18095be170
Make the experimental Networking TS code work without std::mutex and std::condition_variable. libstdc++-v3/ChangeLog: PR libstdc++/89760 * include/experimental/executor [!_GLIBCXX_HAS_GTHREADS]: (execution_context::mutex_type): Define dummy mutex type. (system_context): Use execution_context::mutex_type. (system_context) [!_GLIBCXX_HAS_GTHREADS]: Define dummy thread and condition variable types. [!_GLIBCXX_HAS_GTHREADS] (system_context::_M_run()): Do not define. (system_context::_M_post) [!_GLIBCXX_HAS_GTHREADS]: Throw an exception when threads aren't available. (strand::running_in_this_thread()): Defer to _M_state. (strand::_State::running_in_this_thread()): New function. (use_future_t): Do not depend on _GLIBCXX_USE_C99_STDINT_TR1. * include/experimental/io_context (io_context): Use the execution_context::mutex_type alias. Replace stack of thread IDs with counter. * testsuite/experimental/net/execution_context/use_service.cc: Enable test for non-pthread targets.
890 lines
22 KiB
C++
890 lines
22 KiB
C++
// <experimental/io_service> -*- C++ -*-
|
|
|
|
// Copyright (C) 2015-2020 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 3, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// Under Section 7 of GPL version 3, you are granted additional
|
|
// permissions described in the GCC Runtime Library Exception, version
|
|
// 3.1, as published by the Free Software Foundation.
|
|
|
|
// You should have received a copy of the GNU General Public License and
|
|
// a copy of the GCC Runtime Library Exception along with this program;
|
|
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
// <http://www.gnu.org/licenses/>.
|
|
|
|
/** @file experimental/io_context
|
|
* This is a TS C++ Library header.
|
|
* @ingroup networking-ts
|
|
*/
|
|
|
|
#ifndef _GLIBCXX_EXPERIMENTAL_IO_SERVICE
|
|
#define _GLIBCXX_EXPERIMENTAL_IO_SERVICE 1
|
|
|
|
#pragma GCC system_header
|
|
|
|
#if __cplusplus >= 201402L
|
|
|
|
#include <atomic>
|
|
#include <chrono>
|
|
#include <forward_list>
|
|
#include <functional>
|
|
#include <system_error>
|
|
#include <thread>
|
|
#include <vector>
|
|
#include <experimental/netfwd>
|
|
#include <experimental/executor>
|
|
#if _GLIBCXX_HAVE_UNISTD_H
|
|
# include <unistd.h>
|
|
#endif
|
|
#ifdef _GLIBCXX_HAVE_POLL_H
|
|
# include <poll.h>
|
|
#endif
|
|
#ifdef _GLIBCXX_HAVE_FCNTL_H
|
|
# include <fcntl.h>
|
|
#endif
|
|
|
|
namespace std _GLIBCXX_VISIBILITY(default)
|
|
{
|
|
_GLIBCXX_BEGIN_NAMESPACE_VERSION
|
|
namespace experimental
|
|
{
|
|
namespace net
|
|
{
|
|
inline namespace v1
|
|
{
|
|
|
|
/** @addtogroup networking-ts
|
|
* @{
|
|
*/
|
|
|
|
class __socket_impl;
|
|
|
|
/// An ExecutionContext for I/O operations.
|
|
class io_context : public execution_context
|
|
{
|
|
public:
|
|
// types:
|
|
|
|
/// An executor for an io_context.
