1d5cf7fcf2
2017-05-25 Thomas Koenig <tkoenig@gcc.gnu.org> PR libfortran/78379 * Makefile.am: Add generated/matmulavx128_*.c files. Handle them for compiling and setting the right flags. * acinclude.m4: Add tests for FMA3, FMA4 and AVX128. * configure.ac: Call them. * Makefile.in: Regenerated. * config.h.in: Regenerated. * configure: Regenerated. * m4/matmul.m4: Handle AMD chips by calling 128-bit AVX versions which use FMA3 or FMA4. * m4/matmulavx128.m4: New file. * generated/matmul_c10.c: Regenerated. * generated/matmul_c16.c: Regenerated. * generated/matmul_c4.c: Regenerated. * generated/matmul_c8.c: Regenerated. * generated/matmul_i1.c: Regenerated. * generated/matmul_i16.c: Regenerated. * generated/matmul_i2.c: Regenerated. * generated/matmul_i4.c: Regenerated. * generated/matmul_i8.c: Regenerated. * generated/matmul_r10.c: Regenerated. * generated/matmul_r16.c: Regenerated. * generated/matmul_r4.c: Regenerated. * generated/matmul_r8.c: Regenerated. * generated/matmulavx128_c10.c: New file. * generated/matmulavx128_c16.c: New file. * generated/matmulavx128_c4.c: New file. * generated/matmulavx128_c8.c: New file. * generated/matmulavx128_i1.c: New file. * generated/matmulavx128_i16.c: New file. * generated/matmulavx128_i2.c: New file. * generated/matmulavx128_i4.c: New file. * generated/matmulavx128_i8.c: New file. * generated/matmulavx128_r10.c: New file. * generated/matmulavx128_r16.c: New file. * generated/matmulavx128_r4.c: New file. * generated/matmulavx128_r8.c: New file. From-SVN: r248472
219 lines
7.3 KiB
Plaintext
219 lines
7.3 KiB
Plaintext
`/* Implementation of the MATMUL intrinsic
|
|
Copyright (C) 2002-2017 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "libgfortran.h"
|
|
#include <string.h>
|
|
#include <assert.h>'
|
|
|
|
include(iparm.m4)dnl
|
|
|
|
`#if defined (HAVE_'rtype_name`)
|
|
|
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
|
passed to us by the front-end, in which case we call it for large
|
|
matrices. */
|
|
|
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
|
const int *, const 'rtype_name` *, const 'rtype_name` *,
|
|
const int *, const 'rtype_name` *, const int *,
|
|
const 'rtype_name` *, 'rtype_name` *, const int *,
|
|
int, int);
|
|
|
|
/* The order of loops is different in the case of plain matrix
|
|
multiplication C=MATMUL(A,B), and in the frequent special case where
|
|
the argument A is the temporary result of a TRANSPOSE intrinsic:
|
|
C=MATMUL(TRANSPOSE(A),B). Transposed temporaries are detected by
|
|
looking at their strides.
|
|
|
|
The equivalent Fortran pseudo-code is:
|
|
|
|
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
|
|
IF (.NOT.IS_TRANSPOSED(A)) THEN
|
|
C = 0
|
|
DO J=1,N
|
|
DO K=1,COUNT
|
|
DO I=1,M
|
|
C(I,J) = C(I,J)+A(I,K)*B(K,J)
|
|
ELSE
|
|
DO J=1,N
|
|
DO I=1,M
|
|
S = 0
|
|
DO K=1,COUNT
|
|
S = S+A(I,K)*B(K,J)
|
|
C(I,J) = S
|
|
ENDIF
|
|
*/
|
|
|
|
/* If try_blas is set to a nonzero value, then the matmul function will
|
|
see if there is a way to perform the matrix multiplication by a call
|
|
to the BLAS gemm function. */
|
|
|
|
extern void matmul_'rtype_code` ('rtype` * const restrict retarray,
|
|
'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm);
|
|
export_proto(matmul_'rtype_code`);
|
|
|
|
/* Put exhaustive list of possible architectures here here, ORed together. */
|
|
|
|
#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
|
|
|
|
#ifdef HAVE_AVX
|
|
'define(`matmul_name',`matmul_'rtype_code`_avx')dnl
|
|
`static void
|
|
'matmul_name` ('rtype` * const restrict retarray,
|
|
'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
|
|
static' include(matmul_internal.m4)dnl
|
|
`#endif /* HAVE_AVX */
|
|
|
|
#ifdef HAVE_AVX2
|
|
'define(`matmul_name',`matmul_'rtype_code`_avx2')dnl
|
|
`static void
|
|
'matmul_name` ('rtype` * const restrict retarray,
|
|
