b673e7547f
On the following testcase, handle_builtin_memcmp in the strlen pass folds the memcmp into comparison of two MEM_REFs. But nothing triggers updating of addressable vars afterwards, so even when the parameters are no longer address taken, we force the parameters to stack and back anyway. This patch causes TODO_update_address_taken to happen right before last forwprop pass (at the end of last cd_dce), so after strlen1 too. 2021-01-16 Jakub Jelinek <jakub@redhat.com> PR tree-optimization/96271 * passes.def: Pass false argument to first two pass_cd_dce instances and true to last instance. Add comment that last instance rewrites no longer addressed locals. * tree-ssa-dce.c (pass_cd_dce): Add update_address_taken_p member and initialize it. (pass_cd_dce::set_pass_param): New method. (pass_cd_dce::execute): Return TODO_update_address_taken from last cd_dce instance. * gcc.target/i386/pr96271.c: New test.
1870 lines
55 KiB
C
1870 lines
55 KiB
C
/* Dead code elimination pass for the GNU compiler.
|
|
Copyright (C) 2002-2021 Free Software Foundation, Inc.
|
|
Contributed by Ben Elliston <bje@redhat.com>
|
|
and Andrew MacLeod <amacleod@redhat.com>
|
|
Adapted to use control dependence by Steven Bosscher, SUSE Labs.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* Dead code elimination.
|
|
|
|
References:
|
|
|
|
Building an Optimizing Compiler,
|
|
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
|
|
|
|
Advanced Compiler Design and Implementation,
|
|
Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
|
|
|
|
Dead-code elimination is the removal of statements which have no
|
|
impact on the program's output. "Dead statements" have no impact
|
|
on the program's output, while "necessary statements" may have
|
|
impact on the output.
|
|
|
|
The algorithm consists of three phases:
|
|
1. Marking as necessary all statements known to be necessary,
|
|
e.g. most function calls, writing a value to memory, etc;
|
|
2. Propagating necessary statements, e.g., the statements
|
|
giving values to operands in necessary statements; and
|
|
3. Removing dead statements. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "cfghooks.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "fold-const.h"
|
|
#include "calls.h"
|
|
#include "cfganal.h"
|
|
#include "tree-eh.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-ssa-loop-niter.h"
|
|
#include "tree-into-ssa.h"
|
|
#include "tree-dfa.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "tree-ssa-propagate.h"
|
|
#include "gimple-fold.h"
|
|
|
|
static struct stmt_stats
|
|
{
|
|
int total;
|
|
int total_phis;
|
|
int removed;
|
|
int removed_phis;
|
|
} stats;
|
|
|
|
#define STMT_NECESSARY GF_PLF_1
|
|
|
|
static vec<gimple *> worklist;
|
|
|
|
/* Vector indicating an SSA name has already been processed and marked
|
|
as necessary. */
|
|
static sbitmap processed;
|
|
|
|
/* Vector indicating that the last statement of a basic block has already
|
|
been marked as necessary. */
|
|
static sbitmap last_stmt_necessary;
|
|
|
|
/* Vector indicating that BB contains statements that are live. */
|
|
static sbitmap bb_contains_live_stmts;
|
|
|
|
/* Before we can determine whether a control branch is dead, we need to
|
|
compute which blocks are control dependent on which edges.
|
|
|
|
We expect each block to be control dependent on very few edges so we
|
|
use a bitmap for each block recording its edges. An array holds the
|
|
bitmap. The Ith bit in the bitmap is set if that block is dependent
|
|
on the Ith edge. */
|
|
static control_dependences *cd;
|
|
|
|
/* Vector indicating that a basic block has already had all the edges
|
|
processed that it is control dependent on. */
|
|
static sbitmap visited_control_parents;
|
|
|
|
/* TRUE if this pass alters the CFG (by removing control statements).
|
|
FALSE otherwise.
|
|
|
|
If this pass alters the CFG, then it will arrange for the dominators
|
|
to be recomputed. */
|
|
static bool cfg_altered;
|
|
|
|
/* When non-NULL holds map from basic block index into the postorder. */
|
|
static int *bb_postorder;
|
|
|
|
|
|
/* True if we should treat any stmt with a vdef as necessary. */
|
|
|
|
static inline bool
|
|
keep_all_vdefs_p ()
|
|
{
|
|
return optimize_debug;
|
|
}
|
|
|
|
/* If STMT is not already marked necessary, mark it, and add it to the
|
|
worklist if ADD_TO_WORKLIST is true. */
|
|
|
|
static inline void
|
|
mark_stmt_necessary (gimple *stmt, bool add_to_worklist)
|
|
{
|
|
gcc_assert (stmt);
|
|
|
|
if (gimple_plf (stmt, STMT_NECESSARY))
|
|
return;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Marking useful stmt: ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
gimple_set_plf (stmt, STMT_NECESSARY, true);
|
|
if (add_to_worklist)
|
|
worklist.safe_push (stmt);
|
|
if (add_to_worklist && bb_contains_live_stmts && !is_gimple_debug (stmt))
|
|
bitmap_set_bit (bb_contains_live_stmts, gimple_bb (stmt)->index);
|
|
}
|
|
|
|
|
|
/* Mark the statement defining operand OP as necessary. */
|
|
|
|
static inline void
|
|
mark_operand_necessary (tree op)
|
|
{
|
|
gimple *stmt;
|
|
int ver;
|
|
|
|
gcc_assert (op);
|
|
|
|
ver = SSA_NAME_VERSION (op);
|
|
if (bitmap_bit_p (processed, ver))
|
|
{
|
|
stmt = SSA_NAME_DEF_STMT (op);
|
|
gcc_assert (gimple_nop_p (stmt)
|
|
|| gimple_plf (stmt, STMT_NECESSARY));
|
|
return;
|
|
}
|
|
bitmap_set_bit (processed, ver);
|
|
|
|
stmt = SSA_NAME_DEF_STMT (op);
|
|
gcc_assert (stmt);
|
|
|
|
if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
|
|
return;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "marking necessary through ");
|
|
print_generic_expr (dump_file, op);
|
|
fprintf (dump_file, " stmt ");
|
|
print_gimple_stmt (dump_file, stmt, 0);
|
|
}
|
|
|
|
gimple_set_plf (stmt, STMT_NECESSARY, true);
|
|
if (bb_contains_live_stmts)
|
|
bitmap_set_bit (bb_contains_live_stmts, gimple_bb (stmt)->index);
|
|
worklist.safe_push (stmt);
|
|
}
|
|
|
|
|
|
/* Mark STMT as necessary if it obviously is. Add it to the worklist if
|
|
it can make other statements necessary.
