Paolo Carlini ba43cf0b4f 2832.cc: Remove junk.
2004-08-15  Paolo Carlini  <pcarlini@suse.de>

	* testsuite/27_io/basic_stringstream/rdbuf/char/2832.cc: Remove junk.
	* testsuite/27_io/basic_stringstream/str/char/1.cc: Likewise.
	* testsuite/27_io/basic_stringstream/str/char/3.cc: Likewise.

	* testsuite/27_io/basic_stringstream/rdbuf/wchar_t/2832.cc: New.
	* testsuite/27_io/basic_stringstream/str/wchar_t/1.cc: Likewise.
	* testsuite/27_io/basic_stringstream/str/wchar_t/2.cc: Likewise.
	* testsuite/27_io/basic_stringstream/str/wchar_t/3.cc: Likewise.
	* testsuite/27_io/basic_stringstream/str/wchar_t/4.cc: Likewise.

2004-08-15  Paolo Carlini  <pcarlini@suse.de>

	* include/bits/deque.tcc: Trivial formatting fixes.

From-SVN: r86040
2004-08-15 23:08:58 +00:00

768 lines
24 KiB
C++

// Deque implementation (out of line) -*- C++ -*-
// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file deque.tcc
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef _DEQUE_TCC
#define _DEQUE_TCC 1
namespace _GLIBCXX_STD
{
template <typename _Tp, typename _Alloc>
deque<_Tp, _Alloc>&
deque<_Tp, _Alloc>::
operator=(const deque& __x)
{
const size_type __len = size();
if (&__x != this)
{
if (__len >= __x.size())
erase(std::copy(__x.begin(), __x.end(), this->_M_impl._M_start),
this->_M_impl._M_finish);
else
{
const_iterator __mid = __x.begin() + difference_type(__len);
std::copy(__x.begin(), __mid, this->_M_impl._M_start);
insert(this->_M_impl._M_finish, __mid, __x.end());
}
}
return *this;
}
template <typename _Tp, typename _Alloc>
typename deque<_Tp, _Alloc>::iterator
deque<_Tp, _Alloc>::
insert(iterator position, const value_type& __x)
{
if (position._M_cur == this->_M_impl._M_start._M_cur)
{
push_front(__x);
return this->_M_impl._M_start;
}
else if (position._M_cur == this->_M_impl._M_finish._M_cur)
{
push_back(__x);
iterator __tmp = this->_M_impl._M_finish;
--__tmp;
return __tmp;
}
else
return _M_insert_aux(position, __x);
}
template <typename _Tp, typename _Alloc>
typename deque<_Tp, _Alloc>::iterator
deque<_Tp, _Alloc>::
erase(iterator __position)
{
iterator __next = __position;
++__next;
const size_type __index = __position - this->_M_impl._M_start;
if (__index < (size() >> 1))
{
std::copy_backward(this->_M_impl._M_start, __position, __next);
pop_front();
}
else
{
std::copy(__next, this->_M_impl._M_finish, __position);
pop_back();
}
return this->_M_impl._M_start + __index;
}
template <typename _Tp, typename _Alloc>
typename deque<_Tp, _Alloc>::iterator
deque<_Tp, _Alloc>::
erase(iterator __first, iterator __last)
{
if (__first == this->_M_impl._M_start
&& __last == this->_M_impl._M_finish)
{
clear();
return this->_M_impl._M_finish;
}
else
{
const difference_type __n = __last - __first;
const difference_type __elems_before = (__first
- this->_M_impl._M_start);
if (static_cast<size_type>(__elems_before) < (size() - __n) / 2)
{
std::copy_backward(this->_M_impl._M_start, __first, __last);
iterator __new_start = this->_M_impl._M_start + __n;
std::_Destroy(this->_M_impl._M_start, __new_start,
this->get_allocator());
_M_destroy_nodes(this->_M_impl._M_start._M_node,
__new_start._M_node);
this->_M_impl._M_start = __new_start;
}
else
{
std::copy(__last, this->_M_impl._M_finish, __first);
iterator __new_finish = this->_M_impl._M_finish - __n;
std::_Destroy(__new_finish, this->_M_impl._M_finish,
this->get_allocator());
_M_destroy_nodes(__new_finish._M_node + 1,
this->_M_impl._M_finish._M_node + 1);
this->_M_impl._M_finish = __new_finish;
}
return this->_M_impl._M_start + __elems_before;
}
}
template <typename _Tp, typename _Alloc>
void
deque<_Tp, _Alloc>::
clear()