|
|
class executor_type
|
|
{
|
|
public:
|
|
// construct / copy / destroy:
|
|
|
|
executor_type(const executor_type& __other) noexcept = default;
|
|
executor_type(executor_type&& __other) noexcept = default;
|
|
|
|
executor_type& operator=(const executor_type& __other) noexcept = default;
|
|
executor_type& operator=(executor_type&& __other) noexcept = default;
|
|
|
|
// executor operations:
|
|
|
|
bool running_in_this_thread() const noexcept
|
|
{
|
|
#ifdef _GLIBCXX_HAS_GTHREADS
|
|
lock_guard<execution_context::mutex_type> __lock(_M_ctx->_M_mtx);
|
|
auto __end = _M_ctx->_M_call_stack.end();
|
|
return std::find(_M_ctx->_M_call_stack.begin(), __end,
|
|
this_thread::get_id()) != __end;
|
|
#else
|
|
return _M_ctx->_M_run_count != 0;
|
|
#endif
|
|
}
|
|
|
|
io_context& context() const noexcept { return *_M_ctx; }
|
|
|
|
void on_work_started() const noexcept { ++_M_ctx->_M_work_count; }
|
|
void on_work_finished() const noexcept { --_M_ctx->_M_work_count; }
|
|
|
|
template<typename _Func, typename _ProtoAllocator>
|
|
void
|
|
dispatch(_Func&& __f, const _ProtoAllocator& __a) const
|
|
{
|
|
if (running_in_this_thread())
|
|
decay_t<_Func>{std::forward<_Func>(__f)}();
|
|
else
|
|
post(std::forward<_Func>(__f), __a);
|
|
}
|
|
|
|
template<typename _Func, typename _ProtoAllocator>
|
|
void
|
|
post(_Func&& __f, const _ProtoAllocator& __a) const
|
|
{
|
|
lock_guard<execution_context::mutex_type> __lock(_M_ctx->_M_mtx);
|
|
// TODO (re-use functionality in system_context)
|
|
_M_ctx->_M_reactor._M_notify();
|
|
}
|
|
|
|
template<typename _Func, typename _ProtoAllocator>
|
|
void
|
|
defer(_Func&& __f, const _ProtoAllocator& __a) const
|
|
{ post(std::forward<_Func>(__f), __a); }
|
|
|
|
private:
|
|
friend io_context;
|
|
|
|
explicit
|
|
executor_type(io_context& __ctx) : _M_ctx(std::addressof(__ctx)) { }
|
|
|
|
io_context* _M_ctx;
|
|
};
|
|
|
|
using count_type = size_t;
|
|
|
|
// construct / copy / destroy:
|
|
|
|
io_context() : _M_work_count(0) { }
|
|
|
|
explicit
|
|
io_context(int __concurrency_hint) : _M_work_count(0) { }
|
|
|
|
io_context(const io_context&) = delete;
|
|
io_context& operator=(const io_context&) = delete;
|
|
|
|
// io_context operations:
|
|
|
|
executor_type get_executor() noexcept { return executor_type(*this); }
|
|
|
|
count_type
|
|
run()
|
|
{
|
|
count_type __n = 0;
|
|
while (run_one())
|
|
if (__n != numeric_limits<count_type>::max())
|
|
++__n;
|
|
return __n;
|
|
}
|
|
|
|
template<typename _Rep, typename _Period>
|
|
count_type
|
|
run_for(const chrono::duration<_Rep, _Period>& __rel_time)
|
|
{ return run_until(chrono::steady_clock::now() + __rel_time); }
|
|
|
|
template<typename _Clock, typename _Duration>
|
|
count_type
|
|
run_until(const chrono::time_point<_Clock, _Duration>& __abs_time)
|
|
{
|
|
count_type __n = 0;
|
|
while (run_one_until(__abs_time))
|
|
if (__n != numeric_limits<count_type>::max())
|
|
++__n;
|
|
return __n;
|
|
}
|
|
|
|
count_type
|
|
run_one()
|
|
{ return _M_do_one(chrono::milliseconds{-1}); }
|
|
|
|
template<typename _Rep, typename _Period>
|
|