|
|
|
|
If AGGRESSIVE is false, control statements are conservatively marked as
|
|
necessary. */
|
|
|
|
static void
|
|
mark_stmt_if_obviously_necessary (gimple *stmt, bool aggressive)
|
|
{
|
|
/* With non-call exceptions, we have to assume that all statements could
|
|
throw. If a statement could throw, it can be deemed necessary. */
|
|
if (stmt_unremovable_because_of_non_call_eh_p (cfun, stmt))
|
|
{
|
|
mark_stmt_necessary (stmt, true);
|
|
return;
|
|
}
|
|
|
|
/* Statements that are implicitly live. Most function calls, asm
|
|
and return statements are required. Labels and GIMPLE_BIND nodes
|
|
are kept because they are control flow, and we have no way of
|
|
knowing whether they can be removed. DCE can eliminate all the
|
|
other statements in a block, and CFG can then remove the block
|
|
and labels. */
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_PREDICT:
|
|
case GIMPLE_LABEL:
|
|
mark_stmt_necessary (stmt, false);
|
|
return;
|
|
|
|
case GIMPLE_ASM:
|
|
case GIMPLE_RESX:
|
|
case GIMPLE_RETURN:
|
|
mark_stmt_necessary (stmt, true);
|
|
return;
|
|
|
|
case GIMPLE_CALL:
|
|
{
|
|
tree callee = gimple_call_fndecl (stmt);
|
|
if (callee != NULL_TREE
|
|
&& fndecl_built_in_p (callee, BUILT_IN_NORMAL))
|
|
switch (DECL_FUNCTION_CODE (callee))
|
|
{
|
|
case BUILT_IN_MALLOC:
|
|
case BUILT_IN_ALIGNED_ALLOC:
|
|
case BUILT_IN_CALLOC:
|
|
CASE_BUILT_IN_ALLOCA:
|
|
case BUILT_IN_STRDUP:
|
|
case BUILT_IN_STRNDUP:
|
|
case BUILT_IN_GOMP_ALLOC:
|
|
return;
|
|
|
|
default:;
|
|
}
|
|
|
|
if (callee != NULL_TREE
|
|
&& flag_allocation_dce
|
|
&& DECL_IS_REPLACEABLE_OPERATOR_NEW_P (callee))
|
|
return;
|
|
|
|
/* Most, but not all function calls are required. Function calls that
|
|
produce no result and have no side effects (i.e. const pure
|
|
functions) are unnecessary. */
|
|
if (gimple_has_side_effects (stmt))
|
|
{
|
|
mark_stmt_necessary (stmt, true);
|
|
return;
|
|
}
|
|
/* IFN_GOACC_LOOP calls are necessary in that they are used to
|
|
represent parameter (i.e. step, bound) of a lowered OpenACC
|
|
partitioned loop. But this kind of partitioned loop might not
|
|
survive from aggressive loop removal for it has loop exit and
|
|
is assumed to be finite. Therefore, we need to explicitly mark
|
|
these calls. (An example is libgomp.oacc-c-c++-common/pr84955.c) */
|
|
if (gimple_call_internal_p (stmt, IFN_GOACC_LOOP))
|
|
{
|
|
mark_stmt_necessary (stmt, true);
|
|
return;
|
|
}
|
|
if (!gimple_call_lhs (stmt))
|
|
return;
|
|
break;
|
|
}
|
|
|
|
case GIMPLE_DEBUG:
|
|
/* Debug temps without a value are not useful. ??? If we could
|
|
easily locate the debug temp bind stmt for a use thereof,
|
|
would could refrain from marking all debug temps here, and
|
|
mark them only if they're used. */
|
|
if (gimple_debug_nonbind_marker_p (stmt)
|
|
|| !gimple_debug_bind_p (stmt)
|
|
|| gimple_debug_bind_has_value_p (stmt)
|
|
|| TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
|
|
mark_stmt_necessary (stmt, false);
|
|
return;
|
|
|
|
case GIMPLE_GOTO:
|
|
gcc_assert (!simple_goto_p (stmt));
|
|
mark_stmt_necessary (stmt, true);
|
|
return;
|
|
|
|
case GIMPLE_COND:
|
|
gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
|
|
/* Fall through. */
|
|
|
|
case GIMPLE_SWITCH:
|
|
if (! aggressive)
|
|
mark_stmt_necessary (stmt, true);
|
|
break;
|
|
|
|
case GIMPLE_ASSIGN:
|
|
if (gimple_clobber_p (stmt))
|
|
return;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* If the statement has volatile operands, it needs to be preserved.
|
|
Same for statements that can alter control flow in unpredictable
|
|
ways. */
|
|
if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
|
|
{
|
|
mark_stmt_necessary (stmt, true);
|
|
return;
|
|
}
|
|
|
|
if (stmt_may_clobber_global_p (stmt))
|
|
{
|
|
mark_stmt_necessary (stmt, true);
|
|
return;
|
|
}
|
|
|
|
if (gimple_vdef (stmt) && keep_all_vdefs_p ())
|
|
{
|
|
mark_stmt_necessary (stmt, true);
|
|
return;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/* Mark the last statement of BB as necessary. */
|
|
|
|
static void
|
|
mark_last_stmt_necessary (basic_block bb)
|
|
{
|
|
gimple *stmt = last_stmt (bb);
|
|
|
|
bitmap_set_bit (last_stmt_necessary, bb->index);
|
|
bitmap_set_bit (bb_contains_live_stmts, bb->index);
|
|
|
|
/* We actually mark the statement only if it is a control statement. */
|
|
if (stmt && is_ctrl_stmt (stmt))
|
|
mark_stmt_necessary (stmt, true);
|
|
}
|
|
|
|
|
|
/* Mark control dependent edges of BB as necessary. We have to do this only
|
|
once for each basic block so we set the appropriate bit after we're done.
|
|
|
|
When IGNORE_SELF is true, ignore BB in the list of control dependences. */
|
|
|
|
static void
|
|
mark_control_dependent_edges_necessary (basic_block bb, bool ignore_self)
|
|
{
|
|
bitmap_iterator bi;
|
|
unsigned edge_number;
|
|
bool skipped = false;
|
|
|
|
gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
|
|
|
|
if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
|
return;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (cd->get_edges_dependent_on (bb->index),
|
|
0, edge_number, bi)
|
|
{
|
|
basic_block cd_bb = cd->get_edge_src (edge_number);
|
|
|
|
if (ignore_self && cd_bb == bb)
|
|
{
|
|
skipped = true;
|
|
continue;
|
|
}
|
|
|
|
if (!bitmap_bit_p (last_stmt_necessary, cd_bb->index))
|
|
mark_last_stmt_necessary (cd_bb);
|
|
}
|
|
|
|
if (!skipped)
|
|
bitmap_set_bit (visited_control_parents, bb->index);
|
|
}
|
|
|
|
|
|
/* Find obviously necessary statements. These are things like most function
|
|
calls, and stores to file level variables.
|
|
|
|
If EL is NULL, control statements are conservatively marked as
|
|
necessary. Otherwise it contains the list of edges used by control
|
|
dependence analysis. */
|
|
|
|
static void
|
|
find_obviously_necessary_stmts (bool aggressive)
|
|
{
|
|
basic_block bb;
|
|
gimple_stmt_iterator gsi;
|
|
edge e;
|
|
gimple *phi, *stmt;
|
|
int flags;
|
|
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
/* PHI nodes are never inherently necessary. */
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
phi = gsi_stmt (gsi);
|
|
gimple_set_plf (phi, STMT_NECESSARY, false);
|
|
}
|
|
|
|
/* Check all statements in the block. */
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
stmt = gsi_stmt (gsi);
|
|
gimple_set_plf (stmt, STMT_NECESSARY, false);
|
|
mark_stmt_if_obviously_necessary (stmt, aggressive);
|
|
}
|
|
}
|
|
|
|
/* Pure and const functions are finite and thus have no infinite loops in
|
|
them. */
|
|
flags = flags_from_decl_or_type (current_function_decl);
|
|
if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
|
|
return;
|
|
|
|
/* Prevent the empty possibly infinite loops from being removed. */
|
|
if (aggressive)
|
|
{
|
|
class loop *loop;
|
|
if (mark_irreducible_loops ())
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
edge_iterator ei;
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
if ((e->flags & EDGE_DFS_BACK)
|
|
&& (e->flags & EDGE_IRREDUCIBLE_LOOP))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
|
|
e->src->index, e->dest->index);
|
|
mark_control_dependent_edges_necessary (e->dest, false);
|
|
}
|
|
}
|
|
|
|
FOR_EACH_LOOP (loop, 0)
|
|
if (!finite_loop_p (loop))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "cannot prove finiteness of loop %i\n", loop->num);
|
|
mark_control_dependent_edges_necessary (loop->latch, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Return true if REF is based on an aliased base, otherwise false. */
|
|
|
|
static bool
|
|
ref_may_be_aliased (tree ref)
|
|
{
|
|
gcc_assert (TREE_CODE (ref) != WITH_SIZE_EXPR);
|
|
while (handled_component_p (ref))
|
|
ref = TREE_OPERAND (ref, 0);
|
|
if (TREE_CODE (ref) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
|
|
ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
|
|
return !(DECL_P (ref)
|
|
&& !may_be_aliased (ref));
|
|
}
|
|
|
|
static bitmap visited = NULL;
|
|
static unsigned int longest_chain = 0;
|
|
static unsigned int total_chain = 0;
|
|
static unsigned int nr_walks = 0;
|
|
static bool chain_ovfl = false;
|
|
|
|
/* Worker for the walker that marks reaching definitions of REF,
|
|
which is based on a non-aliased decl, necessary. It returns
|
|
true whenever the defining statement of the current VDEF is
|
|
a kill for REF, as no dominating may-defs are necessary for REF
|
|
anymore. DATA points to the basic-block that contains the
|
|
stmt that refers to REF. */
|
|
|
|
static bool
|
|
mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
|
|
{
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
|
|
|
|
/* All stmts we visit are necessary. */
|
|
if (! gimple_clobber_p (def_stmt))
|
|
mark_operand_necessary (vdef);
|
|
|
|
/* If the stmt lhs kills ref, then we can stop walking. */
|
|
if (gimple_has_lhs (def_stmt)
|
|
&& TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME
|
|
/* The assignment is not necessarily carried out if it can throw
|
|
and we can catch it in the current function where we could inspect
|
|
the previous value.