{
for (_Map_pointer __node = this->_M_impl._M_start._M_node + 1;
__node < this->_M_impl._M_finish._M_node;
++__node)
{
std::_Destroy(*__node, *__node + _S_buffer_size(),
this->get_allocator());
_M_deallocate_node(*__node);
}
if (this->_M_impl._M_start._M_node != this->_M_impl._M_finish._M_node)
{
std::_Destroy(this->_M_impl._M_start._M_cur,
this->_M_impl._M_start._M_last,
this->get_allocator());
std::_Destroy(this->_M_impl._M_finish._M_first,
this->_M_impl._M_finish._M_cur,
this->get_allocator());
_M_deallocate_node(this->_M_impl._M_finish._M_first);
}
else
std::_Destroy(this->_M_impl._M_start._M_cur,
this->_M_impl._M_finish._M_cur,
this->get_allocator());
this->_M_impl._M_finish = this->_M_impl._M_start;
}
template <typename _Tp, class _Alloc>
template <typename _InputIterator>
void
deque<_Tp, _Alloc>
::_M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag)
{
iterator __cur = begin();
for (; __first != __last && __cur != end(); ++__cur, ++__first)
*__cur = *__first;
if (__first == __last)
erase(__cur, end());
else
insert(end(), __first, __last);
}
template <typename _Tp, typename _Alloc>
void
deque<_Tp, _Alloc>::
_M_fill_insert(iterator __pos, size_type __n, const value_type& __x)
{
if (__pos._M_cur == this->_M_impl._M_start._M_cur)
{
iterator __new_start = _M_reserve_elements_at_front(__n);
try
{
std::__uninitialized_fill_a(__new_start, this->_M_impl._M_start,
__x,
this->get_allocator());
this->_M_impl._M_start = __new_start;
}
catch(...)
{
_M_destroy_nodes(__new_start._M_node,
this->_M_impl._M_start._M_node);
__throw_exception_again;
}
}
else if (__pos._M_cur == this->_M_impl._M_finish._M_cur)
{
iterator __new_finish = _M_reserve_elements_at_back(__n);
try
{
std::__uninitialized_fill_a(this->_M_impl._M_finish,
__new_finish, __x,
this->get_allocator());
this->_M_impl._M_finish = __new_finish;
}
catch(...)
{
_M_destroy_nodes(this->_M_impl._M_finish._M_node + 1,
__new_finish._M_node + 1);
__throw_exception_again;
}
}
else
_M_insert_aux(__pos, __n, __x);
}
template <typename _Tp, typename _Alloc>
void
deque<_Tp, _Alloc>::
_M_fill_initialize(const value_type& __value)
{
_Map_pointer __cur;
try
{
for (__cur = this->_M_impl._M_start._M_node;
__cur < this->_M_impl._M_finish._M_node;
++__cur)
std::__uninitialized_fill_a(*__cur, *__cur + _S_buffer_size(),
__value, this->get_allocator());
std::__uninitialized_fill_a(this->_M_impl._M_finish._M_first,
this->_M_impl._M_finish._M_cur,
__value, this->get_allocator());
}
catch(...)
{
std::_Destroy(this->_M_impl._M_start, iterator(*__cur, __cur),
this->get_allocator());
__throw_exception_again;
}
}
template <typename _Tp, typename _Alloc>
template <typename _InputIterator>
void
deque<_Tp, _Alloc>::
_M_range_initialize(_InputIterator __first, _InputIterator __last,
input_iterator_tag)
{
this->_M_initialize_map(0);
try
{
for (; __first != __last; ++__first)
push_back(*__first);
}
catch(...)
{
clear();
__throw_exception_again;
}
}
template <typename _Tp, typename _Alloc>
template <typename _ForwardIterator>
void
deque<_Tp, _Alloc>::
_M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag)
{
const size_type __n = std::distance(__first, __last);
this->_M_initialize_map(__n);
_Map_pointer __cur_node;
try
{
for (__cur_node = this->_M_impl._M_start._M_node;
__cur_node < this->_M_impl._M_finish._M_node;
++__cur_node)
{
_ForwardIterator __mid = __first;
std::advance(__mid, _S_buffer_size());
std::__uninitialized_copy_a(__first, __mid, *__cur_node,
this->get_allocator());
__first = __mid;
}
std::__uninitialized_copy_a(__first, __last,
this->_M_impl._M_finish._M_first,
this->get_allocator());
}
catch(...)
