c15677b61c
PR rtl-optimization/59649 * stor-layout.c (get_mode_bounds): For BImode return 0 and STORE_FLAG_VALUE. From-SVN: r206422
2854 lines
93 KiB
C
2854 lines
93 KiB
C
/* C-compiler utilities for types and variables storage layout
|
||
Copyright (C) 1987-2014 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "stor-layout.h"
|
||
#include "stringpool.h"
|
||
#include "varasm.h"
|
||
#include "print-tree.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "flags.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "diagnostic-core.h"
|
||
#include "target.h"
|
||
#include "langhooks.h"
|
||
#include "regs.h"
|
||
#include "params.h"
|
||
#include "cgraph.h"
|
||
#include "tree-inline.h"
|
||
#include "tree-dump.h"
|
||
#include "gimplify.h"
|
||
|
||
/* Data type for the expressions representing sizes of data types.
|
||
It is the first integer type laid out. */
|
||
tree sizetype_tab[(int) stk_type_kind_last];
|
||
|
||
/* If nonzero, this is an upper limit on alignment of structure fields.
|
||
The value is measured in bits. */
|
||
unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
|
||
|
||
/* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
|
||
in the address spaces' address_mode, not pointer_mode. Set only by
|
||
internal_reference_types called only by a front end. */
|
||
static int reference_types_internal = 0;
|
||
|
||
static tree self_referential_size (tree);
|
||
static void finalize_record_size (record_layout_info);
|
||
static void finalize_type_size (tree);
|
||
static void place_union_field (record_layout_info, tree);
|
||
#if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
|
||
static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
|
||
HOST_WIDE_INT, tree);
|
||
#endif
|
||
extern void debug_rli (record_layout_info);
|
||
|
||
/* Show that REFERENCE_TYPES are internal and should use address_mode.
|
||
Called only by front end. */
|
||
|
||
void
|
||
internal_reference_types (void)
|
||
{
|
||
reference_types_internal = 1;
|
||
}
|
||
|
||
/* Given a size SIZE that may not be a constant, return a SAVE_EXPR
|
||
to serve as the actual size-expression for a type or decl. */
|
||
|
||
tree
|
||
variable_size (tree size)
|
||
{
|
||
/* Obviously. */
|
||
if (TREE_CONSTANT (size))
|
||
return size;
|
||
|
||
/* If the size is self-referential, we can't make a SAVE_EXPR (see
|
||
save_expr for the rationale). But we can do something else. */
|
||
if (CONTAINS_PLACEHOLDER_P (size))
|
||
return self_referential_size (size);
|
||
|
||
/* If we are in the global binding level, we can't make a SAVE_EXPR
|
||
since it may end up being shared across functions, so it is up
|
||
to the front-end to deal with this case. */
|
||
if (lang_hooks.decls.global_bindings_p ())
|
||
return size;
|
||
|
||
return save_expr (size);
|
||
}
|
||
|
||
/* An array of functions used for self-referential size computation. */
|
||
static GTY(()) vec<tree, va_gc> *size_functions;
|
||
|
||
/* Similar to copy_tree_r but do not copy component references involving
|
||
PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
|
||
and substituted in substitute_in_expr. */
|
||
|
||
static tree
|
||
copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
enum tree_code code = TREE_CODE (*tp);
|
||
|
||
/* Stop at types, decls, constants like copy_tree_r. */
|
||
if (TREE_CODE_CLASS (code) == tcc_type
|
||
|| TREE_CODE_CLASS (code) == tcc_declaration
|
||
|| TREE_CODE_CLASS (code) == tcc_constant)
|
||
{
|
||
*walk_subtrees = 0;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* This is the pattern built in ada/make_aligning_type. */
|
||
else if (code == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
|
||
{
|
||
*walk_subtrees = 0;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Default case: the component reference. */
|
||
else if (code == COMPONENT_REF)
|
||
{
|
||
tree inner;
|
||
for (inner = TREE_OPERAND (*tp, 0);
|
||
REFERENCE_CLASS_P (inner);
|
||
inner = TREE_OPERAND (inner, 0))
|
||
;
|
||
|
||
if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
|
||
{
|
||
*walk_subtrees = 0;
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* We're not supposed to have them in self-referential size trees
|
||
because we wouldn't properly control when they are evaluated.
|
||
However, not creating superfluous SAVE_EXPRs requires accurate
|
||
tracking of readonly-ness all the way down to here, which we
|
||
cannot always guarantee in practice. So punt in this case. */
|
||
else if (code == SAVE_EXPR)
|
||
return error_mark_node;
|
||
|
||
else if (code == STATEMENT_LIST)
|
||
gcc_unreachable ();
|
||
|
||
return copy_tree_r (tp, walk_subtrees, data);
|
||
}
|
||
|
||
/* Given a SIZE expression that is self-referential, return an equivalent
|
||
expression to serve as the actual size expression for a type. */
|
||
|
||
static tree
|
||
self_referential_size (tree size)
|
||
{
|
||
static unsigned HOST_WIDE_INT fnno = 0;
|
||
vec<tree> self_refs = vNULL;
|
||
tree param_type_list = NULL, param_decl_list = NULL;
|
||
tree t, ref, return_type, fntype, fnname, fndecl;
|
||
unsigned int i;
|
||
char buf[128];
|
||
vec<tree, va_gc> *args = NULL;
|
||
|
||
/* Do not factor out simple operations. */
|
||
t = skip_simple_constant_arithmetic (size);
|
||
if (TREE_CODE (t) == CALL_EXPR)
|
||
return size;
|
||
|
||
/* Collect the list of self-references in the expression. */
|
||
find_placeholder_in_expr (size, &self_refs);
|
||
gcc_assert (self_refs.length () > 0);
|
||
|
||
/* Obtain a private copy of the expression. */
|
||
t = size;
|
||
if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
|
||
return size;
|
||
size = t;
|
||
|
||
/* Build the parameter and argument lists in parallel; also
|
||
substitute the former for the latter in the expression. */
|
||
vec_alloc (args, self_refs.length ());
|
||
FOR_EACH_VEC_ELT (self_refs, i, ref)
|
||
{
|
||
tree subst, param_name, param_type, param_decl;
|
||
|
||
if (DECL_P (ref))
|
||
{
|
||
/* We shouldn't have true variables here. */
|
||
gcc_assert (TREE_READONLY (ref));
|
||
subst = ref;
|
||
}
|
||
/* This is the pattern built in ada/make_aligning_type. */
|
||
else if (TREE_CODE (ref) == ADDR_EXPR)
|
||
subst = ref;
|
||
/* Default case: the component reference. */
|
||
else
|
||
subst = TREE_OPERAND (ref, 1);
|
||
|
||
sprintf (buf, "p%d", i);
|
||
param_name = get_identifier (buf);
|
||
param_type = TREE_TYPE (ref);
|
||
param_decl
|
||
= build_decl (input_location, PARM_DECL, param_name, param_type);
|
||
if (targetm.calls.promote_prototypes (NULL_TREE)
|
||
&& INTEGRAL_TYPE_P (param_type)
|
||
&& TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
|
||
DECL_ARG_TYPE (param_decl) = integer_type_node;
|
||
else
|
||
DECL_ARG_TYPE (param_decl) = param_type;
|
||
DECL_ARTIFICIAL (param_decl) = 1;
|
||
TREE_READONLY (param_decl) = 1;
|
||
|
||
size = substitute_in_expr (size, subst, param_decl);
|
||
|
||
param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
|
||
param_decl_list = chainon (param_decl, param_decl_list);
|
||
args->quick_push (ref);
|
||
}
|
||
|
||
self_refs.release ();
|
||
|
||
/* Append 'void' to indicate that the number of parameters is fixed. */
|
||
param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
|
||
|
||
/* The 3 lists have been created in reverse order. */
|
||
param_type_list = nreverse (param_type_list);
|
||
param_decl_list = nreverse (param_decl_list);
|
||
|
||
/* Build the function type. */
|
||
return_type = TREE_TYPE (size);
|
||
fntype = build_function_type (return_type, param_type_list);
|
||
|
||
/* Build the function declaration. */
|
||
sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
|
||
fnname = get_file_function_name (buf);
|
||
fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
|
||
for (t = param_decl_list; t; t = DECL_CHAIN (t))
|
||
DECL_CONTEXT (t) = fndecl;
|
||
DECL_ARGUMENTS (fndecl) = param_decl_list;
|
||
DECL_RESULT (fndecl)
|
||
= build_decl (input_location, RESULT_DECL, 0, return_type);
|
||
DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
|
||
|
||
/* The function has been created by the compiler and we don't
|
||
want to emit debug info for it. */
|
||
DECL_ARTIFICIAL (fndecl) = 1;
|
||
DECL_IGNORED_P (fndecl) = 1;
|
||
|
||
/* It is supposed to be "const" and never throw. */
|
||
TREE_READONLY (fndecl) = 1;
|
||
TREE_NOTHROW (fndecl) = 1;
|
||
|
||
/* We want it to be inlined when this is deemed profitable, as
|
||
well as discarded if every call has been integrated. */
|
||
DECL_DECLARED_INLINE_P (fndecl) = 1;
|
||
|
||
/* It is made up of a unique return statement. */
|
||
DECL_INITIAL (fndecl) = make_node (BLOCK);
|
||
BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
|
||
t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
|
||
DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
|
||
TREE_STATIC (fndecl) = 1;
|
||
|
||
/* Put it onto the list of size functions. */
|
||
vec_safe_push (size_functions, fndecl);
|
||
|
||
/* Replace the original expression with a call to the size function. */
|
||
return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
|
||
}
|
||
|
||
/* Take, queue and compile all the size functions. It is essential that
|
||
the size functions be gimplified at the very end of the compilation
|
||
in order to guarantee transparent handling of self-referential sizes.