|
|
??? We only need to care about the RHS throwing. For aggregate
|
|
assignments or similar calls and non-call exceptions the LHS
|
|
might throw as well. */
|
|
&& !stmt_can_throw_internal (cfun, def_stmt))
|
|
{
|
|
tree base, lhs = gimple_get_lhs (def_stmt);
|
|
poly_int64 size, offset, max_size;
|
|
bool reverse;
|
|
ao_ref_base (ref);
|
|
base
|
|
= get_ref_base_and_extent (lhs, &offset, &size, &max_size, &reverse);
|
|
/* We can get MEM[symbol: sZ, index: D.8862_1] here,
|
|
so base == refd->base does not always hold. */
|
|
if (base == ref->base)
|
|
{
|
|
/* For a must-alias check we need to be able to constrain
|
|
the accesses properly. */
|
|
if (known_eq (size, max_size)
|
|
&& known_subrange_p (ref->offset, ref->max_size, offset, size))
|
|
return true;
|
|
/* Or they need to be exactly the same. */
|
|
else if (ref->ref
|
|
/* Make sure there is no induction variable involved
|
|
in the references (gcc.c-torture/execute/pr42142.c).
|
|
The simplest way is to check if the kill dominates
|
|
the use. */
|
|
/* But when both are in the same block we cannot
|
|
easily tell whether we came from a backedge
|
|
unless we decide to compute stmt UIDs
|
|
(see PR58246). */
|
|
&& (basic_block) data != gimple_bb (def_stmt)
|
|
&& dominated_by_p (CDI_DOMINATORS, (basic_block) data,
|
|
gimple_bb (def_stmt))
|
|
&& operand_equal_p (ref->ref, lhs, 0))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* Otherwise keep walking. */
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
mark_aliased_reaching_defs_necessary (gimple *stmt, tree ref)
|
|
{
|
|
/* Should have been caught before calling this function. */
|
|
gcc_checking_assert (!keep_all_vdefs_p ());
|
|
|
|
unsigned int chain;
|
|
ao_ref refd;
|
|
gcc_assert (!chain_ovfl);
|
|
ao_ref_init (&refd, ref);
|
|
chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
|
|
mark_aliased_reaching_defs_necessary_1,
|
|
gimple_bb (stmt), NULL);
|
|
if (chain > longest_chain)
|
|
longest_chain = chain;
|
|
total_chain += chain;
|
|
nr_walks++;
|
|
}
|
|
|
|
/* Worker for the walker that marks reaching definitions of REF, which
|
|
is not based on a non-aliased decl. For simplicity we need to end
|
|
up marking all may-defs necessary that are not based on a non-aliased
|
|
decl. The only job of this walker is to skip may-defs based on
|
|
a non-aliased decl. */
|
|
|
|
static bool
|
|
mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
|
|
tree vdef, void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
|
|
|
|
/* We have to skip already visited (and thus necessary) statements
|
|
to make the chaining work after we dropped back to simple mode. */
|
|
if (chain_ovfl
|
|
&& bitmap_bit_p (processed, SSA_NAME_VERSION (vdef)))
|
|
{
|
|
gcc_assert (gimple_nop_p (def_stmt)
|
|
|| gimple_plf (def_stmt, STMT_NECESSARY));
|
|
return false;
|
|
}
|
|
|
|
/* We want to skip stores to non-aliased variables. */
|
|
if (!chain_ovfl
|
|
&& gimple_assign_single_p (def_stmt))
|
|
{
|
|
tree lhs = gimple_assign_lhs (def_stmt);
|
|
if (!ref_may_be_aliased (lhs))
|
|
return false;
|
|
}
|
|
|
|
/* We want to skip statments that do not constitute stores but have
|
|
a virtual definition. */
|
|
if (gcall *call = dyn_cast <gcall *> (def_stmt))
|
|
{
|
|
tree callee = gimple_call_fndecl (call);
|
|
if (callee != NULL_TREE
|
|
&& fndecl_built_in_p (callee, BUILT_IN_NORMAL))
|
|
switch (DECL_FUNCTION_CODE (callee))
|
|
{
|
|
case BUILT_IN_MALLOC:
|
|
case BUILT_IN_ALIGNED_ALLOC:
|
|
case BUILT_IN_CALLOC:
|
|
CASE_BUILT_IN_ALLOCA:
|
|
case BUILT_IN_FREE:
|
|
case BUILT_IN_GOMP_ALLOC:
|
|
case BUILT_IN_GOMP_FREE:
|
|
return false;
|
|
|
|
default:;
|
|
}
|
|
|
|
if (callee != NULL_TREE
|
|
&& (DECL_IS_REPLACEABLE_OPERATOR_NEW_P (callee)
|
|
|| DECL_IS_OPERATOR_DELETE_P (callee))
|
|
&& gimple_call_from_new_or_delete (call))
|
|
return false;
|
|
}
|
|
|
|
if (! gimple_clobber_p (def_stmt))
|
|
mark_operand_necessary (vdef);
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
mark_all_reaching_defs_necessary (gimple *stmt)
|
|
{
|
|
/* Should have been caught before calling this function. */
|
|
gcc_checking_assert (!keep_all_vdefs_p ());
|
|
walk_aliased_vdefs (NULL, gimple_vuse (stmt),
|
|
mark_all_reaching_defs_necessary_1, NULL, &visited);
|
|
}
|
|
|
|
/* Return true for PHI nodes with one or identical arguments
|
|
can be removed. */
|
|
static bool
|
|
degenerate_phi_p (gimple *phi)
|
|
{
|
|
unsigned int i;
|
|
tree op = gimple_phi_arg_def (phi, 0);
|
|
for (i = 1; i < gimple_phi_num_args (phi); i++)
|
|
if (gimple_phi_arg_def (phi, i) != op)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Return that NEW_CALL and DELETE_CALL are a valid pair of new
|
|
and delete operators. */
|
|
|
|
static bool
|
|
valid_new_delete_pair_p (gimple *new_call, gimple *delete_call)
|
|
{
|
|
tree new_asm = DECL_ASSEMBLER_NAME (gimple_call_fndecl (new_call));
|
|
tree delete_asm = DECL_ASSEMBLER_NAME (gimple_call_fndecl (delete_call));
|
|
return valid_new_delete_pair_p (new_asm, delete_asm);
|
|
}
|
|
|
|
/* Propagate necessity using the operands of necessary statements.
|
|
Process the uses on each statement in the worklist, and add all
|
|
feeding statements which contribute to the calculation of this
|
|
value to the worklist.
|
|
|
|
In conservative mode, EL is NULL. */
|
|
|
|
static void
|
|
propagate_necessity (bool aggressive)
|
|
{
|
|
gimple *stmt;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "\nProcessing worklist:\n");
|
|
|
|
while (worklist.length () > 0)
|
|
{
|
|
/* Take STMT from worklist. */
|
|
stmt = worklist.pop ();
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "processing: ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
if (aggressive)
|
|
{
|
|
/* Mark the last statement of the basic blocks on which the block
|
|
containing STMT is control dependent, but only if we haven't
|
|
already done so. */
|
|
basic_block bb = gimple_bb (stmt);
|
|
if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
|
&& !bitmap_bit_p (visited_control_parents, bb->index))
|
|
mark_control_dependent_edges_necessary (bb, false);
|
|
}
|
|
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
|
/* We do not process virtual PHI nodes nor do we track their
|
|
necessity. */
|
|
&& !virtual_operand_p (gimple_phi_result (stmt)))
|
|
{
|
|
/* PHI nodes are somewhat special in that each PHI alternative has
|
|
data and control dependencies. All the statements feeding the
|
|
PHI node's arguments are always necessary. In aggressive mode,
|
|
we also consider the control dependent edges leading to the
|
|
predecessor block associated with each PHI alternative as
|
|
necessary. */
|
|
gphi *phi = as_a <gphi *> (stmt);
|
|
size_t k;
|
|
|
|
for (k = 0; k < gimple_phi_num_args (stmt); k++)
|
|
{
|
|
tree arg = PHI_ARG_DEF (stmt, k);
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
|
mark_operand_necessary (arg);
|
|
}
|
|
|
|
/* For PHI operands it matters from where the control flow arrives
|
|
to the BB. Consider the following example:
|
|
|
|
a=exp1;
|
|
b=exp2;
|
|
if (test)
|
|
;
|
|
else
|
|
;
|
|
c=PHI(a,b)
|
|
|
|
We need to mark control dependence of the empty basic blocks, since they
|
|
contains computation of PHI operands.
