gcc/libgo/go/exp/ssh/transport.go
Ian Lance Taylor 2fd401c8f1 libgo: Update to weekly.2011-11-02.
From-SVN: r181964
2011-12-03 02:17:34 +00:00

369 lines
8.1 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssh
import (
"bufio"
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/subtle"
"errors"
"hash"
"io"
"net"
"sync"
)
const (
paddingMultiple = 16 // TODO(dfc) does this need to be configurable?
)
// filteredConn reduces the set of methods exposed when embeddeding
// a net.Conn inside ssh.transport.
// TODO(dfc) suggestions for a better name will be warmly received.
type filteredConn interface {
// Close closes the connection.
Close() error
// LocalAddr returns the local network address.
LocalAddr() net.Addr
// RemoteAddr returns the remote network address.
RemoteAddr() net.Addr
}
// Types implementing packetWriter provide the ability to send packets to
// an SSH peer.
type packetWriter interface {
// Encrypt and send a packet of data to the remote peer.
writePacket(packet []byte) error
}
// transport represents the SSH connection to the remote peer.
type transport struct {
reader
writer
filteredConn
}
// reader represents the incoming connection state.
type reader struct {
io.Reader
common
}
// writer represnts the outgoing connection state.
type writer struct {
*sync.Mutex // protects writer.Writer from concurrent writes
*bufio.Writer
paddingMultiple int
rand io.Reader
common
}
// common represents the cipher state needed to process messages in a single
// direction.
type common struct {
seqNum uint32
mac hash.Hash
cipher cipher.Stream
cipherAlgo string
macAlgo string
compressionAlgo string
}
// Read and decrypt a single packet from the remote peer.
func (r *reader) readOnePacket() ([]byte, error) {
var lengthBytes = make([]byte, 5)
var macSize uint32
if _, err := io.ReadFull(r, lengthBytes); err != nil {
return nil, err
}
if r.cipher != nil {
r.cipher.XORKeyStream(lengthBytes, lengthBytes)
}
if r.mac != nil {
r.mac.Reset()
seqNumBytes := []byte{
byte(r.seqNum >> 24),
byte(r.seqNum >> 16),
byte(r.seqNum >> 8),
byte(r.seqNum),
}
r.mac.Write(seqNumBytes)
r.mac.Write(lengthBytes)
macSize = uint32(r.mac.Size())
}
length := uint32(lengthBytes[0])<<24 | uint32(lengthBytes[1])<<16 | uint32(lengthBytes[2])<<8 | uint32(lengthBytes[3])
paddingLength := uint32(lengthBytes[4])
if length <= paddingLength+1 {
return nil, errors.New("invalid packet length")
}
if length > maxPacketSize {
return nil, errors.New("packet too large")
}
packet := make([]byte, length-1+macSize)
if _, err := io.ReadFull(r, packet); err != nil {
return nil, err
}
mac := packet[length-1:]
if r.cipher != nil {
r.cipher.XORKeyStream(packet, packet[:length-1])
}
if r.mac != nil {
r.mac.Write(packet[:length-1])
if subtle.ConstantTimeCompare(r.mac.Sum(), mac) != 1 {
return nil, errors.New("ssh: MAC failure")
}
}
r.seqNum++
return packet[:length-paddingLength-1], nil
}
// Read and decrypt next packet discarding debug and noop messages.
func (t *transport) readPacket() ([]byte, error) {
for {
packet, err := t.readOnePacket()
if err != nil {
return nil, err
}
if packet[0] != msgIgnore && packet[0] != msgDebug {
return packet, nil
}
}
panic("unreachable")
}
// Encrypt and send a packet of data to the remote peer.
