|
|
-
|
|
predicate_first_dynamic_condition];
|
|
/* See if we can remap condition operand to caller's operand.
|
|
Otherwise give up. */
|
|
if (!operand_map.exists ()
|
|
|| (int) operand_map.length () <= c->operand_num
|
|
|| operand_map[c->operand_num] == -1
|
|
/* TODO: For non-aggregate conditions, adding an offset is
|
|
basically an arithmetic jump function processing which
|
|
we should support in future. */
|
|
|| ((!c->agg_contents || !c->by_ref)
|
|
&& offset_map[c->operand_num] > 0)
|
|
|| (c->agg_contents && c->by_ref
|
|
&& offset_map[c->operand_num] < 0))
|
|
cond_predicate = true_predicate ();
|
|
else
|
|
{
|
|
struct agg_position_info ap;
|
|
HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
|
|
if (offset_delta < 0)
|
|
{
|
|
gcc_checking_assert (!c->agg_contents || !c->by_ref);
|
|
offset_delta = 0;
|
|
}
|
|
gcc_assert (!c->agg_contents
|
|
|| c->by_ref || offset_delta == 0);
|
|
ap.offset = c->offset + offset_delta;
|
|
ap.agg_contents = c->agg_contents;
|
|
ap.by_ref = c->by_ref;
|
|
cond_predicate = add_condition (info,
|
|
operand_map[c->operand_num],
|
|
&ap, c->code, c->val);
|
|
}
|
|
}
|
|
/* Fixed conditions remains same, construct single
|
|
condition predicate. */
|
|
else
|
|
{
|
|
cond_predicate.clause[0] = 1 << cond;
|
|
cond_predicate.clause[1] = 0;
|
|
}
|
|
clause_predicate = or_predicates (info->conds, &clause_predicate,
|
|
&cond_predicate);
|
|
}
|
|
out = and_predicates (info->conds, &out, &clause_predicate);
|
|
}
|
|
return and_predicates (info->conds, &out, toplev_predicate);
|
|
}
|
|
|
|
|
|
/* Update summary information of inline clones after inlining.
|
|
Compute peak stack usage. */
|
|
|
|
static void
|
|
inline_update_callee_summaries (struct cgraph_node *node, int depth)
|
|
{
|
|
struct cgraph_edge *e;
|
|
struct inline_summary *callee_info = inline_summaries->get (node);
|
|
struct inline_summary *caller_info = inline_summaries->get (node->callers->caller);
|
|
HOST_WIDE_INT peak;
|
|
|
|
callee_info->stack_frame_offset
|
|
= caller_info->stack_frame_offset
|
|
+ caller_info->estimated_self_stack_size;
|
|
peak = callee_info->stack_frame_offset
|
|
+ callee_info->estimated_self_stack_size;
|
|
if (inline_summaries->get (node->global.inlined_to)->estimated_stack_size < peak)
|
|
inline_summaries->get (node->global.inlined_to)->estimated_stack_size = peak;
|
|
ipa_propagate_frequency (node);
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
if (!e->inline_failed)
|
|
inline_update_callee_summaries (e->callee, depth);
|
|
inline_edge_summary (e)->loop_depth += depth;
|
|
}
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
inline_edge_summary (e)->loop_depth += depth;
|
|
}
|
|
|
|
/* Update change_prob of EDGE after INLINED_EDGE has been inlined.
|
|
When functoin A is inlined in B and A calls C with parameter that
|
|
changes with probability PROB1 and C is known to be passthroug
|
|
of argument if B that change with probability PROB2, the probability
|
|
of change is now PROB1*PROB2. */
|
|
|
|
static void
|
|
remap_edge_change_prob (struct cgraph_edge *inlined_edge,
|
|
struct cgraph_edge *edge)
|
|
{
|
|
if (ipa_node_params_sum)
|
|
{
|
|
int i;
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (edge);
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
|
struct inline_edge_summary *inlined_es
|
|
= inline_edge_summary (inlined_edge);
|
|
|
|
for (i = 0; i < ipa_get_cs_argument_count (args); i++)
|
|
{
|
|
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
|
|
if (jfunc->type == IPA_JF_PASS_THROUGH
|
|
&& (ipa_get_jf_pass_through_formal_id (jfunc)
|
|
< (int) inlined_es->param.length ()))
|
|
{
|
|
int jf_formal_id = ipa_get_jf_pass_through_formal_id (jfunc);
|
|
int prob1 = es->param[i].change_prob;
|
|
int prob2 = inlined_es->param[jf_formal_id].change_prob;
|
|
int prob = combine_probabilities (prob1, prob2);
|
|
|
|
if (prob1 && prob2 && !prob)
|
|
prob = 1;
|
|
|
|
es->param[i].change_prob = prob;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Update edge summaries of NODE after INLINED_EDGE has been inlined.
|
|
|
|
Remap predicates of callees of NODE. Rest of arguments match
|
|
remap_predicate.