|
||
Otherwise the GENERIC inliner would not be able to inline them back
|
||
at each of their call sites, thus creating artificial non-constant
|
||
size expressions which would trigger nasty problems later on. */
|
||
|
||
void
|
||
finalize_size_functions (void)
|
||
{
|
||
unsigned int i;
|
||
tree fndecl;
|
||
|
||
for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
|
||
{
|
||
allocate_struct_function (fndecl, false);
|
||
set_cfun (NULL);
|
||
dump_function (TDI_original, fndecl);
|
||
gimplify_function_tree (fndecl);
|
||
dump_function (TDI_generic, fndecl);
|
||
cgraph_finalize_function (fndecl, false);
|
||
}
|
||
|
||
vec_free (size_functions);
|
||
}
|
||
|
||
/* Return the machine mode to use for a nonscalar of SIZE bits. The
|
||
mode must be in class MCLASS, and have exactly that many value bits;
|
||
it may have padding as well. If LIMIT is nonzero, modes of wider
|
||
than MAX_FIXED_MODE_SIZE will not be used. */
|
||
|
||
enum machine_mode
|
||
mode_for_size (unsigned int size, enum mode_class mclass, int limit)
|
||
{
|
||
enum machine_mode mode;
|
||
|
||
if (limit && size > MAX_FIXED_MODE_SIZE)
|
||
return BLKmode;
|
||
|
||
/* Get the first mode which has this size, in the specified class. */
|
||
for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
if (GET_MODE_PRECISION (mode) == size)
|
||
return mode;
|
||
|
||
return BLKmode;
|
||
}
|
||
|
||
/* Similar, except passed a tree node. */
|
||
|
||
enum machine_mode
|
||
mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
|
||
{
|
||
unsigned HOST_WIDE_INT uhwi;
|
||
unsigned int ui;
|
||
|
||
if (!tree_fits_uhwi_p (size))
|
||
return BLKmode;
|
||
uhwi = tree_to_uhwi (size);
|
||
ui = uhwi;
|
||
if (uhwi != ui)
|
||
return BLKmode;
|
||
return mode_for_size (ui, mclass, limit);
|
||
}
|
||
|
||
/* Similar, but never return BLKmode; return the narrowest mode that
|
||
contains at least the requested number of value bits. */
|
||
|
||
enum machine_mode
|
||
smallest_mode_for_size (unsigned int size, enum mode_class mclass)
|
||
{
|
||
enum machine_mode mode;
|
||
|
||
/* Get the first mode which has at least this size, in the
|
||
specified class. */
|
||
for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
if (GET_MODE_PRECISION (mode) >= size)
|
||
return mode;
|
||
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Find an integer mode of the exact same size, or BLKmode on failure. */
|
||
|
||
enum machine_mode
|
||
int_mode_for_mode (enum machine_mode mode)
|
||
{
|
||
switch (GET_MODE_CLASS (mode))
|
||
{
|
||
case MODE_INT:
|
||
case MODE_PARTIAL_INT:
|
||
break;
|
||
|
||
case MODE_COMPLEX_INT:
|
||
case MODE_COMPLEX_FLOAT:
|
||
case MODE_FLOAT:
|
||
case MODE_DECIMAL_FLOAT:
|
||
case MODE_VECTOR_INT:
|
||
case MODE_VECTOR_FLOAT:
|
||
case MODE_FRACT:
|
||
case MODE_ACCUM:
|
||
case MODE_UFRACT:
|
||
case MODE_UACCUM:
|
||
case MODE_VECTOR_FRACT:
|
||
case MODE_VECTOR_ACCUM:
|
||
case MODE_VECTOR_UFRACT:
|
||
case MODE_VECTOR_UACCUM:
|
||
mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
|
||
break;
|
||
|
||
case MODE_RANDOM:
|
||
if (mode == BLKmode)
|
||
break;
|
||
|
||
/* ... fall through ... */
|
||
|
||
case MODE_CC:
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return mode;
|
||
}
|
||
|
||
/* Find a mode that is suitable for representing a vector with
|
||
NUNITS elements of mode INNERMODE. Returns BLKmode if there
|
||
is no suitable mode. */
|
||
|
||
enum machine_mode
|
||
mode_for_vector (enum machine_mode innermode, unsigned nunits)
|
||
{
|
||
enum machine_mode mode;
|
||
|
||
/* First, look for a supported vector type. */
|
||
if (SCALAR_FLOAT_MODE_P (innermode))
|
||
mode = MIN_MODE_VECTOR_FLOAT;
|
||
else if (SCALAR_FRACT_MODE_P (innermode))
|
||
mode = MIN_MODE_VECTOR_FRACT;
|
||
else if (SCALAR_UFRACT_MODE_P (innermode))
|
||
mode = MIN_MODE_VECTOR_UFRACT;
|
||
else if (SCALAR_ACCUM_MODE_P (innermode))
|
||
mode = MIN_MODE_VECTOR_ACCUM;
|
||
else if (SCALAR_UACCUM_MODE_P (innermode))
|
||
mode = MIN_MODE_VECTOR_UACCUM;
|
||
else
|
||
mode = MIN_MODE_VECTOR_INT;
|
||
|
||
/* Do not check vector_mode_supported_p here. We'll do that
|
||
later in vector_type_mode. */
|
||
for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
|
||
if (GET_MODE_NUNITS (mode) == nunits
|
||
&& GET_MODE_INNER (mode) == innermode)
|
||
break;
|
||
|
||
/* For integers, try mapping it to a same-sized scalar mode. */
|
||
if (mode == VOIDmode
|
||
&& GET_MODE_CLASS (innermode) == MODE_INT)
|
||
mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
|
||
MODE_INT, 0);
|
||
|
||
if (mode == VOIDmode
|
||
|| (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& !have_regs_of_mode[mode]))
|
||
return BLKmode;
|
||
|
||
return mode;
|
||
}
|
||
|
||
/* Return the alignment of MODE. This will be bounded by 1 and
|
||
BIGGEST_ALIGNMENT. */
|
||
|
||
unsigned int
|
||
get_mode_alignment (enum machine_mode mode)
|
||
{
|
||
return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
|
||
}
|
||
|
||
/* Return the precision of the mode, or for a complex or vector mode the
|
||
precision of the mode of its elements. */
|
||
|
||
unsigned int
|
||
element_precision (enum machine_mode mode)
|
||
{
|
||
if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
|
||
mode = GET_MODE_INNER (mode);
|
||
|
||
return GET_MODE_PRECISION (mode);
|
||
}
|
||
|
||
/* Return the natural mode of an array, given that it is SIZE bytes in
|
||
total and has elements of type ELEM_TYPE. */
|
||
|
||
static enum machine_mode
|
||
mode_for_array (tree elem_type, tree size)
|
||
{
|
||
tree elem_size;
|
||
unsigned HOST_WIDE_INT int_size, int_elem_size;
|
||
bool limit_p;
|
||
|
||
/* One-element arrays get the component type's mode. */
|
||
elem_size = TYPE_SIZE (elem_type);
|
||
if (simple_cst_equal (size, elem_size))
|
||
return TYPE_MODE (elem_type);
|
||
|
||
limit_p = true;
|
||
if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
|
||
{
|
||
int_size = tree_to_uhwi (size);
|
||
int_elem_size = tree_to_uhwi (elem_size);
|
||
if (int_elem_size > 0
|
||
&& int_size % int_elem_size == 0
|
||
&& targetm.array_mode_supported_p (TYPE_MODE (elem_type),
|
||
int_size / int_elem_size))
|
||
limit_p = false;
|
||
}
|
||
return mode_for_size_tree (size, MODE_INT, limit_p);
|
||
}
|
||
|
||
/* Subroutine of layout_decl: Force alignment required for the data type.
|
||
But if the decl itself wants greater alignment, don't override that. */
|
||
|
||
static inline void
|
||
do_type_align (tree type, tree decl)
|
||
{
|
||
if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
|
||
{
|
||
DECL_ALIGN (decl) = TYPE_ALIGN (type);
|
||
if (TREE_CODE (decl) == FIELD_DECL)
|
||
DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
|
||
}
|
||
}
|
||
|
||
/* Set the size, mode and alignment of a ..._DECL node.
|
||
TYPE_DECL does need this for C++.
|
||
Note that LABEL_DECL and CONST_DECL nodes do not need this,
|
||
and FUNCTION_DECL nodes have them set up in a special (and simple) way.
|
||
Don't call layout_decl for them.
|
||
|
||
KNOWN_ALIGN is the amount of alignment we can assume this
|
||
decl has with no special effort. It is relevant only for FIELD_DECLs
|
||
and depends on the previous fields.
|
||
All that matters about KNOWN_ALIGN is which powers of 2 divide it.
|
||
If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
|
||
the record will be aligned to suit. */
|
||
|
||
void
|
||
layout_decl (tree decl, unsigned int known_align)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
enum tree_code code = TREE_CODE (decl);
|
||
rtx rtl = NULL_RTX;
|
||
location_t loc = DECL_SOURCE_LOCATION (decl);
|
||
|
||
if (code == CONST_DECL)
|
||
return;
|
||
|
||
gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
|
||
|| code == TYPE_DECL ||code == FIELD_DECL);
|
||
|
||
rtl = DECL_RTL_IF_SET (decl);
|
||
|
||
if (type == error_mark_node)
|
||
type = void_type_node;
|
||
|
||
/* Usually the size and mode come from the data type without change,
|
||
however, the front-end may set the explicit width of the field, so its
|
||
size may not be the same as the size of its type. This happens with
|
||
bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
|
||
also happens with other fields. For example, the C++ front-end creates
|
||
zero-sized fields corresponding to empty base classes, and depends on
|
||
layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
|
||
size in bytes from the size in bits. If we have already set the mode,
|
||
don't set it again since we can be called twice for FIELD_DECLs. */
|
||
|
||
DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
|
||
if (DECL_MODE (decl) == VOIDmode)
|
||
DECL_MODE (decl) = TYPE_MODE (type);
|
||
|
||
if (DECL_SIZE (decl) == 0)
|
||
{
|
||
DECL_SIZE (decl) = TYPE_SIZE (type);
|
||
DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
|
||
}
|
||
else if (DECL_SIZE_UNIT (decl) == 0)
|
||
DECL_SIZE_UNIT (decl)
|
||
= fold_convert_loc (loc, sizetype,
|
||
size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
|
||
bitsize_unit_node));
|
||
|
||
if (code != FIELD_DECL)
|
||
/* For non-fields, update the alignment from the type. */
|
||
do_type_align (type, decl);
|
||
else
|
||
/* For fields, it's a bit more complicated... */
|
||
{
|
||
bool old_user_align = DECL_USER_ALIGN (decl);
|
||
bool zero_bitfield = false;
|
||
bool packed_p = DECL_PACKED (decl);
|
||
unsigned int mfa;
|
||
|
||
if (DECL_BIT_FIELD (decl))
|
||
{
|
||
DECL_BIT_FIELD_TYPE (decl) = type;
|
||
|
||
/* A zero-length bit-field affects the alignment of the next
|
||
field. In essence such bit-fields are not influenced by
|
||
any packing due to #pragma pack or attribute packed. */
|
||
if (integer_zerop (DECL_SIZE (decl))
|
||
&& ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
|
||
{
|
||
zero_bitfield = true;
|
||
packed_p = false;
|
||
#ifdef PCC_BITFIELD_TYPE_MATTERS
|
||
if (PCC_BITFIELD_TYPE_MATTERS)
|
||
do_type_align (type, decl);
|
||
else
|
||
#endif
|
||
{
|
||
#ifdef EMPTY_FIELD_BOUNDARY
|
||
if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
|
||
{
|
||
DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
|
||
DECL_USER_ALIGN (decl) = 0;
|
||
}
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* See if we can use an ordinary integer mode for a bit-field.
|
||
Conditions are: a fixed size that is correct for another mode,
|
||
occupying a complete byte or bytes on proper boundary. */
|
||
if (TYPE_SIZE (type) != 0
|
||
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
|
||
&& GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
|
||
{
|
||
enum machine_mode xmode
|
||
= mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
|
||
unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
|
||
|
||
if (xmode != BLKmode
|
||
&& !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
|
||
&& (known_align == 0 || known_align >= xalign))
|
||
{
|
||
DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
|
||
DECL_MODE (decl) = xmode;
|
||
DECL_BIT_FIELD (decl) = 0;
|
||
}
|
||
}
|
||
|
||
/* Turn off DECL_BIT_FIELD if we won't need it set. */
|
||
if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
|
||
&& known_align >= TYPE_ALIGN (type)
|
||
&& DECL_ALIGN (decl) >= TYPE_ALIGN (type))
|
||
DECL_BIT_FIELD (decl) = 0;
|
||
}
|
||
else if (packed_p && DECL_USER_ALIGN (decl))
|
||
/* Don't touch DECL_ALIGN. For other packed fields, go ahead and
|
||
round up; we'll reduce it again below. We want packing to
|
||
supersede USER_ALIGN inherited from the type, but defer to
|
||
alignment explicitly specified on the field decl. */;
|
||
else
|
||
do_type_align (type, decl);
|
||
|
||
/* If the field is packed and not explicitly aligned, give it the
|
||
minimum alignment. Note that do_type_align may set
|
||
DECL_USER_ALIGN, so we need to check old_user_align instead. */
|
||
if (packed_p
|
||
&& !old_user_align)
|
||
DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
|
||
|
||
if (! packed_p && ! DECL_USER_ALIGN (decl))
|
||
{
|
||
/* Some targets (i.e. i386, VMS) limit struct field alignment
|
||
to a lower boundary than alignment of variables unless
|
||
it was overridden by attribute aligned. */
|
||
#ifdef BIGGEST_FIELD_ALIGNMENT
|
||
DECL_ALIGN (decl)
|
||
= MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
|
||
#endif
|
||
#ifdef ADJUST_FIELD_ALIGN
|
||
DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
|
||
#endif
|
||
}
|
||
|
||
if (zero_bitfield)
|
||
mfa = initial_max_fld_align * BITS_PER_UNIT;
|
||
else
|
||
mfa = maximum_field_alignment;
|
||
/* Should this be controlled by DECL_USER_ALIGN, too? */
|
||
if (mfa != 0)
|
||
DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
|
||
}
|
||
|
||
/* Evaluate nonconstant size only once, either now or as soon as safe. */
|
||
if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
|
||
DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
|
||
if (DECL_SIZE_UNIT (decl) != 0
|
||
&& TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
|
||
DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
|
||
|
||
/* If requested, warn about definitions of large data objects. */
|
||
if (warn_larger_than
|
||
&& (code == VAR_DECL || code == PARM_DECL)
|
||
&& ! DECL_EXTERNAL (decl))
|
||
{
|
||
tree size = DECL_SIZE_UNIT (decl);
|
||
|
||
if (size != 0 && TREE_CODE (size) == INTEGER_CST
|
||
&& compare_tree_int (size, larger_than_size) > 0)
|
||
{
|
||
int size_as_int = TREE_INT_CST_LOW (size);
|
||
|
||
if (compare_tree_int (size, size_as_int) == 0)
|
||
warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
|
||
else
|
||
warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
|
||
decl, larger_than_size);
|
||
}
|
||
}
|
||
|
||
/* If the RTL was already set, update its mode and mem attributes. */
|
||
if (rtl)
|
||
{
|
||
PUT_MODE (rtl, DECL_MODE (decl));
|
||
SET_DECL_RTL (decl, 0);
|
||
set_mem_attributes (rtl, decl, 1);
|
||
SET_DECL_RTL (decl, rtl);
|
||
}
|
||
}
|
||
|
||
/* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
|
||
a previous call to layout_decl and calls it again. */
|
||
|
||
void
|
||
relayout_decl (tree decl)
|
||
{
|
||
DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
|
||
DECL_MODE (decl) = VOIDmode;
|
||
if (!DECL_USER_ALIGN (decl))
|
||
DECL_ALIGN (decl) = 0;
|
||
SET_DECL_RTL (decl, 0);
|
||
|
||
layout_decl (decl, 0);
|
||
}
|
||
|
||
/* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
|
||
QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
|
||
is to be passed to all other layout functions for this record. It is the
|
||
responsibility of the caller to call `free' for the storage returned.