'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm) __attribute__((__target__("avx2,fma")));
|
|
static' include(matmul_internal.m4)dnl
|
|
`#endif /* HAVE_AVX2 */
|
|
|
|
#ifdef HAVE_AVX512F
|
|
'define(`matmul_name',`matmul_'rtype_code`_avx512f')dnl
|
|
`static void
|
|
'matmul_name` ('rtype` * const restrict retarray,
|
|
'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
|
|
static' include(matmul_internal.m4)dnl
|
|
`#endif /* HAVE_AVX512F */
|
|
|
|
/* AMD-specifix funtions with AVX128 and FMA3/FMA4. */
|
|
|
|
#if defined(HAVE_AVX) && defined(HAVE_FMA3) && defined(HAVE_AVX128)
|
|
'define(`matmul_name',`matmul_'rtype_code`_avx128_fma3')dnl
|
|
`void
|
|
'matmul_name` ('rtype` * const restrict retarray,
|
|
'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm) __attribute__((__target__("avx,fma")));
|
|
internal_proto('matmul_name`);
|
|
#endif
|
|
|
|
#if defined(HAVE_AVX) && defined(HAVE_FMA4) && defined(HAVE_AVX128)
|
|
'define(`matmul_name',`matmul_'rtype_code`_avx128_fma4')dnl
|
|
`void
|
|
'matmul_name` ('rtype` * const restrict retarray,
|
|
'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm) __attribute__((__target__("avx,fma4")));
|
|
internal_proto('matmul_name`);
|
|
#endif
|
|
|
|
/* Function to fall back to if there is no special processor-specific version. */
|
|
'define(`matmul_name',`matmul_'rtype_code`_vanilla')dnl
|
|
`static' include(matmul_internal.m4)dnl
|
|
|
|
`/* Compiling main function, with selection code for the processor. */
|
|
|
|
/* Currently, this is i386 only. Adjust for other architectures. */
|
|
|
|
#include <config/i386/cpuinfo.h>
|
|
void matmul_'rtype_code` ('rtype` * const restrict retarray,
|
|
'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm)
|
|
{
|
|
static void (*matmul_p) ('rtype` * const restrict retarray,
|
|
'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm);
|
|
|
|
void (*matmul_fn) ('rtype` * const restrict retarray,
|
|
'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
|
|
int blas_limit, blas_call gemm);
|
|
|
|
matmul_fn = __atomic_load_n (&matmul_p, __ATOMIC_RELAXED);
|
|
if (matmul_fn == NULL)
|
|
{
|
|
matmul_fn = matmul_'rtype_code`_vanilla;
|
|
if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
|
|
{
|
|
/* Run down the available processors in order of preference. */
|
|
#ifdef HAVE_AVX512F
|
|
if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
|
|
{
|
|
matmul_fn = matmul_'rtype_code`_avx512f;
|
|
goto store;
|
|
}
|
|
|
|
#endif /* HAVE_AVX512F */
|
|
|
|
#ifdef HAVE_AVX2
|
|
if ((__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
|
|
&& (__cpu_model.__cpu_features[0] & (1 << FEATURE_FMA)))
|
|
{
|
|
matmul_fn = matmul_'rtype_code`_avx2;
|
|
goto store;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_AVX
|
|
if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
|
|
{
|
|
matmul_fn = matmul_'rtype_code`_avx;
|
|
goto store;
|
|
}
|
|
#endif /* HAVE_AVX */
|
|
}
|
|
else if (__cpu_model.__cpu_vendor == VENDOR_AMD)
|
|
{
|
|
#if defined(HAVE_AVX) && defined(HAVE_FMA3) && defined(HAVE_AVX128)
|
|
if ((__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
|
|
&& (__cpu_model.__cpu_features[0] & (1 << FEATURE_FMA)))
|
|
{
|
|
matmul_fn = matmul_'rtype_code`_avx128_fma3;
|
|
goto store;
|
|
}
|
|
#endif
|
|
#if defined(HAVE_AVX) && defined(HAVE_FMA4) && defined(HAVE_AVX128)
|
|
if ((__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
|
|
&& (__cpu_model.__cpu_features[0] & (1 << FEATURE_FMA4)))
|
|
{
|
|
matmul_fn = matmul_'rtype_code`_avx128_fma4;
|
|
goto store;
|
|
}
|
|
#endif
|
|
|
|
}
|
|
store:
|
|
__atomic_store_n (&matmul_p, matmul_fn, __ATOMIC_RELAXED);
|
|
}
|
|
|
|
(*matmul_fn) (retarray, a, b, try_blas, blas_limit, gemm);
|
|
}
|
|
|
|
#else /* Just the vanilla function. */
|
|
|
|
'define(`matmul_name',`matmul_'rtype_code)dnl
|
|
define(`target_attribute',`')dnl
|
|
include(matmul_internal.m4)dnl
|
|
`#endif
|
|
#endif
|
|
'
|