|
|
|
|
Also update change probabilities. */
|
|
|
|
static void
|
|
remap_edge_summaries (struct cgraph_edge *inlined_edge,
|
|
struct cgraph_node *node,
|
|
struct inline_summary *info,
|
|
struct inline_summary *callee_info,
|
|
vec<int> operand_map,
|
|
vec<int> offset_map,
|
|
clause_t possible_truths,
|
|
struct predicate *toplev_predicate)
|
|
{
|
|
struct cgraph_edge *e, *next;
|
|
for (e = node->callees; e; e = next)
|
|
{
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
|
struct predicate p;
|
|
next = e->next_callee;
|
|
|
|
if (e->inline_failed)
|
|
{
|
|
remap_edge_change_prob (inlined_edge, e);
|
|
|
|
if (es->predicate)
|
|
{
|
|
p = remap_predicate (info, callee_info,
|
|
es->predicate, operand_map, offset_map,
|
|
possible_truths, toplev_predicate);
|
|
edge_set_predicate (e, &p);
|
|
}
|
|
else
|
|
edge_set_predicate (e, toplev_predicate);
|
|
}
|
|
else
|
|
remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
|
|
operand_map, offset_map, possible_truths,
|
|
toplev_predicate);
|
|
}
|
|
for (e = node->indirect_calls; e; e = next)
|
|
{
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
|
struct predicate p;
|
|
next = e->next_callee;
|
|
|
|
remap_edge_change_prob (inlined_edge, e);
|
|
if (es->predicate)
|
|
{
|
|
p = remap_predicate (info, callee_info,
|
|
es->predicate, operand_map, offset_map,
|
|
possible_truths, toplev_predicate);
|
|
edge_set_predicate (e, &p);
|
|
}
|
|
else
|
|
edge_set_predicate (e, toplev_predicate);
|
|
}
|
|
}
|
|
|
|
/* Same as remap_predicate, but set result into hint *HINT. */
|
|
|
|
static void
|
|
remap_hint_predicate (struct inline_summary *info,
|
|
struct inline_summary *callee_info,
|
|
struct predicate **hint,
|
|
vec<int> operand_map,
|
|
vec<int> offset_map,
|
|
clause_t possible_truths,
|
|
struct predicate *toplev_predicate)
|
|
{
|
|
predicate p;
|
|
|
|
if (!*hint)
|
|
return;
|
|
p = remap_predicate (info, callee_info,
|
|
*hint,
|
|
operand_map, offset_map,
|
|
possible_truths, toplev_predicate);
|
|
if (!false_predicate_p (&p) && !true_predicate_p (&p))
|
|
{
|
|
if (!*hint)
|
|
set_hint_predicate (hint, p);
|
|
else
|
|
**hint = and_predicates (info->conds, *hint, &p);
|
|
}
|
|
}
|
|
|
|
/* We inlined EDGE. Update summary of the function we inlined into. */
|
|
|
|
void
|
|
inline_merge_summary (struct cgraph_edge *edge)
|
|
{
|
|
struct inline_summary *callee_info = inline_summaries->get (edge->callee);
|
|
struct cgraph_node *to = (edge->caller->global.inlined_to
|
|
? edge->caller->global.inlined_to : edge->caller);
|
|
struct inline_summary *info = inline_summaries->get (to);
|
|
clause_t clause = 0; /* not_inline is known to be false. */
|
|
size_time_entry *e;
|
|
vec<int> operand_map = vNULL;
|
|
vec<int> offset_map = vNULL;
|
|
int i;
|
|
struct predicate toplev_predicate;
|
|
struct predicate true_p = true_predicate ();
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
|
|
|
if (es->predicate)
|
|
toplev_predicate = *es->predicate;
|
|
else
|
|
toplev_predicate = true_predicate ();
|
|
|
|
if (callee_info->conds)
|
|
evaluate_properties_for_edge (edge, true, &clause, NULL, NULL, NULL);
|
|
if (ipa_node_params_sum && callee_info->conds)
|
|
{
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (edge);
|
|
int count = ipa_get_cs_argument_count (args);
|
|
int i;
|
|
|
|
if (count)
|
|
{
|
|
operand_map.safe_grow_cleared (count);
|
|
offset_map.safe_grow_cleared (count);
|
|
}
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
|
|
int map = -1;
|
|
|
|
/* TODO: handle non-NOPs when merging. */
|
|
if (jfunc->type == IPA_JF_PASS_THROUGH)
|
|
{
|
|
if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
|
|
map = ipa_get_jf_pass_through_formal_id (jfunc);
|
|
if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
|
|
offset_map[i] = -1;
|
|
}
|
|
else if (jfunc->type == IPA_JF_ANCESTOR)
|
|
{
|
|
HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
|
|
if (offset >= 0 && offset < INT_MAX)
|
|
{
|
|
map = ipa_get_jf_ancestor_formal_id (jfunc);
|
|
if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
|
|
offset = -1;
|
|
offset_map[i] = offset;
|
|
}
|
|
}
|
|
operand_map[i] = map;
|
|
gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
|
|
}
|
|
}
|
|
for (i = 0; vec_safe_iterate (callee_info->entry, i, &e); i++)
|
|
{
|
|
struct predicate p = remap_predicate (info, callee_info,
|
|
&e->predicate, operand_map,
|
|
offset_map, clause,
|
|
&toplev_predicate);
|
|
if (!false_predicate_p (&p))
|
|
{
|
|
gcov_type add_time = ((gcov_type) e->time * edge->frequency
|
|
+ CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
|
|
int prob = predicate_probability (callee_info->conds,
|
|
&e->predicate,
|
|
clause, es->param);
|
|
add_time = apply_probability ((gcov_type) add_time, prob);
|
|
if (add_time > MAX_TIME * INLINE_TIME_SCALE)
|
|
add_time = MAX_TIME * INLINE_TIME_SCALE;
|
|
if (prob != REG_BR_PROB_BASE
|
|
&& dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\t\tScaling time by probability:%f\n",
|
|
(double) prob / REG_BR_PROB_BASE);
|
|
}
|
|
account_size_time (info, e->size, add_time, &p);
|
|
}
|
|
}
|
|
remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
|
|
offset_map, clause, &toplev_predicate);
|
|
remap_hint_predicate (info, callee_info,
|
|
&callee_info->loop_iterations,
|
|
operand_map, offset_map, clause, &toplev_predicate);
|
|
remap_hint_predicate (info, callee_info,
|
|
&callee_info->loop_stride,
|
|
operand_map, offset_map, clause, &toplev_predicate);
|
|
remap_hint_predicate (info, callee_info,
|
|
&callee_info->array_index,
|
|
operand_map, offset_map, clause, &toplev_predicate);
|
|
|
|
inline_update_callee_summaries (edge->callee,
|
|
inline_edge_summary (edge)->loop_depth);
|
|
|
|
/* We do not maintain predicates of inlined edges, free it. */
|
|
edge_set_predicate (edge, &true_p);
|
|
/* Similarly remove param summaries. */
|
|
es->param.release ();
|
|
operand_map.release ();
|
|
offset_map.release ();
|
|
}
|
|
|
|
/* For performance reasons inline_merge_summary is not updating overall size
|
|
and time. Recompute it. */
|
|
|
|
void
|
|
inline_update_overall_summary (struct cgraph_node *node)
|
|
{
|
|
struct inline_summary *info = inline_summaries->get (node);
|
|
size_time_entry *e;
|
|
int i;
|
|
|
|
info->size = 0;
|
|
info->time = 0;
|
|
for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
|
|
{
|
|
info->size += e->size, info->time += e->time;
|
|
if (info->time > MAX_TIME * INLINE_TIME_SCALE)
|
|
info->time = MAX_TIME * INLINE_TIME_SCALE;
|
|
}
|
|
estimate_calls_size_and_time (node, &info->size, &info->min_size,
|
|
&info->time, NULL,
|
|
~(clause_t) (1 << predicate_false_condition),
|
|
vNULL, vNULL, vNULL);
|
|
info->time = (info->time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
|
|
info->size = (info->size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
|
|
}
|
|
|
|
/* Return hints derrived from EDGE. */
|
|
int
|
|
simple_edge_hints (struct cgraph_edge *edge)
|
|
{
|
|
int hints = 0;
|
|
struct cgraph_node *to = (edge->caller->global.inlined_to
|
|
? edge->caller->global.inlined_to : edge->caller);
|
|
struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
|
|
if (inline_summaries->get (to)->scc_no
|
|
&& inline_summaries->get (to)->scc_no
|
|
== inline_summaries->get (callee)->scc_no
|
|
&& !edge->recursive_p ())
|
|
hints |= INLINE_HINT_same_scc;
|
|
|
|
if (callee->lto_file_data && edge->caller->lto_file_data
|
|
&& edge->caller->lto_file_data != callee->lto_file_data
|
|
&& !callee->merged_comdat && !callee->icf_merged)
|
|
hints |= INLINE_HINT_cross_module;
|
|
|
|
return hints;
|
|
}
|
|
|
|
/* Estimate the time cost for the caller when inlining EDGE.
|
|
Only to be called via estimate_edge_time, that handles the
|
|
caching mechanism.
