gcc/libgfortran/intrinsics/cshift0.c
2009-04-09 17:00:19 +02:00

433 lines
12 KiB
C

/* Generic implementation of the CSHIFT intrinsic
Copyright 2003, 2005, 2006, 2007, 2009 Free Software Foundation, Inc.
Contributed by Feng Wang <wf_cs@yahoo.com>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
static void
cshift0 (gfc_array_char * ret, const gfc_array_char * array,
index_type shift, int which, index_type size)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type roffset;
char *rptr;
/* s.* indicates the source array. */
index_type sstride[GFC_MAX_DIMENSIONS];
index_type sstride0;
index_type soffset;
const char *sptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type dim;
index_type len;
index_type n;
index_type arraysize;
index_type type_size;
if (which < 1 || which > GFC_DESCRIPTOR_RANK (array))
runtime_error ("Argument 'DIM' is out of range in call to 'CSHIFT'");
arraysize = size0 ((array_t *) array);
if (ret->data == NULL)
{
int i;
ret->offset = 0;
ret->dtype = array->dtype;
for (i = 0; i < GFC_DESCRIPTOR_RANK (array); i++)
{
ret->dim[i].lbound = 0;
ret->dim[i].ubound = array->dim[i].ubound - array->dim[i].lbound;
if (i == 0)
ret->dim[i].stride = 1;
else
ret->dim[i].stride = (ret->dim[i-1].ubound + 1)
* ret->dim[i-1].stride;
}
if (arraysize > 0)
ret->data = internal_malloc_size (size * arraysize);
else
{
ret->data = internal_malloc_size (1);
return;
}
}
if (arraysize == 0)
return;
type_size = GFC_DTYPE_TYPE_SIZE (array);
switch(type_size)
{
case GFC_DTYPE_LOGICAL_1:
case GFC_DTYPE_INTEGER_1:
case GFC_DTYPE_DERIVED_1:
cshift0_i1 ((gfc_array_i1 *)ret, (gfc_array_i1 *) array, shift, which);
return;
case GFC_DTYPE_LOGICAL_2:
case GFC_DTYPE_INTEGER_2:
cshift0_i2 ((gfc_array_i2 *)ret, (gfc_array_i2 *) array, shift, which);
return;
case GFC_DTYPE_LOGICAL_4:
case GFC_DTYPE_INTEGER_4:
cshift0_i4 ((gfc_array_i4 *)ret, (gfc_array_i4 *) array, shift, which);
return;
case GFC_DTYPE_LOGICAL_8:
case GFC_DTYPE_INTEGER_8:
cshift0_i8 ((gfc_array_i8 *)ret, (gfc_array_i8 *) array, shift, which);
return;
#ifdef HAVE_GFC_INTEGER_16
case GFC_DTYPE_LOGICAL_16:
case GFC_DTYPE_INTEGER_16:
cshift0_i16 ((gfc_array_i16 *)ret, (gfc_array_i16 *) array, shift,
which);
return;
#endif
case GFC_DTYPE_REAL_4:
cshift0_r4 ((gfc_array_r4 *)ret, (gfc_array_r4 *) array, shift, which);
return;
case GFC_DTYPE_REAL_8:
cshift0_r8 ((gfc_array_r8 *)ret, (gfc_array_r8 *) array, shift, which);
return;
#ifdef HAVE_GFC_REAL_10
case GFC_DTYPE_REAL_10:
cshift0_r10 ((gfc_array_r10 *)ret, (gfc_array_r10 *) array, shift,
which);
return;
#endif
#ifdef HAVE_GFC_REAL_16
case GFC_DTYPE_REAL_16:
cshift0_r16 ((gfc_array_r16 *)ret, (gfc_array_r16 *) array, shift,
which);
return;
#endif
case GFC_DTYPE_COMPLEX_4:
cshift0_c4 ((gfc_array_c4 *)ret, (gfc_array_c4 *) array, shift, which);
return;
case GFC_DTYPE_COMPLEX_8:
cshift0_c8 ((gfc_array_c8 *)ret, (gfc_array_c8 *) array, shift, which);
return;
#ifdef HAVE_GFC_COMPLEX_10
case GFC_DTYPE_COMPLEX_10:
cshift0_c10 ((gfc_array_c10 *)ret, (gfc_array_c10 *) array, shift,
which);
return;
#endif
#ifdef HAVE_GFC_COMPLEX_16
case GFC_DTYPE_COMPLEX_16:
cshift0_c16 ((gfc_array_c16 *)ret, (gfc_array_c16 *) array, shift,
which);
return;
#endif
default:
break;
}
switch (size)
{
/* Let's check the actual alignment of the data pointers. If they
are suitably aligned, we can safely call the unpack functions. */
case sizeof (GFC_INTEGER_1):
cshift0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array, shift,
which);
break;
case sizeof (GFC_INTEGER_2):
if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(array->data))
break;
else
{
cshift0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array, shift,
which);
return;
}
case sizeof (GFC_INTEGER_4):
if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(array->data))
break;
else
{
cshift0_i4 ((gfc_array_i4 *)ret, (gfc_array_i4 *) array, shift,
which);
return;
}
case sizeof (GFC_INTEGER_8):
if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(array->data))
{
/* Let's try to use the complex routines. First, a sanity
check that the sizes match; this should be optimized to
a no-op. */
if (sizeof(GFC_INTEGER_8) != sizeof(GFC_COMPLEX_4))
break;
if (GFC_UNALIGNED_C4(ret->data) || GFC_UNALIGNED_C4(array->data))
break;
cshift0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) array, shift,