|
|
|
|
Doing so is too restrictive in the case the predecestor block is in
|
|
the loop. Consider:
|
|
|
|
if (b)
|
|
{
|
|
int i;
|
|
for (i = 0; i<1000; ++i)
|
|
;
|
|
j = 0;
|
|
}
|
|
return j;
|
|
|
|
There is PHI for J in the BB containing return statement.
|
|
In this case the control dependence of predecestor block (that is
|
|
within the empty loop) also contains the block determining number
|
|
of iterations of the block that would prevent removing of empty
|
|
loop in this case.
|
|
|
|
This scenario can be avoided by splitting critical edges.
|
|
To save the critical edge splitting pass we identify how the control
|
|
dependence would look like if the edge was split.
|
|
|
|
Consider the modified CFG created from current CFG by splitting
|
|
edge B->C. In the postdominance tree of modified CFG, C' is
|
|
always child of C. There are two cases how chlids of C' can look
|
|
like:
|
|
|
|
1) C' is leaf
|
|
|
|
In this case the only basic block C' is control dependent on is B.
|
|
|
|
2) C' has single child that is B
|
|
|
|
In this case control dependence of C' is same as control
|
|
dependence of B in original CFG except for block B itself.
|
|
(since C' postdominate B in modified CFG)
|
|
|
|
Now how to decide what case happens? There are two basic options:
|
|
|
|
a) C postdominate B. Then C immediately postdominate B and
|
|
case 2 happens iff there is no other way from B to C except
|
|
the edge B->C.
|
|
|
|
There is other way from B to C iff there is succesor of B that
|
|
is not postdominated by B. Testing this condition is somewhat
|
|
expensive, because we need to iterate all succesors of B.
|
|
We are safe to assume that this does not happen: we will mark B
|
|
as needed when processing the other path from B to C that is
|
|
conrol dependent on B and marking control dependencies of B
|
|
itself is harmless because they will be processed anyway after
|
|
processing control statement in B.
|
|
|
|
b) C does not postdominate B. Always case 1 happens since there is
|
|
path from C to exit that does not go through B and thus also C'. */
|
|
|
|
if (aggressive && !degenerate_phi_p (stmt))
|
|
{
|
|
for (k = 0; k < gimple_phi_num_args (stmt); k++)
|
|
{
|
|
basic_block arg_bb = gimple_phi_arg_edge (phi, k)->src;
|
|
|
|
if (gimple_bb (stmt)
|
|
!= get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
|
|
{
|
|
if (!bitmap_bit_p (last_stmt_necessary, arg_bb->index))
|
|
mark_last_stmt_necessary (arg_bb);
|
|
}
|
|
else if (arg_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
|
&& !bitmap_bit_p (visited_control_parents,
|
|
arg_bb->index))
|
|
mark_control_dependent_edges_necessary (arg_bb, true);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Propagate through the operands. Examine all the USE, VUSE and
|
|
VDEF operands in this statement. Mark all the statements
|
|
which feed this statement's uses as necessary. */
|
|
ssa_op_iter iter;
|
|
tree use;
|
|
|
|
/* If this is a call to free which is directly fed by an
|
|
allocation function do not mark that necessary through
|
|
processing the argument. */
|
|
bool is_delete_operator
|
|
= (is_gimple_call (stmt)
|
|
&& gimple_call_from_new_or_delete (as_a <gcall *> (stmt))
|
|
&& gimple_call_operator_delete_p (as_a <gcall *> (stmt)));
|
|
if (is_delete_operator
|
|
|| gimple_call_builtin_p (stmt, BUILT_IN_FREE)
|
|
|| gimple_call_builtin_p (stmt, BUILT_IN_GOMP_FREE))
|
|
{
|
|
tree ptr = gimple_call_arg (stmt, 0);
|
|
gcall *def_stmt;
|
|
tree def_callee;
|
|
/* If the pointer we free is defined by an allocation
|
|
function do not add the call to the worklist. */
|
|
if (TREE_CODE (ptr) == SSA_NAME
|
|
&& (def_stmt = dyn_cast <gcall *> (SSA_NAME_DEF_STMT (ptr)))
|
|
&& (def_callee = gimple_call_fndecl (def_stmt))
|
|
&& ((DECL_BUILT_IN_CLASS (def_callee) == BUILT_IN_NORMAL
|
|
&& (DECL_FUNCTION_CODE (def_callee) == BUILT_IN_ALIGNED_ALLOC
|
|
|| DECL_FUNCTION_CODE (def_callee) == BUILT_IN_MALLOC
|
|
|| DECL_FUNCTION_CODE (def_callee) == BUILT_IN_CALLOC
|
|
|| DECL_FUNCTION_CODE (def_callee) == BUILT_IN_GOMP_ALLOC))
|
|
|| (DECL_IS_REPLACEABLE_OPERATOR_NEW_P (def_callee)
|
|
&& gimple_call_from_new_or_delete (def_stmt))))
|
|
{
|
|
if (is_delete_operator
|
|
&& !valid_new_delete_pair_p (def_stmt, stmt))
|
|
mark_operand_necessary (gimple_call_arg (stmt, 0));
|
|
|
|
/* Delete operators can have alignment and (or) size
|
|
as next arguments. When being a SSA_NAME, they
|
|
must be marked as necessary. Similarly GOMP_free. */
|
|
if (gimple_call_num_args (stmt) >= 2)
|
|
for (unsigned i = 1; i < gimple_call_num_args (stmt);
|
|
i++)
|
|
{
|
|
tree arg = gimple_call_arg (stmt, i);
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
|
mark_operand_necessary (arg);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
|
mark_operand_necessary (use);
|
|
|
|
use = gimple_vuse (stmt);
|
|
if (!use)
|
|
continue;
|
|
|
|
/* No need to search for vdefs if we intrinsicly keep them all. */
|
|
if (keep_all_vdefs_p ())
|
|
continue;
|
|
|
|
/* If we dropped to simple mode make all immediately
|
|
reachable definitions necessary. */
|
|
if (chain_ovfl)
|
|
{
|
|
mark_all_reaching_defs_necessary (stmt);
|
|
continue;
|
|
}
|
|
|
|
/* For statements that may load from memory (have a VUSE) we
|
|
have to mark all reaching (may-)definitions as necessary.