|
|
|
|
When caching, also update the cache entry. Compute both time and
|
|
size, since we always need both metrics eventually. */
|
|
|
|
int
|
|
do_estimate_edge_time (struct cgraph_edge *edge)
|
|
{
|
|
int time;
|
|
int size;
|
|
inline_hints hints;
|
|
struct cgraph_node *callee;
|
|
clause_t clause;
|
|
vec<tree> known_vals;
|
|
vec<ipa_polymorphic_call_context> known_contexts;
|
|
vec<ipa_agg_jump_function_p> known_aggs;
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
|
int min_size;
|
|
|
|
callee = edge->callee->ultimate_alias_target ();
|
|
|
|
gcc_checking_assert (edge->inline_failed);
|
|
evaluate_properties_for_edge (edge, true,
|
|
&clause, &known_vals, &known_contexts,
|
|
&known_aggs);
|
|
estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
|
|
known_aggs, &size, &min_size, &time, &hints, es->param);
|
|
|
|
/* When we have profile feedback, we can quite safely identify hot
|
|
edges and for those we disable size limits. Don't do that when
|
|
probability that caller will call the callee is low however, since it
|
|
may hurt optimization of the caller's hot path. */
|
|
if (edge->count && edge->maybe_hot_p ()
|
|
&& (edge->count * 2
|
|
> (edge->caller->global.inlined_to
|
|
? edge->caller->global.inlined_to->count : edge->caller->count)))
|
|
hints |= INLINE_HINT_known_hot;
|
|
|
|
known_vals.release ();
|
|
known_contexts.release ();
|
|
known_aggs.release ();
|
|
gcc_checking_assert (size >= 0);
|
|
gcc_checking_assert (time >= 0);
|
|
|
|
/* When caching, update the cache entry. */
|
|
if (edge_growth_cache.exists ())
|
|
{
|
|
inline_summaries->get (edge->callee)->min_size = min_size;
|
|
if ((int) edge_growth_cache.length () <= edge->uid)
|
|
edge_growth_cache.safe_grow_cleared (symtab->edges_max_uid);
|
|
edge_growth_cache[edge->uid].time = time + (time >= 0);
|
|
|
|
edge_growth_cache[edge->uid].size = size + (size >= 0);
|
|
hints |= simple_edge_hints (edge);
|
|
edge_growth_cache[edge->uid].hints = hints + 1;
|
|
}
|
|
return time;
|
|
}
|
|
|
|
|
|
/* Return estimated callee growth after inlining EDGE.
|
|
Only to be called via estimate_edge_size. */
|
|
|
|
int
|
|
do_estimate_edge_size (struct cgraph_edge *edge)
|
|
{
|
|
int size;
|
|
struct cgraph_node *callee;
|
|
clause_t clause;
|
|
vec<tree> known_vals;
|
|
vec<ipa_polymorphic_call_context> known_contexts;
|
|
vec<ipa_agg_jump_function_p> known_aggs;
|
|
|
|
/* When we do caching, use do_estimate_edge_time to populate the entry. */
|
|
|
|
if (edge_growth_cache.exists ())
|
|
{
|
|
do_estimate_edge_time (edge);
|
|
size = edge_growth_cache[edge->uid].size;
|
|
gcc_checking_assert (size);
|
|
return size - (size > 0);
|
|
}
|
|
|
|
callee = edge->callee->ultimate_alias_target ();
|
|
|
|
/* Early inliner runs without caching, go ahead and do the dirty work. */
|
|
gcc_checking_assert (edge->inline_failed);
|
|
evaluate_properties_for_edge (edge, true,
|
|
&clause, &known_vals, &known_contexts,
|
|
&known_aggs);
|
|
estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
|
|
known_aggs, &size, NULL, NULL, NULL, vNULL);
|
|
known_vals.release ();
|
|
known_contexts.release ();
|
|
known_aggs.release ();
|
|
return size;
|
|
}
|
|
|
|
|
|
/* Estimate the growth of the caller when inlining EDGE.
|
|
Only to be called via estimate_edge_size. */
|
|
|
|
inline_hints
|
|
do_estimate_edge_hints (struct cgraph_edge *edge)
|
|
{
|
|
inline_hints hints;
|
|
struct cgraph_node *callee;
|
|
clause_t clause;
|
|
vec<tree> known_vals;
|
|
vec<ipa_polymorphic_call_context> known_contexts;
|
|
vec<ipa_agg_jump_function_p> known_aggs;
|
|
|
|
/* When we do caching, use do_estimate_edge_time to populate the entry. */
|
|
|
|
if (edge_growth_cache.exists ())
|
|
{
|
|
do_estimate_edge_time (edge);
|
|
hints = edge_growth_cache[edge->uid].hints;
|
|
gcc_checking_assert (hints);
|
|
return hints - 1;
|
|
}
|
|
|
|
callee = edge->callee->ultimate_alias_target ();
|
|
|
|
/* Early inliner runs without caching, go ahead and do the dirty work. */
|
|
gcc_checking_assert (edge->inline_failed);
|
|
evaluate_properties_for_edge (edge, true,
|
|
&clause, &known_vals, &known_contexts,
|
|