|
||
Note that garbage collection is not permitted until we finish laying
|
||
out the record. */
|
||
|
||
record_layout_info
|
||
start_record_layout (tree t)
|
||
{
|
||
record_layout_info rli = XNEW (struct record_layout_info_s);
|
||
|
||
rli->t = t;
|
||
|
||
/* If the type has a minimum specified alignment (via an attribute
|
||
declaration, for example) use it -- otherwise, start with a
|
||
one-byte alignment. */
|
||
rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
|
||
rli->unpacked_align = rli->record_align;
|
||
rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
|
||
|
||
#ifdef STRUCTURE_SIZE_BOUNDARY
|
||
/* Packed structures don't need to have minimum size. */
|
||
if (! TYPE_PACKED (t))
|
||
{
|
||
unsigned tmp;
|
||
|
||
/* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
|
||
tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
|
||
if (maximum_field_alignment != 0)
|
||
tmp = MIN (tmp, maximum_field_alignment);
|
||
rli->record_align = MAX (rli->record_align, tmp);
|
||
}
|
||
#endif
|
||
|
||
rli->offset = size_zero_node;
|
||
rli->bitpos = bitsize_zero_node;
|
||
rli->prev_field = 0;
|
||
rli->pending_statics = 0;
|
||
rli->packed_maybe_necessary = 0;
|
||
rli->remaining_in_alignment = 0;
|
||
|
||
return rli;
|
||
}
|
||
|
||
/* Return the combined bit position for the byte offset OFFSET and the
|
||
bit position BITPOS.
|
||
|
||
These functions operate on byte and bit positions present in FIELD_DECLs
|
||
and assume that these expressions result in no (intermediate) overflow.
|
||
This assumption is necessary to fold the expressions as much as possible,
|
||
so as to avoid creating artificially variable-sized types in languages
|
||
supporting variable-sized types like Ada. */
|
||
|
||
tree
|
||
bit_from_pos (tree offset, tree bitpos)
|
||
{
|
||
if (TREE_CODE (offset) == PLUS_EXPR)
|
||
offset = size_binop (PLUS_EXPR,
|
||
fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
|
||
fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
|
||
else
|
||
offset = fold_convert (bitsizetype, offset);
|
||
return size_binop (PLUS_EXPR, bitpos,
|
||
size_binop (MULT_EXPR, offset, bitsize_unit_node));
|
||
}
|
||
|
||
/* Return the combined truncated byte position for the byte offset OFFSET and
|
||
the bit position BITPOS. */
|
||
|
||
tree
|
||
byte_from_pos (tree offset, tree bitpos)
|
||
{
|
||
tree bytepos;
|
||
if (TREE_CODE (bitpos) == MULT_EXPR
|
||
&& tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
|
||
bytepos = TREE_OPERAND (bitpos, 0);
|
||
else
|
||
bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
|
||
return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
|
||
}
|
||
|
||
/* Split the bit position POS into a byte offset *POFFSET and a bit
|
||
position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
|
||
|
||
void
|
||
pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
|
||
tree pos)
|
||
{
|
||
tree toff_align = bitsize_int (off_align);
|
||
if (TREE_CODE (pos) == MULT_EXPR
|
||
&& tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
|
||
{
|
||
*poffset = size_binop (MULT_EXPR,
|
||
fold_convert (sizetype, TREE_OPERAND (pos, 0)),
|
||
size_int (off_align / BITS_PER_UNIT));
|
||
*pbitpos = bitsize_zero_node;
|
||
}
|
||
else
|
||
{
|
||
*poffset = size_binop (MULT_EXPR,
|
||
fold_convert (sizetype,
|
||
size_binop (FLOOR_DIV_EXPR, pos,
|
||
toff_align)),
|
||
size_int (off_align / BITS_PER_UNIT));
|
||
*pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
|
||
}
|
||
}
|
||
|
||
/* Given a pointer to bit and byte offsets and an offset alignment,
|
||
normalize the offsets so they are within the alignment. */
|
||
|
||
void
|
||
normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
|
||
{
|
||
/* If the bit position is now larger than it should be, adjust it
|
||
downwards. */
|
||
if (compare_tree_int (*pbitpos, off_align) >= 0)
|
||
{
|
||
tree offset, bitpos;
|
||
pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
|
||
*poffset = size_binop (PLUS_EXPR, *poffset, offset);
|
||
*pbitpos = bitpos;
|
||
}
|
||
}
|
||
|
||
/* Print debugging information about the information in RLI. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_rli (record_layout_info rli)
|
||
{
|
||
print_node_brief (stderr, "type", rli->t, 0);
|
||
print_node_brief (stderr, "\noffset", rli->offset, 0);
|
||
print_node_brief (stderr, " bitpos", rli->bitpos, 0);
|
||
|
||
fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
|
||
rli->record_align, rli->unpacked_align,
|
||
rli->offset_align);
|
||
|
||
/* The ms_struct code is the only that uses this. */
|
||
if (targetm.ms_bitfield_layout_p (rli->t))
|
||
fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
|
||
|
||
if (rli->packed_maybe_necessary)
|
||
fprintf (stderr, "packed may be necessary\n");
|
||
|
||
if (!vec_safe_is_empty (rli->pending_statics))
|
||
{
|
||
fprintf (stderr, "pending statics:\n");
|
||
debug_vec_tree (rli->pending_statics);
|
||
}
|
||
}
|
||
|
||
/* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
|
||
BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
|
||
|
||
void
|
||
normalize_rli (record_layout_info rli)
|
||
{
|
||
normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
|
||
}
|
||
|
||
/* Returns the size in bytes allocated so far. */
|
||
|
||
tree
|
||
rli_size_unit_so_far (record_layout_info rli)
|
||
{
|
||
return byte_from_pos (rli->offset, rli->bitpos);
|
||
}
|
||
|
||
/* Returns the size in bits allocated so far. */
|
||
|
||
tree
|
||
rli_size_so_far (record_layout_info rli)
|
||
{
|
||
return bit_from_pos (rli->offset, rli->bitpos);
|
||
}
|
||
|
||
/* FIELD is about to be added to RLI->T. The alignment (in bits) of
|
||
the next available location within the record is given by KNOWN_ALIGN.
|
||
Update the variable alignment fields in RLI, and return the alignment
|
||
to give the FIELD. */
|
||
|
||
unsigned int
|
||
update_alignment_for_field (record_layout_info rli, tree field,
|
||
unsigned int known_align)
|
||
{
|
||
/* The alignment required for FIELD. */
|
||
unsigned int desired_align;
|
||
/* The type of this field. */
|
||
tree type = TREE_TYPE (field);
|
||
/* True if the field was explicitly aligned by the user. */
|
||
bool user_align;
|
||
bool is_bitfield;
|
||
|
||
/* Do not attempt to align an ERROR_MARK node */
|
||
if (TREE_CODE (type) == ERROR_MARK)
|
||
return 0;
|
||
|
||
/* Lay out the field so we know what alignment it needs. */
|
||
layout_decl (field, known_align);
|
||
desired_align = DECL_ALIGN (field);
|
||
user_align = DECL_USER_ALIGN (field);
|
||
|
||
is_bitfield = (type != error_mark_node
|
||
&& DECL_BIT_FIELD_TYPE (field)
|
||
&& ! integer_zerop (TYPE_SIZE (type)));
|
||
|
||
/* Record must have at least as much alignment as any field.
|
||
Otherwise, the alignment of the field within the record is
|
||
meaningless. */
|
||
if (targetm.ms_bitfield_layout_p (rli->t))
|
||
{
|
||
/* Here, the alignment of the underlying type of a bitfield can
|
||
affect the alignment of a record; even a zero-sized field
|
||
can do this. The alignment should be to the alignment of
|
||
the type, except that for zero-size bitfields this only
|
||
applies if there was an immediately prior, nonzero-size
|
||
bitfield. (That's the way it is, experimentally.) */
|
||
if ((!is_bitfield && !DECL_PACKED (field))
|
||
|| ((DECL_SIZE (field) == NULL_TREE
|
||
|| !integer_zerop (DECL_SIZE (field)))
|
||
? !DECL_PACKED (field)
|
||
: (rli->prev_field
|
||
&& DECL_BIT_FIELD_TYPE (rli->prev_field)
|
||
&& ! integer_zerop (DECL_SIZE (rli->prev_field)))))
|
||
{
|
||
unsigned int type_align = TYPE_ALIGN (type);
|
||
type_align = MAX (type_align, desired_align);
|
||
if (maximum_field_alignment != 0)
|
||
type_align = MIN (type_align, maximum_field_alignment);
|
||
rli->record_align = MAX (rli->record_align, type_align);
|
||
rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
|
||
}
|
||
}
|
||
#ifdef PCC_BITFIELD_TYPE_MATTERS
|
||
else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
|
||
{
|
||
/* Named bit-fields cause the entire structure to have the
|
||
alignment implied by their type. Some targets also apply the same
|
||
rules to unnamed bitfields. */
|
||
if (DECL_NAME (field) != 0
|
||
|| targetm.align_anon_bitfield ())
|
||
{
|
||
unsigned int type_align = TYPE_ALIGN (type);
|
||
|
||
#ifdef ADJUST_FIELD_ALIGN
|
||
if (! TYPE_USER_ALIGN (type))
|
||
type_align = ADJUST_FIELD_ALIGN (field, type_align);
|
||
#endif
|
||
|
||
/* Targets might chose to handle unnamed and hence possibly
|
||
zero-width bitfield. Those are not influenced by #pragmas
|
||
or packed attributes. */
|
||
if (integer_zerop (DECL_SIZE (field)))
|
||
{
|
||
if (initial_max_fld_align)
|
||
type_align = MIN (type_align,
|
||
initial_max_fld_align * BITS_PER_UNIT);
|
||
}
|
||
else if (maximum_field_alignment != 0)
|
||
type_align = MIN (type_align, maximum_field_alignment);
|
||
else if (DECL_PACKED (field))
|
||
type_align = MIN (type_align, BITS_PER_UNIT);
|
||
|
||
/* The alignment of the record is increased to the maximum
|
||
of the current alignment, the alignment indicated on the
|
||
field (i.e., the alignment specified by an __aligned__
|
||
attribute), and the alignment indicated by the type of
|
||
the field. */
|
||
rli->record_align = MAX (rli->record_align, desired_align);
|
||
rli->record_align = MAX (rli->record_align, type_align);
|
||
|
||
if (warn_packed)
|
||
rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
|
||
user_align |= TYPE_USER_ALIGN (type);
|
||
}
|
||
}
|
||
#endif
|
||
else
|
||
{
|
||
rli->record_align = MAX (rli->record_align, desired_align);
|
||
rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
|
||
}
|
||
|
||
TYPE_USER_ALIGN (rli->t) |= user_align;
|
||
|
||
return desired_align;
|
||
}
|
||
|
||
/* Called from place_field to handle unions. */
|
||
|
||
static void
|
||
place_union_field (record_layout_info rli, tree field)
|
||
{
|
||
update_alignment_for_field (rli, field, /*known_align=*/0);
|
||
|
||
DECL_FIELD_OFFSET (field) = size_zero_node;
|
||
DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
|
||
SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
|
||
|
||
/* If this is an ERROR_MARK return *after* having set the
|
||
field at the start of the union. This helps when parsing
|
||
invalid fields. */
|
||
if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
|
||
return;
|
||
|
||
/* We assume the union's size will be a multiple of a byte so we don't
|
||
bother with BITPOS. */
|
||
if (TREE_CODE (rli->t) == UNION_TYPE)
|
||
rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
|
||
else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
|
||
rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
|
||
DECL_SIZE_UNIT (field), rli->offset);
|
||
}
|
||
|
||
#if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
|
||
/* A bitfield of SIZE with a required access alignment of ALIGN is allocated
|
||
at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
|
||
units of alignment than the underlying TYPE. */
|
||
static int
|
||
excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
|
||
HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
|
||
{
|
||
/* Note that the calculation of OFFSET might overflow; we calculate it so
|
||
that we still get the right result as long as ALIGN is a power of two. */
|
||
unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
|
||
|
||
offset = offset % align;
|
||
return ((offset + size + align - 1) / align
|
||
> tree_to_uhwi (TYPE_SIZE (type)) / align);
|
||
}
|
||
#endif
|
||
|
||
/* RLI contains information about the layout of a RECORD_TYPE. FIELD
|
||
is a FIELD_DECL to be added after those fields already present in
|
||
T. (FIELD is not actually added to the TYPE_FIELDS list here;
|
||
callers that desire that behavior must manually perform that step.) */
|
||
|
||
void
|
||
place_field (record_layout_info rli, tree field)
|
||
{
|
||
/* The alignment required for FIELD. */
|
||
unsigned int desired_align;
|
||
/* The alignment FIELD would have if we just dropped it into the
|
||
record as it presently stands. */
|
||
unsigned int known_align;
|
||
unsigned int actual_align;
|
||
/* The type of this field. */
|
||
tree type = TREE_TYPE (field);
|
||
|
||
gcc_assert (TREE_CODE (field) != ERROR_MARK);
|
||
|
||
/* If FIELD is static, then treat it like a separate variable, not
|
||
really like a structure field. If it is a FUNCTION_DECL, it's a
|
||
method. In both cases, all we do is lay out the decl, and we do
|
||
it *after* the record is laid out. */
|
||
if (TREE_CODE (field) == VAR_DECL)
|
||
{
|
||
vec_safe_push (rli->pending_statics, field);
|
||
return;
|
||
}
|
||
|
||
/* Enumerators and enum types which are local to this class need not
|
||
be laid out. Likewise for initialized constant fields. */
|
||
else if (TREE_CODE (field) != FIELD_DECL)
|
||
return;
|
||
|
||
/* Unions are laid out very differently than records, so split
|
||
that code off to another function. */
|
||
else if (TREE_CODE (rli->t) != RECORD_TYPE)
|
||
{
|
||
place_union_field (rli, field);
|
||
return;
|
||
}
|
||
|
||
else if (TREE_CODE (type) == ERROR_MARK)
|
||
{
|
||
/* Place this field at the current allocation position, so we
|
||
maintain monotonicity. */
|
||
DECL_FIELD_OFFSET (field) = rli->offset;
|
||
DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
|
||
SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
|
||
return;
|
||
}
|
||
|
||
/* Work out the known alignment so far. Note that A & (-A) is the
|
||
value of the least-significant bit in A that is one. */
|
||
if (! integer_zerop (rli->bitpos))
|
||
known_align = (tree_to_uhwi (rli->bitpos)
|
||
& - tree_to_uhwi (rli->bitpos));
|
||
else if (integer_zerop (rli->offset))
|
||
known_align = 0;
|
||
else if (tree_fits_uhwi_p (rli->offset))
|
||
known_align = (BITS_PER_UNIT
|
||
* (tree_to_uhwi (rli->offset)
|
||
& - tree_to_uhwi (rli->offset)));
|
||
else
|
||
known_align = rli->offset_align;
|
||
|
||
desired_align = update_alignment_for_field (rli, field, known_align);
|
||
if (known_align == 0)
|
||
known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
|
||
|
||
if (warn_packed && DECL_PACKED (field))
|
||
{
|
||
if (known_align >= TYPE_ALIGN (type))
|
||
{
|
||
if (TYPE_ALIGN (type) > desired_align)
|
||
{
|
||
if (STRICT_ALIGNMENT)
|
||
warning (OPT_Wattributes, "packed attribute causes "
|
||
"inefficient alignment for %q+D", field);
|
||
/* Don't warn if DECL_PACKED was set by the type. */
|
||
else if (!TYPE_PACKED (rli->t))
|
||
warning (OPT_Wattributes, "packed attribute is "
|
||
"unnecessary for %q+D", field);
|
||
}
|
||
}
|
||
else
|
||
rli->packed_maybe_necessary = 1;
|
||
}
|
||
|
||
/* Does this field automatically have alignment it needs by virtue
|
||
of the fields that precede it and the record's own alignment? */
|
||
if (known_align < desired_align)
|
||
{
|
||
/* No, we need to skip space before this field.