count_type
|
|
run_one_for(const chrono::duration<_Rep, _Period>& __rel_time)
|
|
{ return run_one_until(chrono::steady_clock::now() + __rel_time); }
|
|
|
|
template<typename _Clock, typename _Duration>
|
|
count_type
|
|
run_one_until(const chrono::time_point<_Clock, _Duration>& __abs_time)
|
|
{
|
|
auto __now = _Clock::now();
|
|
while (__now < __abs_time)
|
|
{
|
|
using namespace std::chrono;
|
|
auto __ms = duration_cast<milliseconds>(__abs_time - __now);
|
|
if (_M_do_one(__ms))
|
|
return 1;
|
|
__now = _Clock::now();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
count_type
|
|
poll()
|
|
{
|
|
count_type __n = 0;
|
|
while (poll_one())
|
|
if (__n != numeric_limits<count_type>::max())
|
|
++__n;
|
|
return __n;
|
|
}
|
|
|
|
count_type
|
|
poll_one()
|
|
{ return _M_do_one(chrono::milliseconds{0}); }
|
|
|
|
void stop()
|
|
{
|
|
lock_guard<execution_context::mutex_type> __lock(_M_mtx);
|
|
_M_stopped = true;
|
|
_M_reactor._M_notify();
|
|
}
|
|
|
|
bool stopped() const noexcept
|
|
{
|
|
lock_guard<execution_context::mutex_type> __lock(_M_mtx);
|
|
return _M_stopped;
|
|
}
|
|
|
|
void restart()
|
|
{
|
|
_M_stopped = false;
|
|
}
|
|
|
|
private:
|
|
|
|
template<typename _Clock, typename _WaitTraits>
|
|
friend class basic_waitable_timer;
|
|
|
|
friend __socket_impl;
|
|
|
|
template<typename _Protocol>
|
|
friend class __basic_socket_impl;
|
|
|
|
template<typename _Protocol>
|
|
friend class basic_socket;
|
|
|
|
template<typename _Protocol>
|
|
friend class basic_datagram_socket;
|
|
|
|
template<typename _Protocol>
|
|
friend class basic_stream_socket;
|
|
|
|
template<typename _Protocol>
|
|
friend class basic_socket_acceptor;
|
|
|
|
count_type
|
|
_M_outstanding_work() const
|
|
{ return _M_work_count + !_M_ops.empty(); }
|
|
|
|
struct __timer_queue_base : execution_context::service
|
|
{
|
|
// return milliseconds until next timer expires, or milliseconds::max()
|
|
virtual chrono::milliseconds _M_next() const = 0;
|
|
virtual bool run_one() = 0;
|
|
|
|
protected:
|
|
explicit
|
|
__timer_queue_base(execution_context& __ctx) : service(__ctx)
|
|
{
|
|
auto& __ioc = static_cast<io_context&>(__ctx);
|
|
lock_guard<execution_context::mutex_type> __lock(__ioc._M_mtx);
|
|
__ioc._M_timers.push_back(this);
|
|
}
|
|
|
|
mutable execution_context::mutex_type _M_qmtx;
|
|
};
|
|
|
|
template<typename _Timer, typename _Key = typename _Timer::_Key>
|
|
struct __timer_queue : __timer_queue_base
|
|
{
|
|
using key_type = __timer_queue;
|
|
|
|
explicit
|
|
__timer_queue(execution_context& __ctx) : __timer_queue_base(__ctx)
|
|
{ }
|
|
|
|
void shutdown() noexcept { }
|
|
|
|
io_context& context() noexcept
|
|
{ return static_cast<io_context&>(service::context()); }
|
|
|
|
// Start an asynchronous wait.
|
|
void
|
|
push(const _Timer& __t, function<void(error_code)> __h)
|
|
{
|
|
context().get_executor().on_work_started();
|
|
lock_guard<execution_context::mutex_type> __lock(_M_qmtx);
|
|
_M_queue.emplace(__t, _M_next_id++, std::move(__h));
|
|
// no need to notify reactor unless this timer went to the front?