&known_aggs);
|
|
estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
|
|
known_aggs, NULL, NULL, NULL, &hints, vNULL);
|
|
known_vals.release ();
|
|
known_contexts.release ();
|
|
known_aggs.release ();
|
|
hints |= simple_edge_hints (edge);
|
|
return hints;
|
|
}
|
|
|
|
|
|
/* Estimate self time of the function NODE after inlining EDGE. */
|
|
|
|
int
|
|
estimate_time_after_inlining (struct cgraph_node *node,
|
|
struct cgraph_edge *edge)
|
|
{
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
|
if (!es->predicate || !false_predicate_p (es->predicate))
|
|
{
|
|
gcov_type time =
|
|
inline_summaries->get (node)->time + estimate_edge_time (edge);
|
|
if (time < 0)
|
|
time = 0;
|
|
if (time > MAX_TIME)
|
|
time = MAX_TIME;
|
|
return time;
|
|
}
|
|
return inline_summaries->get (node)->time;
|
|
}
|
|
|
|
|
|
/* Estimate the size of NODE after inlining EDGE which should be an
|
|
edge to either NODE or a call inlined into NODE. */
|
|
|
|
int
|
|
estimate_size_after_inlining (struct cgraph_node *node,
|
|
struct cgraph_edge *edge)
|
|
{
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
|
if (!es->predicate || !false_predicate_p (es->predicate))
|
|
{
|
|
int size = inline_summaries->get (node)->size + estimate_edge_growth (edge);
|
|
gcc_assert (size >= 0);
|
|
return size;
|
|
}
|
|
return inline_summaries->get (node)->size;
|
|
}
|
|
|
|
|
|
struct growth_data
|
|
{
|
|
struct cgraph_node *node;
|
|
bool self_recursive;
|
|
bool uninlinable;
|
|
int growth;
|
|
};
|
|
|
|
|
|
/* Worker for do_estimate_growth. Collect growth for all callers. */
|
|
|
|
static bool
|
|
do_estimate_growth_1 (struct cgraph_node *node, void *data)
|
|
{
|
|
struct cgraph_edge *e;
|
|
struct growth_data *d = (struct growth_data *) data;
|
|
|
|
for (e = node->callers; e; e = e->next_caller)
|
|
{
|
|
gcc_checking_assert (e->inline_failed);
|
|
|
|
if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
|
|
{
|
|
d->uninlinable = true;
|
|
continue;
|
|
}
|
|
|
|
if (e->recursive_p ())
|
|
{
|
|
d->self_recursive = true;
|
|
continue;
|
|
}
|
|
d->growth += estimate_edge_growth (e);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Estimate the growth caused by inlining NODE into all callees. */
|
|
|
|
int
|
|
estimate_growth (struct cgraph_node *node)
|
|
{
|
|
struct growth_data d = { node, false, false, 0 };
|
|
struct inline_summary *info = inline_summaries->get (node);
|
|
|
|
node->call_for_symbol_and_aliases (do_estimate_growth_1, &d, true);
|
|
|
|
/* For self recursive functions the growth estimation really should be
|
|
infinity. We don't want to return very large values because the growth
|
|
plays various roles in badness computation fractions. Be sure to not
|
|
return zero or negative growths. */
|
|
if (d.self_recursive)
|
|
d.growth = d.growth < info->size ? info->size : d.growth;
|
|
else if (DECL_EXTERNAL (node->decl) || d.uninlinable)
|
|
;
|
|
else
|
|
{
|
|
if (node->will_be_removed_from_program_if_no_direct_calls_p ())
|
|
d.growth -= info->size;
|
|
/* COMDAT functions are very often not shared across multiple units
|
|
since they come from various template instantiations.
|
|
Take this into account. */
|
|
else if (DECL_COMDAT (node->decl)
|
|
&& node->can_remove_if_no_direct_calls_p ())
|
|
d.growth -= (info->size
|
|
* (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY))
|
|
+ 50) / 100;
|
|
}
|
|
|
|
return d.growth;
|
|
}
|
|
|
|
/* Verify if there are fewer than MAX_CALLERS. */
|
|
|
|
static bool
|
|
check_callers (cgraph_node *node, int *max_callers)
|
|
{
|
|
ipa_ref *ref;
|
|
|
|
if (!node->can_remove_if_no_direct_calls_and_refs_p ())
|
|
return true;
|
|
|
|
for (cgraph_edge *e = node->callers; e; e = e->next_caller)
|
|
{
|
|
(*max_callers)--;
|
|
if (!*max_callers
|
|
|| cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
|
|
return true;
|
|
}
|
|
|
|
FOR_EACH_ALIAS (node, ref)
|
|
if (check_callers (dyn_cast <cgraph_node *> (ref->referring), max_callers))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Make cheap estimation if growth of NODE is likely positive knowing
|
|
EDGE_GROWTH of one particular edge.