{
std::_Destroy(this->_M_impl._M_start,
iterator(*__cur_node, __cur_node),
this->get_allocator());
__throw_exception_again;
}
}
// Called only if _M_impl._M_finish._M_cur == _M_impl._M_finish._M_last - 1.
template <typename _Tp, typename _Alloc>
void
deque<_Tp, _Alloc>::
_M_push_back_aux(const value_type& __t)
{
value_type __t_copy = __t;
_M_reserve_map_at_back();
*(this->_M_impl._M_finish._M_node + 1) = this->_M_allocate_node();
try
{
this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __t_copy);
this->_M_impl._M_finish._M_set_node(this->_M_impl._M_finish._M_node
+ 1);
this->_M_impl._M_finish._M_cur = this->_M_impl._M_finish._M_first;
}
catch(...)
{
_M_deallocate_node(*(this->_M_impl._M_finish._M_node + 1));
__throw_exception_again;
}
}
// Called only if _M_impl._M_start._M_cur == _M_impl._M_start._M_first.
template <typename _Tp, typename _Alloc>
void
deque<_Tp, _Alloc>::
_M_push_front_aux(const value_type& __t)
{
value_type __t_copy = __t;
_M_reserve_map_at_front();
*(this->_M_impl._M_start._M_node - 1) = this->_M_allocate_node();
try
{
this->_M_impl._M_start._M_set_node(this->_M_impl._M_start._M_node
- 1);
this->_M_impl._M_start._M_cur = this->_M_impl._M_start._M_last - 1;
this->_M_impl.construct(this->_M_impl._M_start._M_cur, __t_copy);
}
catch(...)
{
++this->_M_impl._M_start;
_M_deallocate_node(*(this->_M_impl._M_start._M_node - 1));
__throw_exception_again;
}
}
// Called only if _M_impl._M_finish._M_cur == _M_impl._M_finish._M_first.
template <typename _Tp, typename _Alloc>
void deque<_Tp, _Alloc>::
_M_pop_back_aux()
{
_M_deallocate_node(this->_M_impl._M_finish._M_first);
this->_M_impl._M_finish._M_set_node(this->_M_impl._M_finish._M_node - 1);
this->_M_impl._M_finish._M_cur = this->_M_impl._M_finish._M_last - 1;
this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
}
// Called only if _M_impl._M_start._M_cur == _M_impl._M_start._M_last - 1.
// Note that if the deque has at least one element (a precondition for this
// member function), and if
// _M_impl._M_start._M_cur == _M_impl._M_start._M_last,
// then the deque must have at least two nodes.
template <typename _Tp, typename _Alloc>
void deque<_Tp, _Alloc>::
_M_pop_front_aux()
{
this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
_M_deallocate_node(this->_M_impl._M_start._M_first);
this->_M_impl._M_start._M_set_node(this->_M_impl._M_start._M_node + 1);
this->_M_impl._M_start._M_cur = this->_M_impl._M_start._M_first;
}
template <typename _Tp, typename _Alloc>
template <typename _InputIterator>
void
deque<_Tp, _Alloc>::
_M_range_insert_aux(iterator __pos,
_InputIterator __first, _InputIterator __last,
input_iterator_tag)
{ std::copy(__first, __last, std::inserter(*this, __pos)); }
template <typename _Tp, typename _Alloc>
template <typename _ForwardIterator>
void
deque<_Tp, _Alloc>::
_M_range_insert_aux(iterator __pos,
_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag)
{
const size_type __n = std::distance(__first, __last);
if (__pos._M_cur == this->_M_impl._M_start._M_cur)
{
iterator __new_start = _M_reserve_elements_at_front(__n);
try
{
std::__uninitialized_copy_a(__first, __last, __new_start,
this->get_allocator());
this->_M_impl._M_start = __new_start;
}
catch(...)
{
_M_destroy_nodes(__new_start._M_node,
this->_M_impl._M_start._M_node);
__throw_exception_again;
}
}
else if (__pos._M_cur == this->_M_impl._M_finish._M_cur)
{
iterator __new_finish = _M_reserve_elements_at_back(__n);
try
{
std::__uninitialized_copy_a(__first, __last,
this->_M_impl._M_finish,
this->get_allocator());
this->_M_impl._M_finish = __new_finish;
}
catch(...)