|
|
We partition this task into two cases:
|
|
1) explicit loads based on decls that are not aliased
|
|
2) implicit loads (like calls) and explicit loads not
|
|
based on decls that are not aliased (like indirect
|
|
references or loads from globals)
|
|
For 1) we mark all reaching may-defs as necessary, stopping
|
|
at dominating kills. For 2) we want to mark all dominating
|
|
references necessary, but non-aliased ones which we handle
|
|
in 1). By keeping a global visited bitmap for references
|
|
we walk for 2) we avoid quadratic behavior for those. */
|
|
|
|
if (gcall *call = dyn_cast <gcall *> (stmt))
|
|
{
|
|
tree callee = gimple_call_fndecl (call);
|
|
unsigned i;
|
|
|
|
/* Calls to functions that are merely acting as barriers
|
|
or that only store to memory do not make any previous
|
|
stores necessary. */
|
|
if (callee != NULL_TREE
|
|
&& DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
|
|
&& (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
|
|
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET_CHK
|
|
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
|
|
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_ALIGNED_ALLOC
|
|
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC
|
|
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE
|
|
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_VA_END
|
|
|| ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee))
|
|
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE
|
|
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE
|
|
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_ASSUME_ALIGNED))
|
|
continue;
|
|
|
|
if (callee != NULL_TREE
|
|
&& (DECL_IS_REPLACEABLE_OPERATOR_NEW_P (callee)
|
|
|| DECL_IS_OPERATOR_DELETE_P (callee))
|
|
&& gimple_call_from_new_or_delete (call))
|
|
continue;
|
|
|
|
/* Calls implicitly load from memory, their arguments
|
|
in addition may explicitly perform memory loads. */
|
|
mark_all_reaching_defs_necessary (call);
|
|
for (i = 0; i < gimple_call_num_args (call); ++i)
|
|
{
|
|
tree arg = gimple_call_arg (call, i);
|
|
if (TREE_CODE (arg) == SSA_NAME
|
|
|| is_gimple_min_invariant (arg))
|
|
continue;
|
|
if (TREE_CODE (arg) == WITH_SIZE_EXPR)
|
|
arg = TREE_OPERAND (arg, 0);
|
|
if (!ref_may_be_aliased (arg))
|
|
mark_aliased_reaching_defs_necessary (call, arg);
|
|
}
|
|
}
|
|
else if (gimple_assign_single_p (stmt))
|
|
{
|
|
tree rhs;
|
|
/* If this is a load mark things necessary. */
|
|
rhs = gimple_assign_rhs1 (stmt);
|
|
if (TREE_CODE (rhs) != SSA_NAME
|
|
&& !is_gimple_min_invariant (rhs)
|
|
&& TREE_CODE (rhs) != CONSTRUCTOR)
|
|
{
|
|
if (!ref_may_be_aliased (rhs))
|
|
mark_aliased_reaching_defs_necessary (stmt, rhs);
|
|
else
|
|
mark_all_reaching_defs_necessary (stmt);
|
|
}
|
|
}
|
|
else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
|
|
{
|
|
tree rhs = gimple_return_retval (return_stmt);
|
|
/* A return statement may perform a load. */
|
|
if (rhs
|
|
&& TREE_CODE (rhs) != SSA_NAME
|
|
&& !is_gimple_min_invariant (rhs)
|
|
&& TREE_CODE (rhs) != CONSTRUCTOR)
|
|
{
|
|
if (!ref_may_be_aliased (rhs))
|
|
mark_aliased_reaching_defs_necessary (stmt, rhs);
|
|
else
|
|
mark_all_reaching_defs_necessary (stmt);
|
|
}
|
|
}
|
|
else if (gasm *asm_stmt = dyn_cast <gasm *> (stmt))
|
|
{
|
|
unsigned i;
|
|
mark_all_reaching_defs_necessary (stmt);
|
|
/* Inputs may perform loads. */
|
|
for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i)
|
|
{
|
|
tree op = TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
|
|
if (TREE_CODE (op) != SSA_NAME
|
|
&& !is_gimple_min_invariant (op)
|
|
&& TREE_CODE (op) != CONSTRUCTOR
|
|
&& !ref_may_be_aliased (op))
|
|
mark_aliased_reaching_defs_necessary (stmt, op);
|
|
}
|
|
}
|
|
else if (gimple_code (stmt) == GIMPLE_TRANSACTION)
|
|
{
|
|
/* The beginning of a transaction is a memory barrier. */
|
|
/* ??? If we were really cool, we'd only be a barrier
|
|
for the memories touched within the transaction. */
|
|
mark_all_reaching_defs_necessary (stmt);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
/* If we over-used our alias oracle budget drop to simple
|
|
mode. The cost metric allows quadratic behavior
|
|
(number of uses times number of may-defs queries) up to
|
|
a constant maximal number of queries and after that falls back to
|
|
super-linear complexity. */
|
|
if (/* Constant but quadratic for small functions. */
|
|
total_chain > 128 * 128
|
|
/* Linear in the number of may-defs. */
|
|
&& total_chain > 32 * longest_chain
|
|
/* Linear in the number of uses. */
|
|
&& total_chain > nr_walks * 32)
|
|
{
|
|
chain_ovfl = true;
|
|
if (visited)
|
|
bitmap_clear (visited);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Remove dead PHI nodes from block BB. */
|
|
|
|
static bool
|
|
remove_dead_phis (basic_block bb)
|
|
{
|
|
bool something_changed = false;
|
|
gphi *phi;
|
|
gphi_iterator gsi;
|
|
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);)
|
|
{
|
|
stats.total_phis++;
|
|
phi = gsi.phi ();
|
|
|
|
/* We do not track necessity of virtual PHI nodes. Instead do
|
|
very simple dead PHI removal here. */
|
|
if (virtual_operand_p (gimple_phi_result (phi)))
|
|
{
|
|
/* Virtual PHI nodes with one or identical arguments
|
|
can be removed. */
|
|
if (degenerate_phi_p (phi))
|
|
{
|
|
tree vdef = gimple_phi_result (phi);
|
|
tree vuse = gimple_phi_arg_def (phi, 0);
|
|
|
|
use_operand_p use_p;
|
|
imm_use_iterator iter;
|
|
gimple *use_stmt;
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
|
SET_USE (use_p, vuse);
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
|
|
&& TREE_CODE (vuse) == SSA_NAME)
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
|
|
}
|
|
else
|
|
gimple_set_plf (phi, STMT_NECESSARY, true);
|
|
}
|
|
|
|
if (!gimple_plf (phi, STMT_NECESSARY))
|
|
{
|
|
something_changed = true;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Deleting : ");
|
|
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
remove_phi_node (&gsi, true);
|
|
stats.removed_phis++;
|
|
continue;
|
|
}
|
|
|
|
gsi_next (&gsi);
|
|
}
|
|
return something_changed;
|
|
}
|
|
|
|
|
|
/* Remove dead statement pointed to by iterator I. Receives the basic block BB
|
|
containing I so that we don't have to look it up. */
|
|
|
|
static void
|
|
remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb,
|
|
vec<edge> &to_remove_edges)
|
|
{
|
|
gimple *stmt = gsi_stmt (*i);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Deleting : ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
stats.removed++;
|
|
|
|
/* If we have determined that a conditional branch statement contributes
|
|
nothing to the program, then we not only remove it, but we need to update
|
|
the CFG. We can chose any of edges out of BB as long as we are sure to not
|
|
close infinite loops. This is done by always choosing the edge closer to
|
|
exit in inverted_post_order_compute order. */
|
|
if (is_ctrl_stmt (stmt))
|
|
{
|
|
edge_iterator ei;
|
|
edge e = NULL, e2;
|
|
|
|
/* See if there is only one non-abnormal edge. */
|
|
if (single_succ_p (bb))
|
|
e = single_succ_edge (bb);
|
|
/* Otherwise chose one that is closer to bb with live statement in it.
|
|
To be able to chose one, we compute inverted post order starting from
|
|
all BBs with live statements. */
|
|
if (!e)
|
|
{
|
|
if (!bb_postorder)
|
|
{
|
|
auto_vec<int, 20> postorder;
|
|
inverted_post_order_compute (&postorder,
|
|
&bb_contains_live_stmts);
|
|
bb_postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
|
|
for (unsigned int i = 0; i < postorder.length (); ++i)
|
|
bb_postorder[postorder[i]] = i;
|
|
}
|
|
FOR_EACH_EDGE (e2, ei, bb->succs)
|
|
if (!e || e2->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
|
|| bb_postorder [e->dest->index]
|
|
< bb_postorder [e2->dest->index])
|
|
e = e2;
|
|
}
|
|
gcc_assert (e);
|
|
e->probability = profile_probability::always ();
|
|
|
|
/* The edge is no longer associated with a conditional, so it does
|
|
not have TRUE/FALSE flags.