|
|
}
|
|
|
|
// Cancel all outstanding waits for __t
|
|
size_t
|
|
cancel(const _Timer& __t)
|
|
{
|
|
lock_guard<execution_context::mutex_type> __lock(_M_qmtx);
|
|
size_t __count = 0;
|
|
auto __last = _M_queue.end();
|
|
for (auto __it = _M_queue.begin(), __end = __last; __it != __end;
|
|
++__it)
|
|
{
|
|
if (__it->_M_key == __t._M_key.get())
|
|
{
|
|
__it->cancel();
|
|
__last = __it;
|
|
++__count;
|
|
}
|
|
}
|
|
if (__count)
|
|
_M_queue._M_sort_to(__last);
|
|
return __count;
|
|
}
|
|
|
|
// Cancel oldest outstanding wait for __t
|
|
bool
|
|
cancel_one(const _Timer& __t)
|
|
{
|
|
lock_guard<execution_context::mutex_type> __lock(_M_qmtx);
|
|
const auto __end = _M_queue.end();
|
|
auto __oldest = __end;
|
|
for (auto __it = _M_queue.begin(); __it != __end; ++__it)
|
|
if (__it->_M_key == __t._M_key.get())
|
|
if (__oldest == __end || __it->_M_id < __oldest->_M_id)
|
|
__oldest = __it;
|
|
if (__oldest == __end)
|
|
return false;
|
|
__oldest->cancel();
|
|
_M_queue._M_sort_to(__oldest);
|
|
return true;
|
|
}
|
|
|
|
chrono::milliseconds
|
|
_M_next() const override
|
|
{
|
|
typename _Timer::time_point __exp;
|
|
{
|
|
lock_guard<execution_context::mutex_type> __lock(_M_qmtx);
|
|
if (_M_queue.empty())
|
|
return chrono::milliseconds::max(); // no pending timers
|
|
if (_M_queue.top()._M_key == nullptr)
|
|
return chrono::milliseconds::zero(); // cancelled, run now
|
|
__exp = _M_queue.top()._M_expiry;
|
|
}
|
|
auto __dur = _Timer::traits_type::to_wait_duration(__exp);
|
|
if (__dur < __dur.zero())
|
|
__dur = __dur.zero();
|
|
return chrono::duration_cast<chrono::milliseconds>(__dur);
|
|
}
|
|
|
|
private:
|
|
|
|
bool run_one() override
|
|
{
|
|
auto __now = _Timer::clock_type::now();
|
|
function<void(error_code)> __h;
|
|
error_code __ec;
|
|
{
|
|
lock_guard<execution_context::mutex_type> __lock(_M_qmtx);
|
|
|
|
if (_M_queue.top()._M_key == nullptr) // cancelled
|
|
{
|
|
__h = std::move(_M_queue.top()._M_h);
|
|
__ec = std::make_error_code(errc::operation_canceled);
|
|
_M_queue.pop();
|
|
}
|
|
else if (_M_queue.top()._M_expiry <= _Timer::clock_type::now())
|
|
{
|
|
__h = std::move(_M_queue.top()._M_h);
|
|
_M_queue.pop();
|
|
}
|
|
}
|
|
if (__h)
|
|
{
|
|
__h(__ec);
|
|
context().get_executor().on_work_finished();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
using __timer_id_type = uint64_t;
|
|
|
|
struct __pending_timer
|
|
{
|
|
__pending_timer(const _Timer& __t, uint64_t __id,
|
|
function<void(error_code)> __h)
|
|
: _M_expiry(__t.expiry()), _M_key(__t._M_key.get()), _M_id(__id),
|
|
_M_h(std::move(__h))
|
|
{ }
|
|
|
|
typename _Timer::time_point _M_expiry;
|
|
_Key* _M_key;
|
|
__timer_id_type _M_id;
|
|
function<void(error_code)> _M_h;
|
|
|
|
void cancel() { _M_expiry = _M_expiry.min(); _M_key = nullptr; }
|
|
|
|
bool
|
|
operator<(const __pending_timer& __rhs) const