|
||
Bump the cumulative size to multiple of field alignment. */
|
||
|
||
if (!targetm.ms_bitfield_layout_p (rli->t)
|
||
&& DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
|
||
warning (OPT_Wpadded, "padding struct to align %q+D", field);
|
||
|
||
/* If the alignment is still within offset_align, just align
|
||
the bit position. */
|
||
if (desired_align < rli->offset_align)
|
||
rli->bitpos = round_up (rli->bitpos, desired_align);
|
||
else
|
||
{
|
||
/* First adjust OFFSET by the partial bits, then align. */
|
||
rli->offset
|
||
= size_binop (PLUS_EXPR, rli->offset,
|
||
fold_convert (sizetype,
|
||
size_binop (CEIL_DIV_EXPR, rli->bitpos,
|
||
bitsize_unit_node)));
|
||
rli->bitpos = bitsize_zero_node;
|
||
|
||
rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
|
||
}
|
||
|
||
if (! TREE_CONSTANT (rli->offset))
|
||
rli->offset_align = desired_align;
|
||
if (targetm.ms_bitfield_layout_p (rli->t))
|
||
rli->prev_field = NULL;
|
||
}
|
||
|
||
/* Handle compatibility with PCC. Note that if the record has any
|
||
variable-sized fields, we need not worry about compatibility. */
|
||
#ifdef PCC_BITFIELD_TYPE_MATTERS
|
||
if (PCC_BITFIELD_TYPE_MATTERS
|
||
&& ! targetm.ms_bitfield_layout_p (rli->t)
|
||
&& TREE_CODE (field) == FIELD_DECL
|
||
&& type != error_mark_node
|
||
&& DECL_BIT_FIELD (field)
|
||
&& (! DECL_PACKED (field)
|
||
/* Enter for these packed fields only to issue a warning. */
|
||
|| TYPE_ALIGN (type) <= BITS_PER_UNIT)
|
||
&& maximum_field_alignment == 0
|
||
&& ! integer_zerop (DECL_SIZE (field))
|
||
&& tree_fits_uhwi_p (DECL_SIZE (field))
|
||
&& tree_fits_uhwi_p (rli->offset)
|
||
&& tree_fits_uhwi_p (TYPE_SIZE (type)))
|
||
{
|
||
unsigned int type_align = TYPE_ALIGN (type);
|
||
tree dsize = DECL_SIZE (field);
|
||
HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
|
||
HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
|
||
HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
|
||
|
||
#ifdef ADJUST_FIELD_ALIGN
|
||
if (! TYPE_USER_ALIGN (type))
|
||
type_align = ADJUST_FIELD_ALIGN (field, type_align);
|
||
#endif
|
||
|
||
/* A bit field may not span more units of alignment of its type
|
||
than its type itself. Advance to next boundary if necessary. */
|
||
if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
|
||
{
|
||
if (DECL_PACKED (field))
|
||
{
|
||
if (warn_packed_bitfield_compat == 1)
|
||
inform
|
||
(input_location,
|
||
"offset of packed bit-field %qD has changed in GCC 4.4",
|
||
field);
|
||
}
|
||
else
|
||
rli->bitpos = round_up (rli->bitpos, type_align);
|
||
}
|
||
|
||
if (! DECL_PACKED (field))
|
||
TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
|
||
}
|
||
#endif
|
||
|
||
#ifdef BITFIELD_NBYTES_LIMITED
|
||
if (BITFIELD_NBYTES_LIMITED
|
||
&& ! targetm.ms_bitfield_layout_p (rli->t)
|
||
&& TREE_CODE (field) == FIELD_DECL
|
||
&& type != error_mark_node
|
||
&& DECL_BIT_FIELD_TYPE (field)
|
||
&& ! DECL_PACKED (field)
|
||
&& ! integer_zerop (DECL_SIZE (field))
|
||
&& tree_fits_uhwi_p (DECL_SIZE (field))
|
||
&& tree_fits_uhwi_p (rli->offset)
|
||
&& tree_fits_uhwi_p (TYPE_SIZE (type)))
|
||
{
|
||
unsigned int type_align = TYPE_ALIGN (type);
|
||
tree dsize = DECL_SIZE (field);
|
||
HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
|
||
HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
|
||
HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
|
||
|
||
#ifdef ADJUST_FIELD_ALIGN
|
||
if (! TYPE_USER_ALIGN (type))
|
||
type_align = ADJUST_FIELD_ALIGN (field, type_align);
|
||
#endif
|
||
|
||
if (maximum_field_alignment != 0)
|
||
type_align = MIN (type_align, maximum_field_alignment);
|
||
/* ??? This test is opposite the test in the containing if
|
||
statement, so this code is unreachable currently. */
|
||
else if (DECL_PACKED (field))
|
||
type_align = MIN (type_align, BITS_PER_UNIT);
|
||
|
||
/* A bit field may not span the unit of alignment of its type.
|
||
Advance to next boundary if necessary. */
|
||
if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
|
||
rli->bitpos = round_up (rli->bitpos, type_align);
|
||
|
||
TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
|
||
}
|
||
#endif
|
||
|
||
/* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
|
||
A subtlety:
|
||
When a bit field is inserted into a packed record, the whole
|
||
size of the underlying type is used by one or more same-size
|
||
adjacent bitfields. (That is, if its long:3, 32 bits is
|
||
used in the record, and any additional adjacent long bitfields are
|
||
packed into the same chunk of 32 bits. However, if the size
|
||
changes, a new field of that size is allocated.) In an unpacked
|
||
record, this is the same as using alignment, but not equivalent
|
||
when packing.
|
||
|
||
Note: for compatibility, we use the type size, not the type alignment
|
||
to determine alignment, since that matches the documentation */
|
||
|
||
if (targetm.ms_bitfield_layout_p (rli->t))
|
||
{
|
||
tree prev_saved = rli->prev_field;
|
||
tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
|
||
|
||
/* This is a bitfield if it exists. */
|
||
if (rli->prev_field)
|
||
{
|
||
/* If both are bitfields, nonzero, and the same size, this is
|
||
the middle of a run. Zero declared size fields are special
|
||
and handled as "end of run". (Note: it's nonzero declared
|
||
size, but equal type sizes!) (Since we know that both
|
||
the current and previous fields are bitfields by the
|
||
time we check it, DECL_SIZE must be present for both.) */
|
||
if (DECL_BIT_FIELD_TYPE (field)
|
||
&& !integer_zerop (DECL_SIZE (field))
|
||
&& !integer_zerop (DECL_SIZE (rli->prev_field))
|
||
&& tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
|
||
&& tree_fits_uhwi_p (TYPE_SIZE (type))
|
||
&& simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
|
||
{
|
||
/* We're in the middle of a run of equal type size fields; make
|
||
sure we realign if we run out of bits. (Not decl size,
|
||
type size!) */
|
||
HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
|
||
|
||
if (rli->remaining_in_alignment < bitsize)
|
||
{
|
||
HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
|
||
|
||
/* out of bits; bump up to next 'word'. */
|
||
rli->bitpos
|
||
= size_binop (PLUS_EXPR, rli->bitpos,
|
||
bitsize_int (rli->remaining_in_alignment));
|
||
rli->prev_field = field;
|
||
if (typesize < bitsize)
|
||
rli->remaining_in_alignment = 0;
|
||
else
|
||
rli->remaining_in_alignment = typesize - bitsize;
|
||
}
|
||
else
|
||
rli->remaining_in_alignment -= bitsize;
|
||
}
|
||
else
|
||
{
|
||
/* End of a run: if leaving a run of bitfields of the same type
|
||
size, we have to "use up" the rest of the bits of the type
|
||
size.
|
||
|
||
Compute the new position as the sum of the size for the prior
|
||
type and where we first started working on that type.
|
||
Note: since the beginning of the field was aligned then
|
||
of course the end will be too. No round needed. */
|
||
|
||
if (!integer_zerop (DECL_SIZE (rli->prev_field)))
|
||
{
|
||
rli->bitpos
|
||
= size_binop (PLUS_EXPR, rli->bitpos,
|
||
bitsize_int (rli->remaining_in_alignment));
|
||
}
|
||
else
|
||
/* We "use up" size zero fields; the code below should behave
|
||
as if the prior field was not a bitfield. */
|
||
prev_saved = NULL;
|
||
|
||
/* Cause a new bitfield to be captured, either this time (if
|
||
currently a bitfield) or next time we see one. */
|
||
if (!DECL_BIT_FIELD_TYPE (field)
|
||
|| integer_zerop (DECL_SIZE (field)))
|
||
rli->prev_field = NULL;
|
||
}
|
||
|
||
normalize_rli (rli);
|
||
}
|
||
|
||
/* If we're starting a new run of same type size bitfields
|
||
(or a run of non-bitfields), set up the "first of the run"
|
||
fields.
|
||
|
||
That is, if the current field is not a bitfield, or if there
|
||
was a prior bitfield the type sizes differ, or if there wasn't
|
||
a prior bitfield the size of the current field is nonzero.
