gcc/libjava/classpath/native/fdlibm/s_tan.c
Mark Wielaard 8aa540d2f7 Imported GNU Classpath 0.90
Imported GNU Classpath 0.90
       * scripts/makemake.tcl: Set gnu/java/awt/peer/swing to ignore.
       * gnu/classpath/jdwp/VMFrame.java (SIZE): New constant.
       * java/lang/VMCompiler.java: Use gnu.java.security.hash.MD5.
       * java/lang/Math.java: New override file.
       * java/lang/Character.java: Merged from Classpath.
       (start, end): Now 'int's.
       (canonicalName): New field.
       (CANONICAL_NAME, NO_SPACES_NAME, CONSTANT_NAME): New constants.
       (UnicodeBlock): Added argument.
       (of): New overload.
       (forName): New method.
       Updated unicode blocks.
       (sets): Updated.
       * sources.am: Regenerated.
       * Makefile.in: Likewise.

From-SVN: r111942
2006-03-10 21:46:48 +00:00

76 lines
1.8 KiB
C

/* @(#)s_tan.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* tan(x)
* Return tangent function of x.
*
* kernel function:
* __kernel_tan ... tangent function on [-pi/4,pi/4]
* __ieee754_rem_pio2 ... argument reduction routine
*
* Method.
* Let S,C and T denote the sin, cos and tan respectively on
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
* n sin(x) cos(x) tan(x)
* ----------------------------------------------------------
* 0 S C T
* 1 C -S -1/T
* 2 -S -C T
* 3 -C S -1/T
* ----------------------------------------------------------
*
* Special cases:
* Let trig be any of sin, cos, or tan.
* trig(+-INF) is NaN, with signals;
* trig(NaN) is that NaN;
*
* Accuracy:
* TRIG(x) returns trig(x) nearly rounded
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
double tan(double x)
#else
double tan(x)
double x;
#endif
{
double y[2],z=0.0;
int32_t n, ix;
/* High word of x. */
GET_HIGH_WORD(ix,x);
/* |x| ~< pi/4 */
ix &= 0x7fffffff;
if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
/* tan(Inf or NaN) is NaN */
else if (ix>=0x7ff00000) return x-x; /* NaN */
/* argument reduction needed */
else {
n = __ieee754_rem_pio2(x,y);
return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
-1 -- n odd */
}
}
#endif /* _DOUBLE_IS_32BITS */