{
_M_destroy_nodes(this->_M_impl._M_finish._M_node + 1,
__new_finish._M_node + 1);
__throw_exception_again;
}
}
else
_M_insert_aux(__pos, __first, __last, __n);
}
template <typename _Tp, typename _Alloc>
typename deque<_Tp, _Alloc>::iterator
deque<_Tp, _Alloc>::
_M_insert_aux(iterator __pos, const value_type& __x)
{
difference_type __index = __pos - this->_M_impl._M_start;
value_type __x_copy = __x; // XXX copy
if (static_cast<size_type>(__index) < size() / 2)
{
push_front(front());
iterator __front1 = this->_M_impl._M_start;
++__front1;
iterator __front2 = __front1;
++__front2;
__pos = this->_M_impl._M_start + __index;
iterator __pos1 = __pos;
++__pos1;
std::copy(__front2, __pos1, __front1);
}
else
{
push_back(back());
iterator __back1 = this->_M_impl._M_finish;
--__back1;
iterator __back2 = __back1;
--__back2;
__pos = this->_M_impl._M_start + __index;
std::copy_backward(__pos, __back2, __back1);
}
*__pos = __x_copy;
return __pos;
}
template <typename _Tp, typename _Alloc>
void
deque<_Tp, _Alloc>::
_M_insert_aux(iterator __pos, size_type __n, const value_type& __x)
{
const difference_type __elems_before = __pos - this->_M_impl._M_start;
const size_type __length = this->size();
value_type __x_copy = __x;
if (__elems_before < difference_type(__length / 2))
{
iterator __new_start = _M_reserve_elements_at_front(__n);
iterator __old_start = this->_M_impl._M_start;
__pos = this->_M_impl._M_start + __elems_before;
try
{
if (__elems_before >= difference_type(__n))
{
iterator __start_n = (this->_M_impl._M_start
+ difference_type(__n));
std::__uninitialized_copy_a(this->_M_impl._M_start,
__start_n, __new_start,
this->get_allocator());
this->_M_impl._M_start = __new_start;
std::copy(__start_n, __pos, __old_start);
fill(__pos - difference_type(__n), __pos, __x_copy);
}
else
{
std::__uninitialized_copy_fill(this->_M_impl._M_start,
__pos, __new_start,
this->_M_impl._M_start,
__x_copy,
this->get_allocator());
this->_M_impl._M_start = __new_start;
std::fill(__old_start, __pos, __x_copy);
}
}
catch(...)
{
_M_destroy_nodes(__new_start._M_node,
this->_M_impl._M_start._M_node);
__throw_exception_again;
}
}
else
{
iterator __new_finish = _M_reserve_elements_at_back(__n);
iterator __old_finish = this->_M_impl._M_finish;
const difference_type __elems_after =
difference_type(__length) - __elems_before;
__pos = this->_M_impl._M_finish - __elems_after;
try
{
if (__elems_after > difference_type(__n))
{
iterator __finish_n = (this->_M_impl._M_finish
- difference_type(__n));
std::__uninitialized_copy_a(__finish_n,
this->_M_impl._M_finish,
this->_M_impl._M_finish,
this->get_allocator());
this->_M_impl._M_finish = __new_finish;
std::copy_backward(__pos, __finish_n, __old_finish);
std::fill(__pos, __pos + difference_type(__n), __x_copy);
}
else
{
std::__uninitialized_fill_copy(this->_M_impl._M_finish,
__pos + difference_type(__n),
__x_copy, __pos,
this->_M_impl._M_finish,
this->get_allocator());
this->_M_impl._M_finish = __new_finish;
std::fill(__pos, __old_finish, __x_copy);
}
}
catch(...)
{
_M_destroy_nodes(this->_M_impl._M_finish._M_node + 1,
__new_finish._M_node + 1);
__throw_exception_again;
}
}
}
template <typename _Tp, typename _Alloc>
template <typename _ForwardIterator>
void
deque<_Tp, _Alloc>::
_M_insert_aux(iterator __pos,
_ForwardIterator __first, _ForwardIterator __last,
size_type __n)
{
const difference_type __elemsbefore = __pos - this->_M_impl._M_start;
const size_type __length = size();
if (static_cast<size_type>(__elemsbefore) < __length / 2)
{
iterator __new_start = _M_reserve_elements_at_front(__n);
iterator __old_start = this->_M_impl._M_start;
__pos = this->_M_impl._M_start + __elemsbefore;
try
{
if (__elemsbefore >= difference_type(__n))
{
iterator __start_n = (this->_M_impl._M_start
+ difference_type(__n));
std::__uninitialized_copy_a(this->_M_impl._M_start,
__start_n, __new_start,
this->get_allocator());
this->_M_impl._M_start = __new_start;
std::copy(__start_n, __pos, __old_start);
std::copy(__first, __last, __pos - difference_type(__n));
}
else
{
_ForwardIterator __mid = __first;
std::advance(__mid, difference_type(__n) - __elemsbefore);
std::__uninitialized_copy_copy(this->_M_impl._M_start,
__pos, __first, __mid,
__new_start,
this->get_allocator());
this->_M_impl._M_start = __new_start;
std::copy(__mid, __last, __old_start);
}
}
catch(...)