|
||
|
||
Note: we must be sure to test ONLY the type size if there was
|
||
a prior bitfield and ONLY for the current field being zero if
|
||
there wasn't. */
|
||
|
||
if (!DECL_BIT_FIELD_TYPE (field)
|
||
|| (prev_saved != NULL
|
||
? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
|
||
: !integer_zerop (DECL_SIZE (field)) ))
|
||
{
|
||
/* Never smaller than a byte for compatibility. */
|
||
unsigned int type_align = BITS_PER_UNIT;
|
||
|
||
/* (When not a bitfield), we could be seeing a flex array (with
|
||
no DECL_SIZE). Since we won't be using remaining_in_alignment
|
||
until we see a bitfield (and come by here again) we just skip
|
||
calculating it. */
|
||
if (DECL_SIZE (field) != NULL
|
||
&& tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
|
||
&& tree_fits_uhwi_p (DECL_SIZE (field)))
|
||
{
|
||
unsigned HOST_WIDE_INT bitsize
|
||
= tree_to_uhwi (DECL_SIZE (field));
|
||
unsigned HOST_WIDE_INT typesize
|
||
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
|
||
|
||
if (typesize < bitsize)
|
||
rli->remaining_in_alignment = 0;
|
||
else
|
||
rli->remaining_in_alignment = typesize - bitsize;
|
||
}
|
||
|
||
/* Now align (conventionally) for the new type. */
|
||
type_align = TYPE_ALIGN (TREE_TYPE (field));
|
||
|
||
if (maximum_field_alignment != 0)
|
||
type_align = MIN (type_align, maximum_field_alignment);
|
||
|
||
rli->bitpos = round_up (rli->bitpos, type_align);
|
||
|
||
/* If we really aligned, don't allow subsequent bitfields
|
||
to undo that. */
|
||
rli->prev_field = NULL;
|
||
}
|
||
}
|
||
|
||
/* Offset so far becomes the position of this field after normalizing. */
|
||
normalize_rli (rli);
|
||
DECL_FIELD_OFFSET (field) = rli->offset;
|
||
DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
|
||
SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
|
||
|
||
/* If this field ended up more aligned than we thought it would be (we
|
||
approximate this by seeing if its position changed), lay out the field
|
||
again; perhaps we can use an integral mode for it now. */
|
||
if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
|
||
actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
|
||
& - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
|
||
else if (integer_zerop (DECL_FIELD_OFFSET (field)))
|
||
actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
|
||
else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
|
||
actual_align = (BITS_PER_UNIT
|
||
* (tree_to_uhwi (DECL_FIELD_OFFSET (field))
|
||
& - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
|
||
else
|
||
actual_align = DECL_OFFSET_ALIGN (field);
|
||
/* ACTUAL_ALIGN is still the actual alignment *within the record* .
|
||
store / extract bit field operations will check the alignment of the
|
||
record against the mode of bit fields. */
|
||
|
||
if (known_align != actual_align)
|
||
layout_decl (field, actual_align);
|
||
|
||
if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
|
||
rli->prev_field = field;
|
||
|
||
/* Now add size of this field to the size of the record. If the size is
|
||
not constant, treat the field as being a multiple of bytes and just
|
||
adjust the offset, resetting the bit position. Otherwise, apportion the
|
||
size amongst the bit position and offset. First handle the case of an
|
||
unspecified size, which can happen when we have an invalid nested struct
|
||
definition, such as struct j { struct j { int i; } }. The error message
|
||
is printed in finish_struct. */
|
||
if (DECL_SIZE (field) == 0)
|
||
/* Do nothing. */;
|
||
else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
|
||
|| TREE_OVERFLOW (DECL_SIZE (field)))
|
||
{
|
||
rli->offset
|
||
= size_binop (PLUS_EXPR, rli->offset,
|
||
fold_convert (sizetype,
|
||
size_binop (CEIL_DIV_EXPR, rli->bitpos,
|
||
bitsize_unit_node)));
|
||
rli->offset
|
||
= size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
|
||
rli->bitpos = bitsize_zero_node;
|
||
rli->offset_align = MIN (rli->offset_align, desired_align);
|
||
}
|
||
else if (targetm.ms_bitfield_layout_p (rli->t))
|
||
{
|
||
rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
|
||
|
||
/* If we ended a bitfield before the full length of the type then
|
||
pad the struct out to the full length of the last type. */
|
||
if ((DECL_CHAIN (field) == NULL
|
||
|| TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
|
||
&& DECL_BIT_FIELD_TYPE (field)
|
||
&& !integer_zerop (DECL_SIZE (field)))
|
||
rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
|
||
bitsize_int (rli->remaining_in_alignment));
|
||
|
||
normalize_rli (rli);
|
||
}
|
||
else
|
||
{
|
||
rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
|
||
normalize_rli (rli);
|
||
}
|
||
}
|
||
|
||
/* Assuming that all the fields have been laid out, this function uses
|
||
RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
|
||
indicated by RLI. */
|
||
|
||
static void
|
||
finalize_record_size (record_layout_info rli)
|
||
{
|
||
tree unpadded_size, unpadded_size_unit;
|
||
|
||
/* Now we want just byte and bit offsets, so set the offset alignment
|
||
to be a byte and then normalize. */
|
||
rli->offset_align = BITS_PER_UNIT;
|
||
normalize_rli (rli);
|
||
|
||
/* Determine the desired alignment. */
|
||
#ifdef ROUND_TYPE_ALIGN
|
||
TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
|
||
rli->record_align);
|
||
#else
|
||
TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
|
||
#endif
|
||
|
||
/* Compute the size so far. Be sure to allow for extra bits in the
|
||
size in bytes. We have guaranteed above that it will be no more
|
||
than a single byte. */
|
||
unpadded_size = rli_size_so_far (rli);
|
||
unpadded_size_unit = rli_size_unit_so_far (rli);
|
||
if (! integer_zerop (rli->bitpos))
|
||
unpadded_size_unit
|
||
= size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
|
||
|
||
/* Round the size up to be a multiple of the required alignment. */
|
||
TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
|
||
TYPE_SIZE_UNIT (rli->t)
|
||
= round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
|
||
|
||
if (TREE_CONSTANT (unpadded_size)
|
||
&& simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
|
||
&& input_location != BUILTINS_LOCATION)
|
||
warning (OPT_Wpadded, "padding struct size to alignment boundary");
|
||
|
||
if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
|
||
&& TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
|
||
&& TREE_CONSTANT (unpadded_size))
|
||
{
|
||
tree unpacked_size;
|
||
|
||
#ifdef ROUND_TYPE_ALIGN
|
||
rli->unpacked_align
|
||
= ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
|
||
#else
|
||
rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
|
||
#endif
|
||
|
||
unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
|
||
if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
|
||
{
|
||
if (TYPE_NAME (rli->t))
|
||
{
|
||
tree name;
|
||
|
||
if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
|
||
name = TYPE_NAME (rli->t);
|
||
else
|
||
name = DECL_NAME (TYPE_NAME (rli->t));
|
||
|
||
if (STRICT_ALIGNMENT)
|
||
warning (OPT_Wpacked, "packed attribute causes inefficient "
|
||
"alignment for %qE", name);
|
||
else
|
||
warning (OPT_Wpacked,
|
||
"packed attribute is unnecessary for %qE", name);
|
||
}
|
||
else
|
||
{
|
||
if (STRICT_ALIGNMENT)
|
||
warning (OPT_Wpacked,
|
||
"packed attribute causes inefficient alignment");
|
||
else
|
||
warning (OPT_Wpacked, "packed attribute is unnecessary");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
|
||
|
||
void
|
||
compute_record_mode (tree type)
|
||
{
|
||
tree field;
|
||
enum machine_mode mode = VOIDmode;
|
||
|
||
/* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
|
||
However, if possible, we use a mode that fits in a register
|
||
instead, in order to allow for better optimization down the
|
||
line. */
|
||
SET_TYPE_MODE (type, BLKmode);
|
||
|
||
if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
|
||
return;
|
||
|
||
/* A record which has any BLKmode members must itself be
|
||
BLKmode; it can't go in a register. Unless the member is
|
||
BLKmode only because it isn't aligned. */
|
||
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
||
{
|
||
if (TREE_CODE (field) != FIELD_DECL)
|
||
continue;
|
||
|
||
if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
|
||
|| (TYPE_MODE (TREE_TYPE (field)) == BLKmode
|
||
&& ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
|
||
&& !(TYPE_SIZE (TREE_TYPE (field)) != 0
|
||
&& integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
|
||
|| ! tree_fits_uhwi_p (bit_position (field))
|
||
|| DECL_SIZE (field) == 0
|
||
|| ! tree_fits_uhwi_p (DECL_SIZE (field)))
|
||
return;
|
||
|
||
/* If this field is the whole struct, remember its mode so
|
||
that, say, we can put a double in a class into a DF
|
||
register instead of forcing it to live in the stack. */
|
||
if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
|
||
mode = DECL_MODE (field);
|
||
|
||
/* With some targets, it is sub-optimal to access an aligned
|
||
BLKmode structure as a scalar. */
|
||
if (targetm.member_type_forces_blk (field, mode))
|
||
return;
|
||
}
|
||
|
||
/* If we only have one real field; use its mode if that mode's size
|
||
matches the type's size. This only applies to RECORD_TYPE. This
|
||
does not apply to unions. */
|
||
if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
|
||
&& tree_fits_uhwi_p (TYPE_SIZE (type))
|
||
&& GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
|
||
SET_TYPE_MODE (type, mode);
|
||
else
|
||
SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
|
||
|
||
/* If structure's known alignment is less than what the scalar
|
||
mode would need, and it matters, then stick with BLKmode. */
|
||
if (TYPE_MODE (type) != BLKmode
|
||
&& STRICT_ALIGNMENT
|
||
&& ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
|
||
|| TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
|
||
{
|
||
/* If this is the only reason this type is BLKmode, then
|
||
don't force containing types to be BLKmode. */
|
||
TYPE_NO_FORCE_BLK (type) = 1;
|
||
SET_TYPE_MODE (type, BLKmode);
|
||
}
|
||
}
|
||
|
||
/* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
|
||
out. */
|
||
|
||
static void
|
||
finalize_type_size (tree type)
|
||
{
|
||
/* Normally, use the alignment corresponding to the mode chosen.
|
||
However, where strict alignment is not required, avoid
|
||
over-aligning structures, since most compilers do not do this
|
||
alignment. */
|
||
|
||
if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
|
||
&& (STRICT_ALIGNMENT
|
||
|| (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
|
||
&& TREE_CODE (type) != QUAL_UNION_TYPE
|
||
&& TREE_CODE (type) != ARRAY_TYPE)))
|
||
{
|
||
unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
|
||
|
||
/* Don't override a larger alignment requirement coming from a user
|
||
alignment of one of the fields. */
|
||
if (mode_align >= TYPE_ALIGN (type))
|
||
{
|
||
TYPE_ALIGN (type) = mode_align;
|
||
TYPE_USER_ALIGN (type) = 0;
|
||
}
|
||
}
|
||
|
||
/* Do machine-dependent extra alignment. */
|
||
#ifdef ROUND_TYPE_ALIGN
|
||
TYPE_ALIGN (type)
|
||
= ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
|
||
#endif
|
||
|
||
/* If we failed to find a simple way to calculate the unit size
|
||
of the type, find it by division. */
|
||
if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
|
||
/* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
|
||
result will fit in sizetype. We will get more efficient code using
|
||
sizetype, so we force a conversion. */
|
||
TYPE_SIZE_UNIT (type)
|
||
= fold_convert (sizetype,
|
||
size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
|
||
bitsize_unit_node));
|
||
|
||
if (TYPE_SIZE (type) != 0)
|
||
{
|
||
TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
|
||
TYPE_SIZE_UNIT (type)
|
||
= round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
|
||
}
|
||
|
||
/* Evaluate nonconstant sizes only once, either now or as soon as safe. */
|
||
if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
|
||
TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
|
||
if (TYPE_SIZE_UNIT (type) != 0
|
||
&& TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
|
||
TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
|
||
|
||
/* Also layout any other variants of the type. */
|
||
if (TYPE_NEXT_VARIANT (type)
|
||
|| type != TYPE_MAIN_VARIANT (type))
|
||
{
|
||
tree variant;
|
||
/* Record layout info of this variant. */
|
||
tree size = TYPE_SIZE (type);
|
||
tree size_unit = TYPE_SIZE_UNIT (type);
|
||
unsigned int align = TYPE_ALIGN (type);
|
||
unsigned int user_align = TYPE_USER_ALIGN (type);
|
||
enum machine_mode mode = TYPE_MODE (type);
|
||
|
||
/* Copy it into all variants. */
|
||
for (variant = TYPE_MAIN_VARIANT (type);
|
||
variant != 0;
|
||
variant = TYPE_NEXT_VARIANT (variant))
|
||
{
|
||
TYPE_SIZE (variant) = size;
|
||
TYPE_SIZE_UNIT (variant) = size_unit;
|
||
TYPE_ALIGN (variant) = align;
|
||
TYPE_USER_ALIGN (variant) = user_align;
|
||
SET_TYPE_MODE (variant, mode);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return a new underlying object for a bitfield started with FIELD. */
|
||
|
||
static tree
|
||
start_bitfield_representative (tree field)
|
||
{
|
||
tree repr = make_node (FIELD_DECL);
|
||
DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
|
||
/* Force the representative to begin at a BITS_PER_UNIT aligned
|
||
boundary - C++ may use tail-padding of a base object to
|
||
continue packing bits so the bitfield region does not start
|
||
at bit zero (see g++.dg/abi/bitfield5.C for example).