|
|
We are also safe to drop EH/ABNORMAL flags and turn them into
|
|
normal control flow, because we know that all the destinations (including
|
|
those odd edges) are equivalent for program execution. */
|
|
e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE | EDGE_EH | EDGE_ABNORMAL);
|
|
|
|
/* The lone outgoing edge from BB will be a fallthru edge. */
|
|
e->flags |= EDGE_FALLTHRU;
|
|
|
|
/* Remove the remaining outgoing edges. */
|
|
FOR_EACH_EDGE (e2, ei, bb->succs)
|
|
if (e != e2)
|
|
{
|
|
/* If we made a BB unconditionally exit a loop or removed
|
|
an entry into an irreducible region, then this transform
|
|
alters the set of BBs in the loop. Schedule a fixup. */
|
|
if (loop_exit_edge_p (bb->loop_father, e)
|
|
|| (e2->dest->flags & BB_IRREDUCIBLE_LOOP))
|
|
loops_state_set (LOOPS_NEED_FIXUP);
|
|
to_remove_edges.safe_push (e2);
|
|
}
|
|
}
|
|
|
|
/* If this is a store into a variable that is being optimized away,
|
|
add a debug bind stmt if possible. */
|
|
if (MAY_HAVE_DEBUG_BIND_STMTS
|
|
&& gimple_assign_single_p (stmt)
|
|
&& is_gimple_val (gimple_assign_rhs1 (stmt)))
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
if ((VAR_P (lhs) || TREE_CODE (lhs) == PARM_DECL)
|
|
&& !DECL_IGNORED_P (lhs)
|
|
&& is_gimple_reg_type (TREE_TYPE (lhs))
|
|
&& !is_global_var (lhs)
|
|
&& !DECL_HAS_VALUE_EXPR_P (lhs))
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
gdebug *note
|
|
= gimple_build_debug_bind (lhs, unshare_expr (rhs), stmt);
|
|
gsi_insert_after (i, note, GSI_SAME_STMT);
|
|
}
|
|
}
|
|
|
|
unlink_stmt_vdef (stmt);
|
|
gsi_remove (i, true);
|
|
release_defs (stmt);
|
|
}
|
|
|
|
/* Helper for maybe_optimize_arith_overflow. Find in *TP if there are any
|
|
uses of data (SSA_NAME) other than REALPART_EXPR referencing it. */
|
|
|
|
static tree
|
|
find_non_realpart_uses (tree *tp, int *walk_subtrees, void *data)
|
|
{
|
|
if (TYPE_P (*tp) || TREE_CODE (*tp) == REALPART_EXPR)
|
|
*walk_subtrees = 0;
|
|
if (*tp == (tree) data)
|
|
return *tp;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* If the IMAGPART_EXPR of the {ADD,SUB,MUL}_OVERFLOW result is never used,
|
|
but REALPART_EXPR is, optimize the {ADD,SUB,MUL}_OVERFLOW internal calls
|
|
into plain unsigned {PLUS,MINUS,MULT}_EXPR, and if needed reset debug
|
|
uses. */
|
|
|
|
static void
|
|
maybe_optimize_arith_overflow (gimple_stmt_iterator *gsi,
|
|
enum tree_code subcode)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
|
|
if (lhs == NULL || TREE_CODE (lhs) != SSA_NAME)
|
|
return;
|
|
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
bool has_debug_uses = false;
|
|
bool has_realpart_uses = false;
|
|
bool has_other_uses = false;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
|
|
{
|
|
gimple *use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
has_debug_uses = true;
|
|
else if (is_gimple_assign (use_stmt)
|
|
&& gimple_assign_rhs_code (use_stmt) == REALPART_EXPR
|
|
&& TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == lhs)
|
|
has_realpart_uses = true;
|
|
else
|
|
{
|
|
has_other_uses = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!has_realpart_uses || has_other_uses)
|
|
return;
|
|
|
|
tree arg0 = gimple_call_arg (stmt, 0);
|
|
tree arg1 = gimple_call_arg (stmt, 1);
|
|
location_t loc = gimple_location (stmt);
|
|
tree type = TREE_TYPE (TREE_TYPE (lhs));
|
|
tree utype = type;
|
|
if (!TYPE_UNSIGNED (type))
|
|
utype = build_nonstandard_integer_type (TYPE_PRECISION (type), 1);
|
|
tree result = fold_build2_loc (loc, subcode, utype,
|
|
fold_convert_loc (loc, utype, arg0),
|
|
fold_convert_loc (loc, utype, arg1));
|
|
result = fold_convert_loc (loc, type, result);
|
|
|
|
if (has_debug_uses)
|
|
{
|
|
gimple *use_stmt;
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
|
|
{
|
|
if (!gimple_debug_bind_p (use_stmt))
|
|
continue;
|
|
tree v = gimple_debug_bind_get_value (use_stmt);
|
|
if (walk_tree (&v, find_non_realpart_uses, lhs, NULL))
|
|
{
|
|
gimple_debug_bind_reset_value (use_stmt);
|
|
update_stmt (use_stmt);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (TREE_CODE (result) == INTEGER_CST && TREE_OVERFLOW (result))
|
|
result = drop_tree_overflow (result);
|
|
tree overflow = build_zero_cst (type);
|
|
tree ctype = build_complex_type (type);
|
|
if (TREE_CODE (result) == INTEGER_CST)
|
|
result = build_complex (ctype, result, overflow);
|
|
else
|
|
result = build2_loc (gimple_location (stmt), COMPLEX_EXPR,
|
|
ctype, result, overflow);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Transforming call: ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
fprintf (dump_file, "because the overflow result is never used into: ");
|
|
print_generic_stmt (dump_file, result, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
if (!update_call_from_tree (gsi, result))
|
|
gimplify_and_update_call_from_tree (gsi, result);
|
|
}
|
|
|
|
/* Eliminate unnecessary statements. Any instruction not marked as necessary
|
|
contributes nothing to the program, and can be deleted. */
|
|
|
|
static bool
|
|
eliminate_unnecessary_stmts (void)
|
|
{
|
|
bool something_changed = false;
|
|
basic_block bb;
|
|
gimple_stmt_iterator gsi, psi;
|
|
gimple *stmt;
|
|
tree call;
|
|
vec<basic_block> h;
|
|
auto_vec<edge> to_remove_edges;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "\nEliminating unnecessary statements:\n");
|
|
|
|
clear_special_calls ();
|
|
|
|
/* Walking basic blocks and statements in reverse order avoids
|
|
releasing SSA names before any other DEFs that refer to them are
|
|
released. This helps avoid loss of debug information, as we get
|
|
a chance to propagate all RHSs of removed SSAs into debug uses,
|
|
rather than only the latest ones. E.g., consider:
|
|
|
|
x_3 = y_1 + z_2;
|
|
a_5 = x_3 - b_4;
|
|
# DEBUG a => a_5
|
|
|
|
If we were to release x_3 before a_5, when we reached a_5 and
|
|
tried to substitute it into the debug stmt, we'd see x_3 there,
|
|
but x_3's DEF, type, etc would have already been disconnected.