{
_M_destroy_nodes(__new_start._M_node,
this->_M_impl._M_start._M_node);
__throw_exception_again;
}
}
else
{
iterator __new_finish = _M_reserve_elements_at_back(__n);
iterator __old_finish = this->_M_impl._M_finish;
const difference_type __elemsafter =
difference_type(__length) - __elemsbefore;
__pos = this->_M_impl._M_finish - __elemsafter;
try
{
if (__elemsafter > difference_type(__n))
{
iterator __finish_n = (this->_M_impl._M_finish
- difference_type(__n));
std::__uninitialized_copy_a(__finish_n,
this->_M_impl._M_finish,
this->_M_impl._M_finish,
this->get_allocator());
this->_M_impl._M_finish = __new_finish;
std::copy_backward(__pos, __finish_n, __old_finish);
std::copy(__first, __last, __pos);
}
else
{
_ForwardIterator __mid = __first;
std::advance(__mid, __elemsafter);
std::__uninitialized_copy_copy(__mid, __last, __pos,
this->_M_impl._M_finish,
this->_M_impl._M_finish,
this->get_allocator());
this->_M_impl._M_finish = __new_finish;
std::copy(__first, __mid, __pos);
}
}
catch(...)
{
_M_destroy_nodes(this->_M_impl._M_finish._M_node + 1,
__new_finish._M_node + 1);
__throw_exception_again;
}
}
}
template <typename _Tp, typename _Alloc>
void
deque<_Tp, _Alloc>::
_M_new_elements_at_front(size_type __new_elems)
{
const size_type __new_nodes
= (__new_elems + _S_buffer_size() - 1) / _S_buffer_size();
_M_reserve_map_at_front(__new_nodes);
size_type __i;
try
{
for (__i = 1; __i <= __new_nodes; ++__i)
*(this->_M_impl._M_start._M_node - __i) = this->_M_allocate_node();
}
catch(...)
{
for (size_type __j = 1; __j < __i; ++__j)
_M_deallocate_node(*(this->_M_impl._M_start._M_node - __j));
__throw_exception_again;
}
}
template <typename _Tp, typename _Alloc>
void
deque<_Tp, _Alloc>::
_M_new_elements_at_back(size_type __new_elems)
{
const size_type __new_nodes
= (__new_elems + _S_buffer_size() - 1) / _S_buffer_size();
_M_reserve_map_at_back(__new_nodes);
size_type __i;
try
{
for (__i = 1; __i <= __new_nodes; ++__i)
*(this->_M_impl._M_finish._M_node + __i) = this->_M_allocate_node();
}
catch(...)
{
for (size_type __j = 1; __j < __i; ++__j)
_M_deallocate_node(*(this->_M_impl._M_finish._M_node + __j));
__throw_exception_again;
}
}
template <typename _Tp, typename _Alloc>
void
deque<_Tp, _Alloc>::
_M_reallocate_map(size_type __nodes_to_add, bool __add_at_front)
{
const size_type __old_num_nodes
= this->_M_impl._M_finish._M_node - this->_M_impl._M_start._M_node + 1;
const size_type __new_num_nodes = __old_num_nodes + __nodes_to_add;
_Map_pointer __new_nstart;
if (this->_M_impl._M_map_size > 2 * __new_num_nodes)
{
__new_nstart = this->_M_impl._M_map + (this->_M_impl._M_map_size
- __new_num_nodes) / 2
+ (__add_at_front ? __nodes_to_add : 0);
if (__new_nstart < this->_M_impl._M_start._M_node)
std::copy(this->_M_impl._M_start._M_node,
this->_M_impl._M_finish._M_node + 1,
__new_nstart);
else
std::copy_backward(this->_M_impl._M_start._M_node,
this->_M_impl._M_finish._M_node + 1,
__new_nstart + __old_num_nodes);
}
else
{
size_type __new_map_size = this->_M_impl._M_map_size
+ std::max(this->_M_impl._M_map_size,
__nodes_to_add) + 2;
_Map_pointer __new_map = this->_M_allocate_map(__new_map_size);
__new_nstart = __new_map + (__new_map_size - __new_num_nodes) / 2
+ (__add_at_front ? __nodes_to_add : 0);
std::copy(this->_M_impl._M_start._M_node,
this->_M_impl._M_finish._M_node + 1,
__new_nstart);
_M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
this->_M_impl._M_map = __new_map;
this->_M_impl._M_map_size = __new_map_size;
}
this->_M_impl._M_start._M_set_node(__new_nstart);
this->_M_impl._M_finish._M_set_node(__new_nstart + __old_num_nodes - 1);
}
} // namespace std
#endif