|
||
Unallocated bits may happen for other reasons as well,
|
||
for example Ada which allows explicit bit-granular structure layout. */
|
||
DECL_FIELD_BIT_OFFSET (repr)
|
||
= size_binop (BIT_AND_EXPR,
|
||
DECL_FIELD_BIT_OFFSET (field),
|
||
bitsize_int (~(BITS_PER_UNIT - 1)));
|
||
SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
|
||
DECL_SIZE (repr) = DECL_SIZE (field);
|
||
DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
|
||
DECL_PACKED (repr) = DECL_PACKED (field);
|
||
DECL_CONTEXT (repr) = DECL_CONTEXT (field);
|
||
return repr;
|
||
}
|
||
|
||
/* Finish up a bitfield group that was started by creating the underlying
|
||
object REPR with the last field in the bitfield group FIELD. */
|
||
|
||
static void
|
||
finish_bitfield_representative (tree repr, tree field)
|
||
{
|
||
unsigned HOST_WIDE_INT bitsize, maxbitsize;
|
||
enum machine_mode mode;
|
||
tree nextf, size;
|
||
|
||
size = size_diffop (DECL_FIELD_OFFSET (field),
|
||
DECL_FIELD_OFFSET (repr));
|
||
gcc_assert (tree_fits_uhwi_p (size));
|
||
bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
|
||
+ tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
|
||
- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
|
||
+ tree_to_uhwi (DECL_SIZE (field)));
|
||
|
||
/* Round up bitsize to multiples of BITS_PER_UNIT. */
|
||
bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
|
||
|
||
/* Now nothing tells us how to pad out bitsize ... */
|
||
nextf = DECL_CHAIN (field);
|
||
while (nextf && TREE_CODE (nextf) != FIELD_DECL)
|
||
nextf = DECL_CHAIN (nextf);
|
||
if (nextf)
|
||
{
|
||
tree maxsize;
|
||
/* If there was an error, the field may be not laid out
|
||
correctly. Don't bother to do anything. */
|
||
if (TREE_TYPE (nextf) == error_mark_node)
|
||
return;
|
||
maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
|
||
DECL_FIELD_OFFSET (repr));
|
||
if (tree_fits_uhwi_p (maxsize))
|
||
{
|
||
maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
|
||
+ tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
|
||
- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
|
||
/* If the group ends within a bitfield nextf does not need to be
|
||
aligned to BITS_PER_UNIT. Thus round up. */
|
||
maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
|
||
}
|
||
else
|
||
maxbitsize = bitsize;
|
||
}
|
||
else
|
||
{
|
||
/* ??? If you consider that tail-padding of this struct might be
|
||
re-used when deriving from it we cannot really do the following
|
||
and thus need to set maxsize to bitsize? Also we cannot
|
||
generally rely on maxsize to fold to an integer constant, so
|
||
use bitsize as fallback for this case. */
|
||
tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
|
||
DECL_FIELD_OFFSET (repr));
|
||
if (tree_fits_uhwi_p (maxsize))
|
||
maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
|
||
- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
|
||
else
|
||
maxbitsize = bitsize;
|
||
}
|
||
|
||
/* Only if we don't artificially break up the representative in
|
||
the middle of a large bitfield with different possibly
|
||
overlapping representatives. And all representatives start
|
||
at byte offset. */
|
||
gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
|
||
|
||
/* Find the smallest nice mode to use. */
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
if (GET_MODE_BITSIZE (mode) >= bitsize)
|
||
break;
|
||
if (mode != VOIDmode
|
||
&& (GET_MODE_BITSIZE (mode) > maxbitsize
|
||
|| GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
|
||
mode = VOIDmode;
|
||
|
||
if (mode == VOIDmode)
|
||
{
|
||
/* We really want a BLKmode representative only as a last resort,
|
||
considering the member b in
|
||
struct { int a : 7; int b : 17; int c; } __attribute__((packed));
|
||
Otherwise we simply want to split the representative up
|
||
allowing for overlaps within the bitfield region as required for
|
||
struct { int a : 7; int b : 7;
|
||
int c : 10; int d; } __attribute__((packed));
|
||
[0, 15] HImode for a and b, [8, 23] HImode for c. */
|
||
DECL_SIZE (repr) = bitsize_int (bitsize);
|
||
DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
|
||
DECL_MODE (repr) = BLKmode;
|
||
TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
|
||
bitsize / BITS_PER_UNIT);
|
||
}
|
||
else
|
||
{
|
||
unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
|
||
DECL_SIZE (repr) = bitsize_int (modesize);
|
||
DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
|
||
DECL_MODE (repr) = mode;
|
||
TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
|
||
}
|
||
|
||
/* Remember whether the bitfield group is at the end of the
|
||
structure or not. */
|
||
DECL_CHAIN (repr) = nextf;
|
||
}
|
||
|
||
/* Compute and set FIELD_DECLs for the underlying objects we should
|
||
use for bitfield access for the structure laid out with RLI. */
|
||
|
||
static void
|
||
finish_bitfield_layout (record_layout_info rli)
|
||
{
|
||
tree field, prev;
|
||
tree repr = NULL_TREE;
|
||
|
||
/* Unions would be special, for the ease of type-punning optimizations
|
||
we could use the underlying type as hint for the representative
|
||
if the bitfield would fit and the representative would not exceed
|
||
the union in size. */
|
||
if (TREE_CODE (rli->t) != RECORD_TYPE)
|
||
return;
|
||
|
||
for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
|
||
field; field = DECL_CHAIN (field))
|
||
{
|
||
if (TREE_CODE (field) != FIELD_DECL)
|
||
continue;
|
||
|
||
/* In the C++ memory model, consecutive bit fields in a structure are
|
||
considered one memory location and updating a memory location
|
||
may not store into adjacent memory locations. */
|
||
if (!repr
|
||
&& DECL_BIT_FIELD_TYPE (field))
|
||
{
|
||
/* Start new representative. */
|
||
repr = start_bitfield_representative (field);
|
||
}
|
||
else if (repr
|
||
&& ! DECL_BIT_FIELD_TYPE (field))
|
||
{
|
||
/* Finish off new representative. */
|
||
finish_bitfield_representative (repr, prev);
|
||
repr = NULL_TREE;
|
||
}
|
||
else if (DECL_BIT_FIELD_TYPE (field))
|
||
{
|
||
gcc_assert (repr != NULL_TREE);
|
||
|
||
/* Zero-size bitfields finish off a representative and
|
||
do not have a representative themselves. This is
|
||
required by the C++ memory model. */
|
||
if (integer_zerop (DECL_SIZE (field)))
|
||
{
|
||
finish_bitfield_representative (repr, prev);
|
||
repr = NULL_TREE;
|
||
}
|
||
|
||
/* We assume that either DECL_FIELD_OFFSET of the representative
|
||
and each bitfield member is a constant or they are equal.
|
||
This is because we need to be able to compute the bit-offset
|
||
of each field relative to the representative in get_bit_range
|
||
during RTL expansion.
|
||
If these constraints are not met, simply force a new
|
||
representative to be generated. That will at most
|
||
generate worse code but still maintain correctness with
|
||
respect to the C++ memory model. */
|
||
else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
|
||
&& tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
|
||
|| operand_equal_p (DECL_FIELD_OFFSET (repr),
|
||
DECL_FIELD_OFFSET (field), 0)))
|
||
{
|
||
finish_bitfield_representative (repr, prev);
|
||
repr = start_bitfield_representative (field);
|
||
}
|
||
}
|
||
else
|
||
continue;
|
||
|
||
if (repr)
|
||
DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
|
||
|
||
prev = field;
|
||
}
|
||
|
||
if (repr)
|
||
finish_bitfield_representative (repr, prev);
|
||
}
|
||
|
||
/* Do all of the work required to layout the type indicated by RLI,
|
||
once the fields have been laid out. This function will call `free'
|
||
for RLI, unless FREE_P is false. Passing a value other than false
|
||
for FREE_P is bad practice; this option only exists to support the
|
||
G++ 3.2 ABI. */
|
||
|
||
void
|
||
finish_record_layout (record_layout_info rli, int free_p)
|
||
{
|
||
tree variant;
|
||
|
||
/* Compute the final size. */
|
||
finalize_record_size (rli);
|
||
|
||
/* Compute the TYPE_MODE for the record. */
|
||
compute_record_mode (rli->t);
|
||
|
||
/* Perform any last tweaks to the TYPE_SIZE, etc. */
|
||
finalize_type_size (rli->t);
|
||
|
||
/* Compute bitfield representatives. */
|
||
finish_bitfield_layout (rli);
|
||
|
||
/* Propagate TYPE_PACKED to variants. With C++ templates,
|
||
handle_packed_attribute is too early to do this. */
|
||
for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
|
||
variant = TYPE_NEXT_VARIANT (variant))
|
||
TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
|
||
|
||
/* Lay out any static members. This is done now because their type
|
||
may use the record's type. */
|
||
while (!vec_safe_is_empty (rli->pending_statics))
|
||
layout_decl (rli->pending_statics->pop (), 0);
|
||
|
||
/* Clean up. */
|
||
if (free_p)
|
||
{
|
||
vec_free (rli->pending_statics);
|
||
free (rli);
|
||
}
|
||
}
|
||
|
||
|
||
/* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
|
||
NAME, its fields are chained in reverse on FIELDS.
|
||
|
||
If ALIGN_TYPE is non-null, it is given the same alignment as
|
||
ALIGN_TYPE. */
|
||
|
||
void
|
||
finish_builtin_struct (tree type, const char *name, tree fields,
|
||
tree align_type)
|
||
{
|
||
tree tail, next;
|
||
|
||
for (tail = NULL_TREE; fields; tail = fields, fields = next)
|
||
{
|
||
DECL_FIELD_CONTEXT (fields) = type;
|
||
next = DECL_CHAIN (fields);
|
||
DECL_CHAIN (fields) = tail;
|
||
}
|
||
TYPE_FIELDS (type) = tail;
|
||
|
||
if (align_type)
|
||
{
|
||
TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
|
||
TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
|
||
}
|
||
|
||
layout_type (type);
|
||
#if 0 /* not yet, should get fixed properly later */
|
||
TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
|
||
#else
|
||
TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
|
||
TYPE_DECL, get_identifier (name), type);
|
||
#endif
|
||
TYPE_STUB_DECL (type) = TYPE_NAME (type);
|
||
layout_decl (TYPE_NAME (type), 0);
|
||
}
|
||
|
||
/* Calculate the mode, size, and alignment for TYPE.
|
||
For an array type, calculate the element separation as well.
|
||
Record TYPE on the chain of permanent or temporary types
|
||
so that dbxout will find out about it.
|
||
|
||
TYPE_SIZE of a type is nonzero if the type has been laid out already.
|
||
layout_type does nothing on such a type.
|
||
|
||
If the type is incomplete, its TYPE_SIZE remains zero. */
|
||
|
||
void
|
||
layout_type (tree type)
|
||
{
|
||
gcc_assert (type);
|
||
|
||
if (type == error_mark_node)
|
||
return;
|
||
|
||
/* Do nothing if type has been laid out before. */
|
||
if (TYPE_SIZE (type))
|
||
return;
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case LANG_TYPE:
|
||
/* This kind of type is the responsibility
|
||
of the language-specific code. */
|
||
gcc_unreachable ();
|
||
|
||
case BOOLEAN_TYPE:
|
||
case INTEGER_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
SET_TYPE_MODE (type,
|
||
smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
|
||
TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
|
||
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
|
||
break;
|
||
|
||
case REAL_TYPE:
|
||
SET_TYPE_MODE (type,
|
||
mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
|
||
TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
|
||
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
|
||
break;
|
||
|
||
case FIXED_POINT_TYPE:
|
||
/* TYPE_MODE (type) has been set already. */
|
||
TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
|
||
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
|
||
break;
|
||
|
||
case COMPLEX_TYPE:
|
||
TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
|
||
SET_TYPE_MODE (type,
|
||
mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
|
||
(TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
|
||
? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
|
||
0));
|
||
TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
|
||
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
|
||
break;
|
||
|
||
case VECTOR_TYPE:
|
||
{
|
||
int nunits = TYPE_VECTOR_SUBPARTS (type);
|
||
tree innertype = TREE_TYPE (type);
|
||
|
||
gcc_assert (!(nunits & (nunits - 1)));
|
||
|
||
/* Find an appropriate mode for the vector type. */
|
||
if (TYPE_MODE (type) == VOIDmode)
|
||
SET_TYPE_MODE (type,
|
||
mode_for_vector (TYPE_MODE (innertype), nunits));
|
||
|
||
TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
|
||
TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
|
||
TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
|
||
TYPE_SIZE_UNIT (innertype),
|
||
size_int (nunits));
|
||
TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
|
||
bitsize_int (nunits));
|
||
|
||
/* For vector types, we do not default to the mode's alignment.
|
||
Instead, query a target hook, defaulting to natural alignment.