|
|
We assume that most of other edges will have similar growth
|
|
and skip computation if there are too many callers. */
|
|
|
|
bool
|
|
growth_likely_positive (struct cgraph_node *node,
|
|
int edge_growth)
|
|
{
|
|
int max_callers;
|
|
struct cgraph_edge *e;
|
|
gcc_checking_assert (edge_growth > 0);
|
|
|
|
/* First quickly check if NODE is removable at all. */
|
|
if (DECL_EXTERNAL (node->decl))
|
|
return true;
|
|
if (!node->can_remove_if_no_direct_calls_and_refs_p ()
|
|
|| node->address_taken)
|
|
return true;
|
|
|
|
max_callers = inline_summaries->get (node)->size * 4 / edge_growth + 2;
|
|
|
|
for (e = node->callers; e; e = e->next_caller)
|
|
{
|
|
max_callers--;
|
|
if (!max_callers
|
|
|| cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
|
|
return true;
|
|
}
|
|
|
|
ipa_ref *ref;
|
|
FOR_EACH_ALIAS (node, ref)
|
|
if (check_callers (dyn_cast <cgraph_node *> (ref->referring), &max_callers))
|
|
return true;
|
|
|
|
/* Unlike for functions called once, we play unsafe with
|
|
COMDATs. We can allow that since we know functions
|
|
in consideration are small (and thus risk is small) and
|
|
moreover grow estimates already accounts that COMDAT
|
|
functions may or may not disappear when eliminated from
|
|
current unit. With good probability making aggressive
|
|
choice in all units is going to make overall program
|
|
smaller. */
|
|
if (DECL_COMDAT (node->decl))
|
|
{
|
|
if (!node->can_remove_if_no_direct_calls_p ())
|
|
return true;
|
|
}
|
|
else if (!node->will_be_removed_from_program_if_no_direct_calls_p ())
|
|
return true;
|
|
|
|
return estimate_growth (node) > 0;
|
|
}
|
|
|
|
|
|
/* This function performs intraprocedural analysis in NODE that is required to
|
|
inline indirect calls. */
|
|
|
|
static void
|
|
inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
|
|
{
|
|
ipa_analyze_node (node);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
ipa_print_node_params (dump_file, node);
|
|
ipa_print_node_jump_functions (dump_file, node);
|
|
}
|
|
}
|
|
|
|
|
|
/* Note function body size. */
|
|
|
|
void
|
|
inline_analyze_function (struct cgraph_node *node)
|
|
{
|
|
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
|
|
node->name (), node->order);
|
|
if (opt_for_fn (node->decl, optimize) && !node->thunk.thunk_p)
|
|
inline_indirect_intraprocedural_analysis (node);
|
|
compute_inline_parameters (node, false);
|
|
if (!optimize)
|
|
{
|
|
struct cgraph_edge *e;
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
|
|
e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
|
|
e->call_stmt_cannot_inline_p = true;
|
|
}
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
{
|
|
if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
|
|
e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
|
|
e->call_stmt_cannot_inline_p = true;
|
|
}
|
|
}
|
|
|
|
pop_cfun ();
|
|
}
|
|
|
|
|
|
/* Called when new function is inserted to callgraph late. */
|
|
|
|
void
|
|
inline_summary_t::insert (struct cgraph_node *node, inline_summary *)
|
|
{
|
|
inline_analyze_function (node);
|
|
}
|
|
|
|
/* Note function body size. */
|
|
|
|
void
|
|
inline_generate_summary (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
|
if (DECL_STRUCT_FUNCTION (node->decl))
|
|
node->local.versionable = tree_versionable_function_p (node->decl);
|
|
|
|
/* When not optimizing, do not bother to analyze. Inlining is still done
|
|
because edge redirection needs to happen there. */
|
|
if (!optimize && !flag_generate_lto && !flag_generate_offload && !flag_wpa)
|
|
return;
|
|
|
|
if (!inline_summaries)
|
|
inline_summaries = (inline_summary_t*) inline_summary_t::create_ggc (symtab);
|
|
|
|
inline_summaries->enable_insertion_hook ();
|
|
|
|
ipa_register_cgraph_hooks ();
|
|
inline_free_summary ();
|
|
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
|
if (!node->alias)
|
|
inline_analyze_function (node);
|
|
}
|
|
|
|
|
|
/* Read predicate from IB. */
|
|
|
|
static struct predicate
|
|
read_predicate (struct lto_input_block *ib)
|
|
{
|
|
struct predicate out;
|
|
clause_t clause;
|
|
int k = 0;
|
|
|
|
do
|
|
{
|
|
gcc_assert (k <= MAX_CLAUSES);
|
|
clause = out.clause[k++] = streamer_read_uhwi (ib);
|
|
}
|
|
while (clause);
|
|
|
|
/* Zero-initialize the remaining clauses in OUT. */
|
|
while (k <= MAX_CLAUSES)
|
|
out.clause[k++] = 0;
|
|
|
|
return out;
|
|
}
|
|
|
|
|
|
/* Write inline summary for edge E to OB. */
|
|
|
|
static void
|
|
read_inline_edge_summary (struct lto_input_block *ib, struct cgraph_edge *e)
|
|
{
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
|
struct predicate p;
|
|
int length, i;
|
|
|
|
es->call_stmt_size = streamer_read_uhwi (ib);
|
|
es->call_stmt_time = streamer_read_uhwi (ib);
|
|
es->loop_depth = streamer_read_uhwi (ib);
|
|
p = read_predicate (ib);
|
|
edge_set_predicate (e, &p);
|
|
length = streamer_read_uhwi (ib);
|
|
if (length)
|
|
{
|
|
es->param.safe_grow_cleared (length);
|
|
for (i = 0; i < length; i++)
|
|
es->param[i].change_prob = streamer_read_uhwi (ib);
|
|
}
|
|
}
|
|
|
|
|
|