which);
return;
}
else
{
cshift0_i8 ((gfc_array_i8 *)ret, (gfc_array_i8 *) array, shift,
which);
return;
}
#ifdef HAVE_GFC_INTEGER_16
case sizeof (GFC_INTEGER_16):
if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(array->data))
{
/* Let's try to use the complex routines. First, a sanity
check that the sizes match; this should be optimized to
a no-op. */
if (sizeof(GFC_INTEGER_16) != sizeof(GFC_COMPLEX_8))
break;
if (GFC_UNALIGNED_C8(ret->data) || GFC_UNALIGNED_C8(array->data))
break;
cshift0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, shift,
which);
return;
}
else
{
cshift0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array,
shift, which);
return;
}
#else
case sizeof (GFC_COMPLEX_8):
if (GFC_UNALIGNED_C8(ret->data) || GFC_UNALIGNED_C8(array->data))
break;
else
{
cshift0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, shift,
which);
return;
}
#endif
default:
break;
}
which = which - 1;
sstride[0] = 0;
rstride[0] = 0;
extent[0] = 1;
count[0] = 0;
n = 0;
/* Initialized for avoiding compiler warnings. */
roffset = size;
soffset = size;
len = 0;
for (dim = 0; dim < GFC_DESCRIPTOR_RANK (array); dim++)
{
if (dim == which)
{
roffset = ret->dim[dim].stride * size;
if (roffset == 0)
roffset = size;
soffset = array->dim[dim].stride * size;
if (soffset == 0)
soffset = size;
len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
}
else
{
count[n] = 0;
extent[n] = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
rstride[n] = ret->dim[dim].stride * size;
sstride[n] = array->dim[dim].stride * size;
n++;
}
}
if (sstride[0] == 0)
sstride[0] = size;
if (rstride[0] == 0)
rstride[0] = size;
dim = GFC_DESCRIPTOR_RANK (array);
rstride0 = rstride[0];
sstride0 = sstride[0];
rptr = ret->data;
sptr = array->data;
shift = len == 0 ? 0 : shift % len;
if (shift < 0)
shift += len;
while (rptr)
{
/* Do the shift for this dimension. */
/* If elements are contiguous, perform the operation
in two block moves. */
if (soffset == size && roffset == size)
{
size_t len1 = shift * size;
size_t len2 = (len - shift) * size;
memcpy (rptr, sptr + len1, len2);
memcpy (rptr + len2, sptr, len1);
}
else
{
/* Otherwise, we'll have to perform the copy one element at
a time. */
char *dest = rptr;
const char *src = &sptr[shift * soffset];
for (n = 0; n < len - shift; n++)
{
memcpy (dest, src, size);
dest += roffset;
src += soffset;
}
for (src = sptr, n = 0; n < shift; n++)
{
memcpy (dest, src, size);
dest += roffset;
src += soffset;
}
}
/* Advance to the next section. */
rptr += rstride0;
sptr += sstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
sptr -= sstride[n] * extent[n];
n++;
if (n >= dim - 1)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
sptr += sstride[n];
}
}
}
}
#define DEFINE_CSHIFT(N) \
extern void cshift0_##N (gfc_array_char *, const gfc_array_char *, \
const GFC_INTEGER_##N *, const GFC_INTEGER_##N *); \
export_proto(cshift0_##N); \
\
void \
cshift0_##N (gfc_array_char *ret, const gfc_array_char *array, \
const GFC_INTEGER_##N *pshift, const GFC_INTEGER_##N *pdim) \
{ \
cshift0 (ret, array, *pshift, pdim ? *pdim : 1, \
GFC_DESCRIPTOR_SIZE (array)); \
} \
\
extern void cshift0_##N##_char (gfc_array_char *, GFC_INTEGER_4, \
const gfc_array_char *, \
const GFC_INTEGER_##N *, \
const GFC_INTEGER_##N *, GFC_INTEGER_4); \
export_proto(cshift0_##N##_char); \
\
void \
cshift0_##N##_char (gfc_array_char *ret, \
GFC_INTEGER_4 ret_length __attribute__((unused)), \
const gfc_array_char *array, \
const GFC_INTEGER_##N *pshift, \
const GFC_INTEGER_##N *pdim, \
GFC_INTEGER_4 array_length) \
{ \
cshift0 (ret, array, *pshift, pdim ? *pdim : 1, array_length); \
} \
\
extern void cshift0_##N##_char4 (gfc_array_char *, GFC_INTEGER_4, \
const gfc_array_char *, \
const GFC_INTEGER_##N *, \
const GFC_INTEGER_##N *, GFC_INTEGER_4); \
export_proto(cshift0_##N##_char4); \
\
void \
cshift0_##N##_char4 (gfc_array_char *ret, \
GFC_INTEGER_4 ret_length __attribute__((unused)), \
const gfc_array_char *array, \
const GFC_INTEGER_##N *pshift, \
const GFC_INTEGER_##N *pdim, \
GFC_INTEGER_4 array_length) \
{ \
cshift0 (ret, array, *pshift, pdim ? *pdim : 1, \
array_length * sizeof (gfc_char4_t)); \
}
DEFINE_CSHIFT (1);
DEFINE_CSHIFT (2);
DEFINE_CSHIFT (4);
DEFINE_CSHIFT (8);
#ifdef HAVE_GFC_INTEGER_16
DEFINE_CSHIFT (16);
#endif