|
||
This prevents ABI changes depending on whether or not native
|
||
vector modes are supported. */
|
||
TYPE_ALIGN (type) = targetm.vector_alignment (type);
|
||
|
||
/* However, if the underlying mode requires a bigger alignment than
|
||
what the target hook provides, we cannot use the mode. For now,
|
||
simply reject that case. */
|
||
gcc_assert (TYPE_ALIGN (type)
|
||
>= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
|
||
break;
|
||
}
|
||
|
||
case VOID_TYPE:
|
||
/* This is an incomplete type and so doesn't have a size. */
|
||
TYPE_ALIGN (type) = 1;
|
||
TYPE_USER_ALIGN (type) = 0;
|
||
SET_TYPE_MODE (type, VOIDmode);
|
||
break;
|
||
|
||
case OFFSET_TYPE:
|
||
TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
|
||
TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
|
||
/* A pointer might be MODE_PARTIAL_INT,
|
||
but ptrdiff_t must be integral. */
|
||
SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
|
||
TYPE_PRECISION (type) = POINTER_SIZE;
|
||
break;
|
||
|
||
case FUNCTION_TYPE:
|
||
case METHOD_TYPE:
|
||
/* It's hard to see what the mode and size of a function ought to
|
||
be, but we do know the alignment is FUNCTION_BOUNDARY, so
|
||
make it consistent with that. */
|
||
SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
|
||
TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
|
||
TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
|
||
break;
|
||
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
{
|
||
enum machine_mode mode = TYPE_MODE (type);
|
||
if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
|
||
{
|
||
addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
|
||
mode = targetm.addr_space.address_mode (as);
|
||
}
|
||
|
||
TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
|
||
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
|
||
TYPE_UNSIGNED (type) = 1;
|
||
TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
|
||
}
|
||
break;
|
||
|
||
case ARRAY_TYPE:
|
||
{
|
||
tree index = TYPE_DOMAIN (type);
|
||
tree element = TREE_TYPE (type);
|
||
|
||
build_pointer_type (element);
|
||
|
||
/* We need to know both bounds in order to compute the size. */
|
||
if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
|
||
&& TYPE_SIZE (element))
|
||
{
|
||
tree ub = TYPE_MAX_VALUE (index);
|
||
tree lb = TYPE_MIN_VALUE (index);
|
||
tree element_size = TYPE_SIZE (element);
|
||
tree length;
|
||
|
||
/* Make sure that an array of zero-sized element is zero-sized
|
||
regardless of its extent. */
|
||
if (integer_zerop (element_size))
|
||
length = size_zero_node;
|
||
|
||
/* The computation should happen in the original signedness so
|
||
that (possible) negative values are handled appropriately
|
||
when determining overflow. */
|
||
else
|
||
{
|
||
/* ??? When it is obvious that the range is signed
|
||
represent it using ssizetype. */
|
||
if (TREE_CODE (lb) == INTEGER_CST
|
||
&& TREE_CODE (ub) == INTEGER_CST
|
||
&& TYPE_UNSIGNED (TREE_TYPE (lb))
|
||
&& tree_int_cst_lt (ub, lb))
|
||
{
|
||
unsigned prec = TYPE_PRECISION (TREE_TYPE (lb));
|
||
lb = double_int_to_tree
|
||
(ssizetype,
|
||
tree_to_double_int (lb).sext (prec));
|
||
ub = double_int_to_tree
|
||
(ssizetype,
|
||
tree_to_double_int (ub).sext (prec));
|
||
}
|
||
length
|
||
= fold_convert (sizetype,
|
||
size_binop (PLUS_EXPR,
|
||
build_int_cst (TREE_TYPE (lb), 1),
|
||
size_binop (MINUS_EXPR, ub, lb)));
|
||
}
|
||
|
||
/* ??? We have no way to distinguish a null-sized array from an
|
||
array spanning the whole sizetype range, so we arbitrarily
|
||
decide that [0, -1] is the only valid representation. */
|
||
if (integer_zerop (length)
|
||
&& TREE_OVERFLOW (length)
|
||
&& integer_zerop (lb))
|
||
length = size_zero_node;
|
||
|
||
TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
|
||
fold_convert (bitsizetype,
|
||
length));
|
||
|
||
/* If we know the size of the element, calculate the total size
|
||
directly, rather than do some division thing below. This
|
||
optimization helps Fortran assumed-size arrays (where the
|
||
size of the array is determined at runtime) substantially. */
|
||
if (TYPE_SIZE_UNIT (element))
|
||
TYPE_SIZE_UNIT (type)
|
||
= size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
|
||
}
|
||
|
||
/* Now round the alignment and size,
|
||
using machine-dependent criteria if any. */
|
||
|
||
#ifdef ROUND_TYPE_ALIGN
|
||
TYPE_ALIGN (type)
|
||
= ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
|
||
#else
|
||
TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
|
||
#endif
|
||
TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
|
||
SET_TYPE_MODE (type, BLKmode);
|
||
if (TYPE_SIZE (type) != 0
|
||
&& ! targetm.member_type_forces_blk (type, VOIDmode)
|
||
/* BLKmode elements force BLKmode aggregate;
|
||
else extract/store fields may lose. */
|
||
&& (TYPE_MODE (TREE_TYPE (type)) != BLKmode
|
||
|| TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
|
||
{
|
||
SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
|
||
TYPE_SIZE (type)));
|
||
if (TYPE_MODE (type) != BLKmode
|
||
&& STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
|
||
&& TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
|
||
{
|
||
TYPE_NO_FORCE_BLK (type) = 1;
|
||
SET_TYPE_MODE (type, BLKmode);
|
||
}
|
||
}
|
||
/* When the element size is constant, check that it is at least as
|
||
large as the element alignment. */
|
||
if (TYPE_SIZE_UNIT (element)
|
||
&& TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
|
||
/* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
|
||
TYPE_ALIGN_UNIT. */
|
||
&& !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
|
||
&& !integer_zerop (TYPE_SIZE_UNIT (element))
|
||
&& compare_tree_int (TYPE_SIZE_UNIT (element),
|
||
TYPE_ALIGN_UNIT (element)) < 0)
|
||
error ("alignment of array elements is greater than element size");
|
||
break;
|
||
}
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
{
|
||
tree field;
|
||
record_layout_info rli;
|
||
|
||
/* Initialize the layout information. */
|
||
rli = start_record_layout (type);
|
||
|
||
/* If this is a QUAL_UNION_TYPE, we want to process the fields
|
||
in the reverse order in building the COND_EXPR that denotes
|
||
its size. We reverse them again later. */
|
||
if (TREE_CODE (type) == QUAL_UNION_TYPE)
|
||
TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
|
||
|
||
/* Place all the fields. */
|
||
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
||
place_field (rli, field);
|
||
|
||
if (TREE_CODE (type) == QUAL_UNION_TYPE)
|
||
TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
|
||
|
||
/* Finish laying out the record. */
|
||
finish_record_layout (rli, /*free_p=*/true);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
|
||
records and unions, finish_record_layout already called this
|
||
function. */
|
||
if (TREE_CODE (type) != RECORD_TYPE
|
||
&& TREE_CODE (type) != UNION_TYPE
|
||
&& TREE_CODE (type) != QUAL_UNION_TYPE)
|
||
finalize_type_size (type);
|
||
|
||
/* We should never see alias sets on incomplete aggregates. And we
|
||
should not call layout_type on not incomplete aggregates. */
|
||
if (AGGREGATE_TYPE_P (type))
|
||
gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
|
||
}
|
||
|
||
/* Vector types need to re-check the target flags each time we report
|
||
the machine mode. We need to do this because attribute target can
|
||
change the result of vector_mode_supported_p and have_regs_of_mode
|
||
on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
|
||
change on a per-function basis. */
|
||
/* ??? Possibly a better solution is to run through all the types
|
||
referenced by a function and re-compute the TYPE_MODE once, rather
|
||
than make the TYPE_MODE macro call a function. */
|
||
|
||
enum machine_mode
|
||
vector_type_mode (const_tree t)
|
||
{
|
||
enum machine_mode mode;
|
||
|
||
gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
|
||
|
||
mode = t->type_common.mode;
|
||
if (VECTOR_MODE_P (mode)
|
||
&& (!targetm.vector_mode_supported_p (mode)
|
||
|| !have_regs_of_mode[mode]))
|
||
{
|
||
enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
|
||
|
||
/* For integers, try mapping it to a same-sized scalar mode. */
|
||
if (GET_MODE_CLASS (innermode) == MODE_INT)
|
||
{
|
||
mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
|
||
* GET_MODE_BITSIZE (innermode), MODE_INT, 0);
|
||
|
||
if (mode != VOIDmode && have_regs_of_mode[mode])
|
||
return mode;
|
||
}
|
||
|
||
return BLKmode;
|
||
}
|
||
|
||
return mode;
|
||
}
|
||
|
||
/* Create and return a type for signed integers of PRECISION bits. */
|
||
|
||
tree
|
||
make_signed_type (int precision)
|
||
{
|
||
tree type = make_node (INTEGER_TYPE);
|
||
|
||
TYPE_PRECISION (type) = precision;
|
||
|
||
fixup_signed_type (type);
|
||
return type;
|
||
}
|
||
|
||
/* Create and return a type for unsigned integers of PRECISION bits. */
|
||
|
||
tree
|
||
make_unsigned_type (int precision)
|
||
{
|
||
tree type = make_node (INTEGER_TYPE);
|
||
|
||
TYPE_PRECISION (type) = precision;
|
||
|
||
fixup_unsigned_type (type);
|
||
return type;
|
||
}
|
||
|
||
/* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
|
||
and SATP. */
|
||
|
||
tree
|
||
make_fract_type (int precision, int unsignedp, int satp)
|
||
{
|
||
tree type = make_node (FIXED_POINT_TYPE);
|
||
|
||
TYPE_PRECISION (type) = precision;
|
||
|
||
if (satp)
|
||
TYPE_SATURATING (type) = 1;
|
||
|
||
/* Lay out the type: set its alignment, size, etc. */
|
||
if (unsignedp)
|
||
{
|
||
TYPE_UNSIGNED (type) = 1;
|
||
SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
|
||
}
|
||
else
|
||
SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
|
||
layout_type (type);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
|
||
and SATP. */
|
||
|
||
tree
|
||
make_accum_type (int precision, int unsignedp, int satp)
|
||
{
|
||
tree type = make_node (FIXED_POINT_TYPE);
|
||
|
||
TYPE_PRECISION (type) = precision;
|
||
|
||
if (satp)
|
||
TYPE_SATURATING (type) = 1;
|
||
|
||
/* Lay out the type: set its alignment, size, etc. */
|
||
if (unsignedp)
|
||
{
|
||
TYPE_UNSIGNED (type) = 1;
|
||
SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
|
||
}
|
||
else
|
||
SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
|
||
layout_type (type);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Initialize sizetypes so layout_type can use them. */
|
||
|
||
void
|
||
initialize_sizetypes (void)
|
||
{
|
||
int precision, bprecision;
|
||
|
||
/* Get sizetypes precision from the SIZE_TYPE target macro. */
|
||
if (strcmp (SIZETYPE, "unsigned int") == 0)
|
||
precision = INT_TYPE_SIZE;
|
||
else if (strcmp (SIZETYPE, "long unsigned int") == 0)
|
||
precision = LONG_TYPE_SIZE;
|
||
else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
|
||
precision = LONG_LONG_TYPE_SIZE;
|
||
else if (strcmp (SIZETYPE, "short unsigned int") == 0)
|
||
precision = SHORT_TYPE_SIZE;
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
bprecision
|
||
= MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
|
||
bprecision
|
||
= GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
|
||
if (bprecision > HOST_BITS_PER_DOUBLE_INT)
|
||
bprecision = HOST_BITS_PER_DOUBLE_INT;
|
||
|
||
/* Create stubs for sizetype and bitsizetype so we can create constants. */
|
||
sizetype = make_node (INTEGER_TYPE);
|
||
TYPE_NAME (sizetype) = get_identifier ("sizetype");
|
||
TYPE_PRECISION (sizetype) = precision;
|
||
TYPE_UNSIGNED (sizetype) = 1;
|
||
bitsizetype = make_node (INTEGER_TYPE);
|
||
TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
|
||
TYPE_PRECISION (bitsizetype) = bprecision;
|
||
TYPE_UNSIGNED (bitsizetype) = 1;
|
||
|
||
/* Now layout both types manually. */
|
||
SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
|
||
TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
|
||
TYPE_SIZE (sizetype) = bitsize_int (precision);
|
||
TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
|
||
set_min_and_max_values_for_integral_type (sizetype, precision,
|
||
/*is_unsigned=*/true);
|
||
|
||
SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
|
||
TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
|
||
TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
|
||
TYPE_SIZE_UNIT (bitsizetype)
|
||
= size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
|
||
set_min_and_max_values_for_integral_type (bitsizetype, bprecision,
|
||
/*is_unsigned=*/true);
|
||
|
||
/* Create the signed variants of *sizetype. */
|
||
ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
|
||
TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
|
||
sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
|
||
TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
|
||
}
|
||
|
||
/* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
|
||
or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
|
||
for TYPE, based on the PRECISION and whether or not the TYPE
|
||
IS_UNSIGNED. PRECISION need not correspond to a width supported
|
||
natively by the hardware; for example, on a machine with 8-bit,
|
||
16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
|
||
61. */
|
||
|
||
void
|
||
set_min_and_max_values_for_integral_type (tree type,
|
||
int precision,
|
||
bool is_unsigned)
|
||
{
|
||
tree min_value;
|
||
tree max_value;
|
||
|
||
/* For bitfields with zero width we end up creating integer types
|
||
with zero precision. Don't assign any minimum/maximum values
|
||
to those types, they don't have any valid value. */
|
||
if (precision < 1)
|
||
return;
|
||
|
||
if (is_unsigned)
|
||
{
|
||
min_value = build_int_cst (type, 0);
|
||
max_value
|
||
= build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
|
||
? -1
|
||
: (HOST_WIDE_INT_1U << precision) - 1,
|
||
precision - HOST_BITS_PER_WIDE_INT > 0
|
||
? ((unsigned HOST_WIDE_INT) ~0
|
||
>> (HOST_BITS_PER_WIDE_INT
|
||
- (precision - HOST_BITS_PER_WIDE_INT)))
|
||
: 0);
|
||
}
|
||
else
|
||
{
|
||
min_value
|
||
= build_int_cst_wide (type,
|
||
(precision - HOST_BITS_PER_WIDE_INT > 0
|
||
? 0
|
||
: HOST_WIDE_INT_M1U << (precision - 1)),
|
||
(((HOST_WIDE_INT) (-1)
|
||
<< (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
|
||
? precision - HOST_BITS_PER_WIDE_INT - 1
|
||
: 0))));
|
||
max_value
|
||
= build_int_cst_wide (type,
|
||
(precision - HOST_BITS_PER_WIDE_INT > 0
|
||
? -1
|
||
: (HOST_WIDE_INT)
|
||
(((unsigned HOST_WIDE_INT) 1
|
||
<< (precision - 1)) - 1)),
|
||
(precision - HOST_BITS_PER_WIDE_INT - 1 > 0
|
||
? (HOST_WIDE_INT)
|
||
((((unsigned HOST_WIDE_INT) 1
|
||
<< (precision - HOST_BITS_PER_WIDE_INT
|
||
- 1))) - 1)
|
||
: 0));
|
||
}
|
||
|
||
TYPE_MIN_VALUE (type) = min_value;
|
||
TYPE_MAX_VALUE (type) = max_value;
|
||
}
|
||
|
||
/* Set the extreme values of TYPE based on its precision in bits,
|
||
then lay it out. Used when make_signed_type won't do
|
||
because the tree code is not INTEGER_TYPE.