|
|
By going backwards, the debug stmt first changes to:
|
|
|
|
# DEBUG a => x_3 - b_4
|
|
|
|
and then to:
|
|
|
|
# DEBUG a => y_1 + z_2 - b_4
|
|
|
|
as desired. */
|
|
gcc_assert (dom_info_available_p (CDI_DOMINATORS));
|
|
h = get_all_dominated_blocks (CDI_DOMINATORS,
|
|
single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
|
|
|
|
while (h.length ())
|
|
{
|
|
bb = h.pop ();
|
|
|
|
/* Remove dead statements. */
|
|
auto_bitmap debug_seen;
|
|
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
|
|
{
|
|
stmt = gsi_stmt (gsi);
|
|
|
|
psi = gsi;
|
|
gsi_prev (&psi);
|
|
|
|
stats.total++;
|
|
|
|
/* We can mark a call to free as not necessary if the
|
|
defining statement of its argument is not necessary
|
|
(and thus is getting removed). */
|
|
if (gimple_plf (stmt, STMT_NECESSARY)
|
|
&& (gimple_call_builtin_p (stmt, BUILT_IN_FREE)
|
|
|| (is_gimple_call (stmt)
|
|
&& gimple_call_from_new_or_delete (as_a <gcall *> (stmt))
|
|
&& gimple_call_operator_delete_p (as_a <gcall *> (stmt)))))
|
|
{
|
|
tree ptr = gimple_call_arg (stmt, 0);
|
|
if (TREE_CODE (ptr) == SSA_NAME)
|
|
{
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (ptr);
|
|
if (!gimple_nop_p (def_stmt)
|
|
&& !gimple_plf (def_stmt, STMT_NECESSARY))
|
|
gimple_set_plf (stmt, STMT_NECESSARY, false);
|
|
}
|
|
}
|
|
|
|
/* If GSI is not necessary then remove it. */
|
|
if (!gimple_plf (stmt, STMT_NECESSARY))
|
|
{
|
|
/* Keep clobbers that we can keep live live. */
|
|
if (gimple_clobber_p (stmt))
|
|
{
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
bool dead = false;
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
|
|
{
|
|
tree name = USE_FROM_PTR (use_p);
|
|
if (!SSA_NAME_IS_DEFAULT_DEF (name)
|
|
&& !bitmap_bit_p (processed, SSA_NAME_VERSION (name)))
|
|
{
|
|
dead = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!dead)
|
|
{
|
|
bitmap_clear (debug_seen);
|
|
continue;
|
|
}
|
|
}
|
|
if (!is_gimple_debug (stmt))
|
|
something_changed = true;
|
|
remove_dead_stmt (&gsi, bb, to_remove_edges);
|
|
continue;
|
|
}
|
|
else if (is_gimple_call (stmt))
|
|
{
|
|
tree name = gimple_call_lhs (stmt);
|
|
|
|
notice_special_calls (as_a <gcall *> (stmt));
|
|
|
|
/* When LHS of var = call (); is dead, simplify it into
|
|
call (); saving one operand. */
|
|
if (name
|
|
&& TREE_CODE (name) == SSA_NAME
|
|
&& !bitmap_bit_p (processed, SSA_NAME_VERSION (name))
|
|
/* Avoid doing so for allocation calls which we
|
|
did not mark as necessary, it will confuse the
|
|
special logic we apply to malloc/free pair removal. */
|
|
&& (!(call = gimple_call_fndecl (stmt))
|
|
|| ((DECL_BUILT_IN_CLASS (call) != BUILT_IN_NORMAL
|
|
|| (DECL_FUNCTION_CODE (call) != BUILT_IN_ALIGNED_ALLOC
|
|
&& DECL_FUNCTION_CODE (call) != BUILT_IN_MALLOC
|
|
&& DECL_FUNCTION_CODE (call) != BUILT_IN_CALLOC
|
|
&& !ALLOCA_FUNCTION_CODE_P
|
|
(DECL_FUNCTION_CODE (call))))
|
|
&& !DECL_IS_REPLACEABLE_OPERATOR_NEW_P (call))))
|
|
{
|
|
something_changed = true;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Deleting LHS of call: ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
gimple_call_set_lhs (stmt, NULL_TREE);
|
|
maybe_clean_or_replace_eh_stmt (stmt, stmt);
|
|
update_stmt (stmt);
|
|
release_ssa_name (name);
|
|
|
|
/* GOMP_SIMD_LANE (unless three argument) or ASAN_POISON
|
|
without lhs is not needed. */
|
|
if (gimple_call_internal_p (stmt))
|
|
switch (gimple_call_internal_fn (stmt))
|
|
{
|
|
case IFN_GOMP_SIMD_LANE:
|
|
if (gimple_call_num_args (stmt) >= 3
|
|
&& !integer_nonzerop (gimple_call_arg (stmt, 2)))
|
|
break;
|
|
/* FALLTHRU */
|
|
case IFN_ASAN_POISON:
|
|
remove_dead_stmt (&gsi, bb, to_remove_edges);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
else if (gimple_call_internal_p (stmt))
|
|
switch (gimple_call_internal_fn (stmt))
|
|
{
|
|
case IFN_ADD_OVERFLOW:
|
|
maybe_optimize_arith_overflow (&gsi, PLUS_EXPR);
|
|
break;
|
|
case IFN_SUB_OVERFLOW:
|
|
maybe_optimize_arith_overflow (&gsi, MINUS_EXPR);
|
|
break;
|
|
case IFN_MUL_OVERFLOW:
|
|
maybe_optimize_arith_overflow (&gsi, MULT_EXPR);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
else if (gimple_debug_bind_p (stmt))
|
|
{
|
|
/* We are only keeping the last debug-bind of a
|
|
non-DEBUG_EXPR_DECL variable in a series of
|
|
debug-bind stmts. */
|
|
tree var = gimple_debug_bind_get_var (stmt);
|
|
if (TREE_CODE (var) != DEBUG_EXPR_DECL
|
|
&& !bitmap_set_bit (debug_seen, DECL_UID (var)))
|
|
remove_dead_stmt (&gsi, bb, to_remove_edges);
|
|
continue;
|
|
}
|
|
bitmap_clear (debug_seen);
|
|
}
|
|
|
|
/* Remove dead PHI nodes. */
|
|
something_changed |= remove_dead_phis (bb);
|
|
}
|
|
|
|
h.release ();
|
|
|
|
/* Since we don't track liveness of virtual PHI nodes, it is possible that we
|
|
rendered some PHI nodes unreachable while they are still in use.
|
|
Mark them for renaming. */
|
|
if (!to_remove_edges.is_empty ())
|
|
{
|
|
basic_block prev_bb;
|
|
|
|
/* Remove edges. We've delayed this to not get bogus debug stmts
|
|
during PHI node removal. */
|
|
for (unsigned i = 0; i < to_remove_edges.length (); ++i)
|
|
remove_edge (to_remove_edges[i]);
|
|
cfg_altered = true;
|
|
|
|
find_unreachable_blocks ();
|
|
|
|
/* Delete all unreachable basic blocks in reverse dominator order. */
|
|
for (bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
|
|
bb != ENTRY_BLOCK_PTR_FOR_FN (cfun); bb = prev_bb)
|
|
{
|
|
prev_bb = bb->prev_bb;
|
|
|
|
if (!bitmap_bit_p (bb_contains_live_stmts, bb->index)
|
|
|| !(bb->flags & BB_REACHABLE))
|
|
{
|
|
for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
if (virtual_operand_p (gimple_phi_result (gsi.phi ())))
|
|
{
|
|
bool found = false;
|
|
imm_use_iterator iter;
|
|
|
|
FOR_EACH_IMM_USE_STMT (stmt, iter,
|
|
gimple_phi_result (gsi.phi ()))
|
|
{
|
|
if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
|
|
continue;
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
|
|| gimple_plf (stmt, STMT_NECESSARY))
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found)
|
|
mark_virtual_phi_result_for_renaming (gsi.phi ());
|
|
}
|
|
|
|
if (!(bb->flags & BB_REACHABLE))
|
|
{
|
|
/* Speed up the removal of blocks that don't
|
|
dominate others. Walking backwards, this should
|
|
be the common case. ??? Do we need to recompute
|
|
dominators because of cfg_altered? */
|
|
if (!first_dom_son (CDI_DOMINATORS, bb))
|
|
delete_basic_block (bb);
|
|
else
|
|
{
|
|
h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
|
|
|
|
while (h.length ())
|
|
{
|
|
bb = h.pop ();
|
|
prev_bb = bb->prev_bb;
|
|
/* Rearrangements to the CFG may have failed
|
|
to update the dominators tree, so that
|
|
formerly-dominated blocks are now
|
|
otherwise reachable. */
|
|
if (!!(bb->flags & BB_REACHABLE))
|
|
continue;
|
|
delete_basic_block (bb);
|
|
}
|
|
|
|
h.release ();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bb_postorder)
|
|
free (bb_postorder);
|
|
bb_postorder = NULL;
|
|
|
|
return something_changed;
|
|
}
|
|
|
|
|
|
/* Print out removed statement statistics. */
|
|
|
|
static void
|
|
print_stats (void)
|
|
{
|
|
float percg;
|
|
|
|
percg = ((float) stats.removed / (float) stats.total) * 100;
|
|
fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
|
|
stats.removed, stats.total, (int) percg);
|
|
|
|
if (stats.total_phis == 0)
|
|
percg = 0;
|
|
else
|
|
percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
|
|
|
|
fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
|
|
stats.removed_phis, stats.total_phis, (int) percg);
|
|
}
|
|
|
|
/* Initialization for this pass. Set up the used data structures. */
|
|
|
|
static void
|
|
tree_dce_init (bool aggressive)
|
|
{
|
|
memset ((void *) &stats, 0, sizeof (stats));
|
|
|
|
if (aggressive)
|
|
{
|
|
last_stmt_necessary = sbitmap_alloc (last_basic_block_for_fn (cfun));
|
|
bitmap_clear (last_stmt_necessary);
|
|
bb_contains_live_stmts = sbitmap_alloc (last_basic_block_for_fn (cfun));
|
|
bitmap_clear (bb_contains_live_stmts);
|
|
}
|
|
|
|
processed = sbitmap_alloc (num_ssa_names + 1);
|
|
bitmap_clear (processed);
|
|
|
|
worklist.create (64);
|
|
cfg_altered = false;
|
|
}
|
|
|
|
/* Cleanup after this pass. */
|
|
|
|
static void
|
|
tree_dce_done (bool aggressive)
|
|
{
|
|
if (aggressive)
|
|
{
|
|
delete cd;
|
|
sbitmap_free (visited_control_parents);
|
|
sbitmap_free (last_stmt_necessary);
|
|
sbitmap_free (bb_contains_live_stmts);
|
|
bb_contains_live_stmts = NULL;
|
|
}
|
|
|
|
sbitmap_free (processed);
|
|
|
|
worklist.release ();
|
|
}
|
|
|
|
/* Main routine to eliminate dead code.