/* Stream in inline summaries from the section. */
|
|
|
|
static void
|
|
inline_read_section (struct lto_file_decl_data *file_data, const char *data,
|
|
size_t len)
|
|
{
|
|
const struct lto_function_header *header =
|
|
(const struct lto_function_header *) data;
|
|
const int cfg_offset = sizeof (struct lto_function_header);
|
|
const int main_offset = cfg_offset + header->cfg_size;
|
|
const int string_offset = main_offset + header->main_size;
|
|
struct data_in *data_in;
|
|
unsigned int i, count2, j;
|
|
unsigned int f_count;
|
|
|
|
lto_input_block ib ((const char *) data + main_offset, header->main_size,
|
|
file_data->mode_table);
|
|
|
|
data_in =
|
|
lto_data_in_create (file_data, (const char *) data + string_offset,
|
|
header->string_size, vNULL);
|
|
f_count = streamer_read_uhwi (&ib);
|
|
for (i = 0; i < f_count; i++)
|
|
{
|
|
unsigned int index;
|
|
struct cgraph_node *node;
|
|
struct inline_summary *info;
|
|
lto_symtab_encoder_t encoder;
|
|
struct bitpack_d bp;
|
|
struct cgraph_edge *e;
|
|
predicate p;
|
|
|
|
index = streamer_read_uhwi (&ib);
|
|
encoder = file_data->symtab_node_encoder;
|
|
node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
|
|
index));
|
|
info = inline_summaries->get (node);
|
|
|
|
info->estimated_stack_size
|
|
= info->estimated_self_stack_size = streamer_read_uhwi (&ib);
|
|
info->size = info->self_size = streamer_read_uhwi (&ib);
|
|
info->time = info->self_time = streamer_read_uhwi (&ib);
|
|
|
|
bp = streamer_read_bitpack (&ib);
|
|
info->inlinable = bp_unpack_value (&bp, 1);
|
|
info->contains_cilk_spawn = bp_unpack_value (&bp, 1);
|
|
|
|
count2 = streamer_read_uhwi (&ib);
|
|
gcc_assert (!info->conds);
|
|
for (j = 0; j < count2; j++)
|
|
{
|
|
struct condition c;
|
|
c.operand_num = streamer_read_uhwi (&ib);
|
|
c.code = (enum tree_code) streamer_read_uhwi (&ib);
|
|
c.val = stream_read_tree (&ib, data_in);
|
|
bp = streamer_read_bitpack (&ib);
|
|
c.agg_contents = bp_unpack_value (&bp, 1);
|
|
c.by_ref = bp_unpack_value (&bp, 1);
|
|
if (c.agg_contents)
|
|
c.offset = streamer_read_uhwi (&ib);
|
|
vec_safe_push (info->conds, c);
|
|
}
|
|
count2 = streamer_read_uhwi (&ib);
|
|
gcc_assert (!info->entry);
|
|
for (j = 0; j < count2; j++)
|
|
{
|
|
struct size_time_entry e;
|
|
|
|
e.size = streamer_read_uhwi (&ib);
|
|
e.time = streamer_read_uhwi (&ib);
|
|
e.predicate = read_predicate (&ib);
|
|
|
|
vec_safe_push (info->entry, e);
|
|
}
|
|
|
|
p = read_predicate (&ib);
|
|
set_hint_predicate (&info->loop_iterations, p);
|
|
p = read_predicate (&ib);
|
|
set_hint_predicate (&info->loop_stride, p);
|
|
p = read_predicate (&ib);
|
|
set_hint_predicate (&info->array_index, p);
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
read_inline_edge_summary (&ib, e);
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
read_inline_edge_summary (&ib, e);
|
|
}
|
|
|
|
lto_free_section_data (file_data, LTO_section_inline_summary, NULL, data,
|
|
len);
|
|
lto_data_in_delete (data_in);
|
|
}
|
|
|
|
|
|
/* Read inline summary. Jump functions are shared among ipa-cp
|
|
and inliner, so when ipa-cp is active, we don't need to write them
|
|
twice. */
|
|
|
|
void
|
|
inline_read_summary (void)
|
|
{
|
|
struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
|
|
struct lto_file_decl_data *file_data;
|
|
unsigned int j = 0;
|
|
|
|
inline_summary_alloc ();
|
|
|
|
while ((file_data = file_data_vec[j++]))
|
|
{
|
|
size_t len;
|
|
const char *data = lto_get_section_data (file_data,
|
|
LTO_section_inline_summary,
|
|
NULL, &len);
|
|
if (data)
|
|
inline_read_section (file_data, data, len);
|
|
else
|
|
/* Fatal error here. We do not want to support compiling ltrans units
|
|
with different version of compiler or different flags than the WPA
|
|
unit, so this should never happen. */
|
|
fatal_error (input_location,
|
|
"ipa inline summary is missing in input file");
|
|
}
|
|
if (optimize)
|
|
{
|
|
ipa_register_cgraph_hooks ();
|
|
if (!flag_ipa_cp)
|
|
ipa_prop_read_jump_functions ();
|
|
}
|
|
|
|
gcc_assert (inline_summaries);
|
|
inline_summaries->enable_insertion_hook ();
|
|
}
|
|
|
|
|
|
/* Write predicate P to OB. */
|
|
|
|
static void
|
|
write_predicate (struct output_block *ob, struct predicate *p)
|
|
{
|
|
int j;
|
|
if (p)
|
|
for (j = 0; p->clause[j]; j++)
|
|
{
|
|
gcc_assert (j < MAX_CLAUSES);
|
|
streamer_write_uhwi (ob, p->clause[j]);
|
|
}
|
|
streamer_write_uhwi (ob, 0);
|
|
}
|
|
|
|
|
|
/* Write inline summary for edge E to OB. */
|
|
|
|
static void
|
|
write_inline_edge_summary (struct output_block *ob, struct cgraph_edge *e)
|
|
{
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
|
int i;
|
|
|
|
streamer_write_uhwi (ob, es->call_stmt_size);
|
|
streamer_write_uhwi (ob, es->call_stmt_time);
|
|
streamer_write_uhwi (ob, es->loop_depth);
|
|
write_predicate (ob, es->predicate);
|
|
streamer_write_uhwi (ob, es->param.length ());
|
|
for (i = 0; i < (int) es->param.length (); i++)
|
|
streamer_write_uhwi (ob, es->param[i].change_prob);
|
|
}
|
|
|
|
|
|
/* Write inline summary for node in SET.