func (w *writer) writePacket(packet []byte) error {
w.Mutex.Lock()
defer w.Mutex.Unlock()
paddingLength := paddingMultiple - (5+len(packet))%paddingMultiple
if paddingLength < 4 {
paddingLength += paddingMultiple
}
length := len(packet) + 1 + paddingLength
lengthBytes := []byte{
byte(length >> 24),
byte(length >> 16),
byte(length >> 8),
byte(length),
byte(paddingLength),
}
padding := make([]byte, paddingLength)
_, err := io.ReadFull(w.rand, padding)
if err != nil {
return err
}
if w.mac != nil {
w.mac.Reset()
seqNumBytes := []byte{
byte(w.seqNum >> 24),
byte(w.seqNum >> 16),
byte(w.seqNum >> 8),
byte(w.seqNum),
}
w.mac.Write(seqNumBytes)
w.mac.Write(lengthBytes)
w.mac.Write(packet)
w.mac.Write(padding)
}
// TODO(dfc) lengthBytes, packet and padding should be
// subslices of a single buffer
if w.cipher != nil {
w.cipher.XORKeyStream(lengthBytes, lengthBytes)
w.cipher.XORKeyStream(packet, packet)
w.cipher.XORKeyStream(padding, padding)
}
if _, err := w.Write(lengthBytes); err != nil {
return err
}
if _, err := w.Write(packet); err != nil {
return err
}
if _, err := w.Write(padding); err != nil {
return err
}
if w.mac != nil {
if _, err := w.Write(w.mac.Sum()); err != nil {
return err
}
}
if err := w.Flush(); err != nil {
return err
}
w.seqNum++
return err
}
// Send a message to the remote peer
func (t *transport) sendMessage(typ uint8, msg interface{}) error {
packet := marshal(typ, msg)
return t.writePacket(packet)
}
func newTransport(conn net.Conn, rand io.Reader) *transport {
return &transport{
reader: reader{
Reader: bufio.NewReader(conn),
},
writer: writer{
Writer: bufio.NewWriter(conn),
rand: rand,
Mutex: new(sync.Mutex),
},
filteredConn: conn,
}
}
type direction struct {
ivTag []byte
keyTag []byte
macKeyTag []byte
}
// TODO(dfc) can this be made a constant ?
var (
serverKeys = direction{[]byte{'B'}, []byte{'D'}, []byte{'F'}}
clientKeys = direction{[]byte{'A'}, []byte{'C'}, []byte{'E'}}
)
// setupKeys sets the cipher and MAC keys from K, H and sessionId, as
// described in RFC 4253, section 6.4. direction should either be serverKeys
// (to setup server->client keys) or clientKeys (for client->server keys).
func (c *common) setupKeys(d direction, K, H, sessionId []byte, hashFunc crypto.Hash) error {
h := hashFunc.New()
blockSize := 16
keySize := 16
macKeySize := 20
iv := make([]byte, blockSize)
key := make([]byte, keySize)
macKey := make([]byte, macKeySize)
generateKeyMaterial(iv, d.ivTag, K, H, sessionId, h)
generateKeyMaterial(key, d.keyTag, K, H, sessionId, h)
generateKeyMaterial(macKey, d.macKeyTag, K, H, sessionId, h)
c.mac = truncatingMAC{12, hmac.NewSHA1(macKey)}
aes, err := aes.NewCipher(key)
if err != nil {
return err
}
c.cipher = cipher.NewCTR(aes, iv)
return nil
}
// generateKeyMaterial fills out with key material generated from tag, K, H
// and sessionId, as specified in RFC 4253, section 7.2.
func generateKeyMaterial(out, tag []byte, K, H, sessionId []byte, h hash.Hash) {
var digestsSoFar []byte
for len(out) > 0 {
h.Reset()
h.Write(K)
h.Write(H)
if len(digestsSoFar) == 0 {
h.Write(tag)
h.Write(sessionId)
} else {
h.Write(digestsSoFar)
}
digest := h.Sum()
n := copy(out, digest)
out = out[n:]
if len(out) > 0 {
digestsSoFar = append(digestsSoFar, digest...)
}
}
}
// truncatingMAC wraps around a hash.Hash and truncates the output digest to
// a given size.
type truncatingMAC struct {
length int
hmac hash.Hash
}
func (t truncatingMAC) Write(data []byte) (int, error) {
return t.hmac.Write(data)
}
func (t truncatingMAC) Sum() []byte {
digest := t.hmac.Sum()
return digest[:t.length]
}
func (t truncatingMAC) Reset() {
t.hmac.Reset()
}
func (t truncatingMAC) Size() int {
return t.length
}
// maxVersionStringBytes is the maximum number of bytes that we'll accept as a
// version string. In the event that the client is talking a different protocol
// we need to set a limit otherwise we will keep using more and more memory
// while searching for the end of the version handshake.
const maxVersionStringBytes = 1024
// Read version string as specified by RFC 4253, section 4.2.
func readVersion(r io.Reader) ([]byte, error) {
versionString := make([]byte, 0, 64)
var ok, seenCR bool
var buf [1]byte
forEachByte:
for len(versionString) < maxVersionStringBytes {
_, err := io.ReadFull(r, buf[:])
if err != nil {
return nil, err
}
b := buf[0]
if !seenCR {
if b == '\r' {
seenCR = true
}
} else {
if b == '\n' {
ok = true
break forEachByte
} else {
seenCR = false
}
}
versionString = append(versionString, b)
}
if !ok {
return nil, errors.New("failed to read version string")
}
// We need to remove the CR from versionString
return versionString[:len(versionString)-1], nil
}