|
|
|
|
AGGRESSIVE controls the aggressiveness of the algorithm.
|
|
In conservative mode, we ignore control dependence and simply declare
|
|
all but the most trivially dead branches necessary. This mode is fast.
|
|
In aggressive mode, control dependences are taken into account, which
|
|
results in more dead code elimination, but at the cost of some time.
|
|
|
|
FIXME: Aggressive mode before PRE doesn't work currently because
|
|
the dominance info is not invalidated after DCE1. This is
|
|
not an issue right now because we only run aggressive DCE
|
|
as the last tree SSA pass, but keep this in mind when you
|
|
start experimenting with pass ordering. */
|
|
|
|
static unsigned int
|
|
perform_tree_ssa_dce (bool aggressive)
|
|
{
|
|
bool something_changed = 0;
|
|
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
|
|
/* Preheaders are needed for SCEV to work.
|
|
Simple lateches and recorded exits improve chances that loop will
|
|
proved to be finite in testcases such as in loop-15.c and loop-24.c */
|
|
bool in_loop_pipeline = scev_initialized_p ();
|
|
if (aggressive && ! in_loop_pipeline)
|
|
{
|
|
scev_initialize ();
|
|
loop_optimizer_init (LOOPS_NORMAL
|
|
| LOOPS_HAVE_RECORDED_EXITS);
|
|
}
|
|
|
|
tree_dce_init (aggressive);
|
|
|
|
if (aggressive)
|
|
{
|
|
/* Compute control dependence. */
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
|
cd = new control_dependences ();
|
|
|
|
visited_control_parents =
|
|
sbitmap_alloc (last_basic_block_for_fn (cfun));
|
|
bitmap_clear (visited_control_parents);
|
|
|
|
mark_dfs_back_edges ();
|
|
}
|
|
|
|
find_obviously_necessary_stmts (aggressive);
|
|
|
|
if (aggressive && ! in_loop_pipeline)
|
|
{
|
|
loop_optimizer_finalize ();
|
|
scev_finalize ();
|
|
}
|
|
|
|
longest_chain = 0;
|
|
total_chain = 0;
|
|
nr_walks = 0;
|
|
chain_ovfl = false;
|
|
visited = BITMAP_ALLOC (NULL);
|
|
propagate_necessity (aggressive);
|
|
BITMAP_FREE (visited);
|
|
|
|
something_changed |= eliminate_unnecessary_stmts ();
|
|
something_changed |= cfg_altered;
|
|
|
|
/* We do not update postdominators, so free them unconditionally. */
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
|
|
|
/* If we removed paths in the CFG, then we need to update
|
|
dominators as well. I haven't investigated the possibility
|
|
of incrementally updating dominators. */
|
|
if (cfg_altered)
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
|
|
statistics_counter_event (cfun, "Statements deleted", stats.removed);
|
|
statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
|
|
|
|
/* Debugging dumps. */
|
|
if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
|
|
print_stats ();
|
|
|
|
tree_dce_done (aggressive);
|
|
|
|
if (something_changed)
|
|
{
|
|
free_numbers_of_iterations_estimates (cfun);
|
|
if (in_loop_pipeline)
|
|
scev_reset ();
|
|
return TODO_update_ssa | TODO_cleanup_cfg;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Pass entry points. */
|
|
static unsigned int
|
|
tree_ssa_dce (void)
|
|
{
|
|
return perform_tree_ssa_dce (/*aggressive=*/false);
|
|
}
|
|
|
|
static unsigned int
|
|
tree_ssa_cd_dce (void)
|
|
{
|
|
return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
|
|
}
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_dce =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"dce", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_TREE_DCE, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_dce : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_dce (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_dce, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
opt_pass * clone () { return new pass_dce (m_ctxt); }
|
|
virtual bool gate (function *) { return flag_tree_dce != 0; }
|
|
virtual unsigned int execute (function *) { return tree_ssa_dce (); }
|
|
|
|
}; // class pass_dce
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_dce (gcc::context *ctxt)
|
|
{
|
|
return new pass_dce (ctxt);
|
|
}
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_cd_dce =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"cddce", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_TREE_CD_DCE, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_cd_dce : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_cd_dce (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_cd_dce, ctxt), update_address_taken_p (false)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
opt_pass * clone () { return new pass_cd_dce (m_ctxt); }
|
|
void set_pass_param (unsigned n, bool param)
|
|
{
|
|
gcc_assert (n == 0);
|
|
update_address_taken_p = param;
|
|
}
|
|
virtual bool gate (function *) { return flag_tree_dce != 0; }
|
|
virtual unsigned int execute (function *)
|
|
{
|
|
return (tree_ssa_cd_dce ()
|
|
| (update_address_taken_p ? TODO_update_address_taken : 0));
|
|
}
|
|
|
|
private:
|
|
bool update_address_taken_p;
|
|
}; // class pass_cd_dce
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_cd_dce (gcc::context *ctxt)
|
|
{
|
|
return new pass_cd_dce (ctxt);
|
|
}
|
|
|
|
|
|
/* A cheap DCE interface. WORKLIST is a list of possibly dead stmts and
|
|
is consumed by this function. The function has linear complexity in
|
|
the number of dead stmts with a constant factor like the average SSA
|
|
use operands number. */
|
|
|
|
void
|
|
simple_dce_from_worklist (bitmap worklist)
|
|
{
|
|
while (! bitmap_empty_p (worklist))
|
|
{
|
|
/* Pop item. */
|
|
unsigned i = bitmap_first_set_bit (worklist);
|
|
bitmap_clear_bit (worklist, i);
|
|
|
|
tree def = ssa_name (i);
|
|
/* Removed by somebody else or still in use. */
|
|
if (! def || ! has_zero_uses (def))
|
|
continue;
|
|
|
|
gimple *t = SSA_NAME_DEF_STMT (def);
|
|
if (gimple_has_side_effects (t))
|
|
continue;
|
|
|
|
/* Add uses to the worklist. */
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
FOR_EACH_PHI_OR_STMT_USE (use_p, t, iter, SSA_OP_USE)
|
|
{
|
|
tree use = USE_FROM_PTR (use_p);
|
|
if (TREE_CODE (use) == SSA_NAME
|
|
&& ! SSA_NAME_IS_DEFAULT_DEF (use))
|
|
bitmap_set_bit (worklist, SSA_NAME_VERSION (use));
|
|
}
|
|
|
|
/* Remove stmt. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Removing dead stmt:");
|
|
print_gimple_stmt (dump_file, t, 0);
|
|
}
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (t);
|
|
if (gimple_code (t) == GIMPLE_PHI)
|
|
remove_phi_node (&gsi, true);
|
|
else
|
|
{
|
|
gsi_remove (&gsi, true);
|
|
release_defs (t);
|
|
}
|
|
}
|
|
}
|