|
|
Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
|
|
active, we don't need to write them twice. */
|
|
|
|
void
|
|
inline_write_summary (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
struct output_block *ob = create_output_block (LTO_section_inline_summary);
|
|
lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
|
|
unsigned int count = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
|
|
{
|
|
symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
|
|
cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
|
|
if (cnode && cnode->definition && !cnode->alias)
|
|
count++;
|
|
}
|
|
streamer_write_uhwi (ob, count);
|
|
|
|
for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
|
|
{
|
|
symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
|
|
cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
|
|
if (cnode && (node = cnode)->definition && !node->alias)
|
|
{
|
|
struct inline_summary *info = inline_summaries->get (node);
|
|
struct bitpack_d bp;
|
|
struct cgraph_edge *edge;
|
|
int i;
|
|
size_time_entry *e;
|
|
struct condition *c;
|
|
|
|
streamer_write_uhwi (ob,
|
|
lto_symtab_encoder_encode (encoder,
|
|
|
|
node));
|
|
streamer_write_hwi (ob, info->estimated_self_stack_size);
|
|
streamer_write_hwi (ob, info->self_size);
|
|
streamer_write_hwi (ob, info->self_time);
|
|
bp = bitpack_create (ob->main_stream);
|
|
bp_pack_value (&bp, info->inlinable, 1);
|
|
bp_pack_value (&bp, info->contains_cilk_spawn, 1);
|
|
streamer_write_bitpack (&bp);
|
|
streamer_write_uhwi (ob, vec_safe_length (info->conds));
|
|
for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
|
|
{
|
|
streamer_write_uhwi (ob, c->operand_num);
|
|
streamer_write_uhwi (ob, c->code);
|
|
stream_write_tree (ob, c->val, true);
|
|
bp = bitpack_create (ob->main_stream);
|
|
bp_pack_value (&bp, c->agg_contents, 1);
|
|
bp_pack_value (&bp, c->by_ref, 1);
|
|
streamer_write_bitpack (&bp);
|
|
if (c->agg_contents)
|
|
streamer_write_uhwi (ob, c->offset);
|
|
}
|
|
streamer_write_uhwi (ob, vec_safe_length (info->entry));
|
|
for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
|
|
{
|
|
streamer_write_uhwi (ob, e->size);
|
|
streamer_write_uhwi (ob, e->time);
|
|
write_predicate (ob, &e->predicate);
|
|
}
|
|
write_predicate (ob, info->loop_iterations);
|
|
write_predicate (ob, info->loop_stride);
|
|
write_predicate (ob, info->array_index);
|
|
for (edge = node->callees; edge; edge = edge->next_callee)
|
|
write_inline_edge_summary (ob, edge);
|
|
for (edge = node->indirect_calls; edge; edge = edge->next_callee)
|
|
write_inline_edge_summary (ob, edge);
|
|
}
|
|
}
|
|
streamer_write_char_stream (ob->main_stream, 0);
|
|
produce_asm (ob, NULL);
|
|
destroy_output_block (ob);
|
|
|
|
if (optimize && !flag_ipa_cp)
|
|
ipa_prop_write_jump_functions ();
|
|
}
|
|
|
|
|
|
/* Release inline summary. */
|
|
|
|
void
|
|
inline_free_summary (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
if (edge_removal_hook_holder)
|
|
symtab->remove_edge_removal_hook (edge_removal_hook_holder);
|
|
edge_removal_hook_holder = NULL;
|
|
if (edge_duplication_hook_holder)
|
|
symtab->remove_edge_duplication_hook (edge_duplication_hook_holder);
|
|
edge_duplication_hook_holder = NULL;
|
|
if (!inline_edge_summary_vec.exists ())
|
|
return;
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
|
if (!node->alias)
|
|
reset_inline_summary (node, inline_summaries->get (node));
|
|
inline_summaries->release ();
|
|
inline_summaries = NULL;
|
|
inline_edge_summary_vec.release ();
|
|
edge_predicate_pool.release ();
|
|
}
|