|
||
E.g. for Pascal, when the -fsigned-char option is given. */
|
||
|
||
void
|
||
fixup_signed_type (tree type)
|
||
{
|
||
int precision = TYPE_PRECISION (type);
|
||
|
||
/* We can not represent properly constants greater then
|
||
HOST_BITS_PER_DOUBLE_INT, still we need the types
|
||
as they are used by i386 vector extensions and friends. */
|
||
if (precision > HOST_BITS_PER_DOUBLE_INT)
|
||
precision = HOST_BITS_PER_DOUBLE_INT;
|
||
|
||
set_min_and_max_values_for_integral_type (type, precision,
|
||
/*is_unsigned=*/false);
|
||
|
||
/* Lay out the type: set its alignment, size, etc. */
|
||
layout_type (type);
|
||
}
|
||
|
||
/* Set the extreme values of TYPE based on its precision in bits,
|
||
then lay it out. This is used both in `make_unsigned_type'
|
||
and for enumeral types. */
|
||
|
||
void
|
||
fixup_unsigned_type (tree type)
|
||
{
|
||
int precision = TYPE_PRECISION (type);
|
||
|
||
/* We can not represent properly constants greater then
|
||
HOST_BITS_PER_DOUBLE_INT, still we need the types
|
||
as they are used by i386 vector extensions and friends. */
|
||
if (precision > HOST_BITS_PER_DOUBLE_INT)
|
||
precision = HOST_BITS_PER_DOUBLE_INT;
|
||
|
||
TYPE_UNSIGNED (type) = 1;
|
||
|
||
set_min_and_max_values_for_integral_type (type, precision,
|
||
/*is_unsigned=*/true);
|
||
|
||
/* Lay out the type: set its alignment, size, etc. */
|
||
layout_type (type);
|
||
}
|
||
|
||
/* Construct an iterator for a bitfield that spans BITSIZE bits,
|
||
starting at BITPOS.
|
||
|
||
BITREGION_START is the bit position of the first bit in this
|
||
sequence of bit fields. BITREGION_END is the last bit in this
|
||
sequence. If these two fields are non-zero, we should restrict the
|
||
memory access to that range. Otherwise, we are allowed to touch
|
||
any adjacent non bit-fields.
|
||
|
||
ALIGN is the alignment of the underlying object in bits.
|
||
VOLATILEP says whether the bitfield is volatile. */
|
||
|
||
bit_field_mode_iterator
|
||
::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
|
||
HOST_WIDE_INT bitregion_start,
|
||
HOST_WIDE_INT bitregion_end,
|
||
unsigned int align, bool volatilep)
|
||
: m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
|
||
m_bitpos (bitpos), m_bitregion_start (bitregion_start),
|
||
m_bitregion_end (bitregion_end), m_align (align),
|
||
m_volatilep (volatilep), m_count (0)
|
||
{
|
||
if (!m_bitregion_end)
|
||
{
|
||
/* We can assume that any aligned chunk of ALIGN bits that overlaps
|
||
the bitfield is mapped and won't trap, provided that ALIGN isn't
|
||
too large. The cap is the biggest required alignment for data,
|
||
or at least the word size. And force one such chunk at least. */
|
||
unsigned HOST_WIDE_INT units
|
||
= MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
|
||
if (bitsize <= 0)
|
||
bitsize = 1;
|
||
m_bitregion_end = bitpos + bitsize + units - 1;
|
||
m_bitregion_end -= m_bitregion_end % units + 1;
|
||
}
|
||
}
|
||
|
||
/* Calls to this function return successively larger modes that can be used
|
||
to represent the bitfield. Return true if another bitfield mode is
|
||
available, storing it in *OUT_MODE if so. */
|
||
|
||
bool
|
||
bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
|
||
{
|
||
for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
|
||
{
|
||
unsigned int unit = GET_MODE_BITSIZE (m_mode);
|
||
|
||
/* Skip modes that don't have full precision. */
|
||
if (unit != GET_MODE_PRECISION (m_mode))
|
||
continue;
|
||
|
||
/* Stop if the mode is too wide to handle efficiently. */
|
||
if (unit > MAX_FIXED_MODE_SIZE)
|
||
break;
|
||
|
||
/* Don't deliver more than one multiword mode; the smallest one
|
||
should be used. */
|
||
if (m_count > 0 && unit > BITS_PER_WORD)
|
||
break;
|
||
|
||
/* Skip modes that are too small. */
|
||
unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
|
||
unsigned HOST_WIDE_INT subend = substart + m_bitsize;
|
||
if (subend > unit)
|
||
continue;
|
||
|
||
/* Stop if the mode goes outside the bitregion. */
|
||
HOST_WIDE_INT start = m_bitpos - substart;
|
||
if (m_bitregion_start && start < m_bitregion_start)
|
||
break;
|
||
HOST_WIDE_INT end = start + unit;
|
||
if (end > m_bitregion_end + 1)
|
||
break;
|
||
|
||
/* Stop if the mode requires too much alignment. */
|
||
if (GET_MODE_ALIGNMENT (m_mode) > m_align
|
||
&& SLOW_UNALIGNED_ACCESS (m_mode, m_align))
|
||
break;
|
||
|
||
*out_mode = m_mode;
|
||
m_mode = GET_MODE_WIDER_MODE (m_mode);
|
||
m_count++;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return true if smaller modes are generally preferred for this kind
|
||
of bitfield. */
|
||
|
||
bool
|
||
bit_field_mode_iterator::prefer_smaller_modes ()
|
||
{
|
||
return (m_volatilep
|
||
? targetm.narrow_volatile_bitfield ()
|
||
: !SLOW_BYTE_ACCESS);
|
||
}
|
||
|
||
/* Find the best machine mode to use when referencing a bit field of length
|
||
BITSIZE bits starting at BITPOS.
|
||
|
||
BITREGION_START is the bit position of the first bit in this
|
||
sequence of bit fields. BITREGION_END is the last bit in this
|
||
sequence. If these two fields are non-zero, we should restrict the
|
||
memory access to that range. Otherwise, we are allowed to touch
|
||
any adjacent non bit-fields.
|
||
|
||
The underlying object is known to be aligned to a boundary of ALIGN bits.
|
||
If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
|
||
larger than LARGEST_MODE (usually SImode).
|
||
|
||
If no mode meets all these conditions, we return VOIDmode.
|
||
|
||
If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
|
||
smallest mode meeting these conditions.
|
||
|
||
If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
|
||
largest mode (but a mode no wider than UNITS_PER_WORD) that meets
|
||
all the conditions.
|
||
|
||
If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
|
||
decide which of the above modes should be used. */
|
||
|
||
enum machine_mode
|
||
get_best_mode (int bitsize, int bitpos,
|
||
unsigned HOST_WIDE_INT bitregion_start,
|
||
unsigned HOST_WIDE_INT bitregion_end,
|
||
unsigned int align,
|
||
enum machine_mode largest_mode, bool volatilep)
|
||
{
|
||
bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
|
||
bitregion_end, align, volatilep);
|
||
enum machine_mode widest_mode = VOIDmode;
|
||
enum machine_mode mode;
|
||
while (iter.next_mode (&mode)
|
||
/* ??? For historical reasons, reject modes that would normally
|
||
receive greater alignment, even if unaligned accesses are
|
||
acceptable. This has both advantages and disadvantages.
|
||
Removing this check means that something like:
|
||
|
||
struct s { unsigned int x; unsigned int y; };
|
||
int f (struct s *s) { return s->x == 0 && s->y == 0; }
|
||
|
||
can be implemented using a single load and compare on
|
||
64-bit machines that have no alignment restrictions.
|
||
For example, on powerpc64-linux-gnu, we would generate:
|
||
|
||
ld 3,0(3)
|
||
cntlzd 3,3
|
||
srdi 3,3,6
|
||
blr
|
||
|
||
rather than:
|
||
|
||
lwz 9,0(3)
|
||
cmpwi 7,9,0
|
||
bne 7,.L3
|
||
lwz 3,4(3)
|
||
cntlzw 3,3
|
||
srwi 3,3,5
|
||
extsw 3,3
|
||
blr
|
||
.p2align 4,,15
|
||
.L3:
|
||
li 3,0
|
||
blr
|
||
|
||
However, accessing more than one field can make life harder
|
||
for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
|
||
has a series of unsigned short copies followed by a series of
|
||
unsigned short comparisons. With this check, both the copies
|
||
and comparisons remain 16-bit accesses and FRE is able
|
||
to eliminate the latter. Without the check, the comparisons
|
||
can be done using 2 64-bit operations, which FRE isn't able
|
||
to handle in the same way.
|
||
|
||
Either way, it would probably be worth disabling this check
|
||
during expand. One particular example where removing the
|
||
check would help is the get_best_mode call in store_bit_field.
|
||
If we are given a memory bitregion of 128 bits that is aligned
|
||
to a 64-bit boundary, and the bitfield we want to modify is
|
||
in the second half of the bitregion, this check causes
|
||
store_bitfield to turn the memory into a 64-bit reference
|
||
to the _first_ half of the region. We later use
|
||
adjust_bitfield_address to get a reference to the correct half,
|
||
but doing so looks to adjust_bitfield_address as though we are
|
||
moving past the end of the original object, so it drops the
|
||
associated MEM_EXPR and MEM_OFFSET. Removing the check
|
||
causes store_bit_field to keep a 128-bit memory reference,
|
||
so that the final bitfield reference still has a MEM_EXPR
|
||
and MEM_OFFSET. */
|
||
&& GET_MODE_ALIGNMENT (mode) <= align
|
||
&& (largest_mode == VOIDmode
|
||
|| GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
|
||
{
|
||
widest_mode = mode;
|
||
if (iter.prefer_smaller_modes ())
|
||
break;
|
||
}
|
||
return widest_mode;
|
||
}
|
||
|
||
/* Gets minimal and maximal values for MODE (signed or unsigned depending on
|
||
SIGN). The returned constants are made to be usable in TARGET_MODE. */
|
||
|
||
void
|
||
get_mode_bounds (enum machine_mode mode, int sign,
|
||
enum machine_mode target_mode,
|
||
rtx *mmin, rtx *mmax)
|
||
{
|
||
unsigned size = GET_MODE_PRECISION (mode);
|
||
unsigned HOST_WIDE_INT min_val, max_val;
|
||
|
||
gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
|
||
|
||
/* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
|
||
if (mode == BImode)
|
||
{
|
||
if (STORE_FLAG_VALUE < 0)
|
||
{
|
||
min_val = STORE_FLAG_VALUE;
|
||
max_val = 0;
|
||
}
|
||
else
|
||
{
|
||
min_val = 0;
|
||
max_val = STORE_FLAG_VALUE;
|
||
}
|
||
}
|
||
else if (sign)
|
||
{
|
||
min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
|
||
max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
|
||
}
|
||
else
|
||
{
|
||
min_val = 0;
|
||
max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
|
||
}
|
||
|
||
*mmin = gen_int_mode (min_val, target_mode);
|
||
*mmax = gen_int_mode (max_val, target_mode);
|
||
}
|
||
|
||
#include "gt-stor-layout.h"
|