|
|
{ return _M_expiry < __rhs._M_expiry; }
|
|
};
|
|
|
|
struct __queue : priority_queue<__pending_timer>
|
|
{
|
|
using iterator =
|
|
typename priority_queue<__pending_timer>::container_type::iterator;
|
|
|
|
// expose begin/end/erase for direct access to underlying container
|
|
iterator begin() { return this->c.begin(); }
|
|
iterator end() { return this->c.end(); }
|
|
iterator erase(iterator __it) { return this->c.erase(__it); }
|
|
|
|
void
|
|
_M_sort_to(iterator __it)
|
|
{ std::stable_sort(this->c.begin(), ++__it); }
|
|
};
|
|
|
|
__queue _M_queue;
|
|
__timer_id_type _M_next_id = 0;
|
|
};
|
|
|
|
template<typename _Timer, typename _CompletionHandler>
|
|
void
|
|
async_wait(const _Timer& __timer, _CompletionHandler&& __h)
|
|
{
|
|
auto& __queue = use_service<__timer_queue<_Timer>>(*this);
|
|
__queue.push(__timer, std::move(__h));
|
|
_M_reactor._M_notify();
|
|
}
|
|
|
|
// Cancel all wait operations initiated by __timer.
|
|
template<typename _Timer>
|
|
size_t
|
|
cancel(const _Timer& __timer)
|
|
{
|
|
if (!has_service<__timer_queue<_Timer>>(*this))
|
|
return 0;
|
|
|
|
auto __c = use_service<__timer_queue<_Timer>>(*this).cancel(__timer);
|
|
if (__c != 0)
|
|
_M_reactor._M_notify();
|
|
return __c;
|
|
}
|
|
|
|
// Cancel the oldest wait operation initiated by __timer.
|
|
template<typename _Timer>
|
|
size_t
|
|
cancel_one(const _Timer& __timer)
|
|
{
|
|
if (!has_service<__timer_queue<_Timer>>(*this))
|
|
return 0;
|
|
|
|
if (use_service<__timer_queue<_Timer>>(*this).cancel_one(__timer))
|
|
{
|
|
_M_reactor._M_notify();
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
template<typename _Op>
|
|
void
|
|
async_wait(int __fd, int __w, _Op&& __op)
|
|
{
|
|
lock_guard<execution_context::mutex_type> __lock(_M_mtx);
|
|
// TODO need push_back, use std::list not std::forward_list
|
|
auto __tail = _M_ops.before_begin(), __it = _M_ops.begin();
|
|
while (__it != _M_ops.end())
|
|
{
|
|
++__it;
|
|
++__tail;
|
|
}
|
|
using __type = __async_operation_impl<_Op>;
|
|
_M_ops.emplace_after(__tail,
|
|
make_unique<__type>(std::move(__op), __fd, __w));
|
|
_M_reactor._M_fd_interest(__fd, __w);
|
|
}
|
|
|
|
void _M_add_fd(int __fd) { _M_reactor._M_add_fd(__fd); }
|
|
void _M_remove_fd(int __fd) { _M_reactor._M_remove_fd(__fd); }
|
|
|
|
void cancel(int __fd, error_code&)
|
|
{
|
|
lock_guard<execution_context::mutex_type> __lock(_M_mtx);
|
|
const auto __end = _M_ops.end();
|
|
auto __it = _M_ops.begin();
|
|
auto __prev = _M_ops.before_begin();
|
|
while (__it != __end && (*__it)->_M_is_cancelled())
|
|
{
|
|
++__it;
|
|
++__prev;
|
|
}
|
|
auto __cancelled = __prev;
|
|
while (__it != __end)
|
|
{
|
|
if ((*__it)->_M_fd == __fd)
|
|
{
|
|
(*__it)->cancel();
|
|
++__it;
|
|
_M_ops.splice_after(__cancelled, _M_ops, __prev);
|
|
++__cancelled;
|
|
}
|
|
else
|
|
{
|
|
++__it;
|
|
++__prev;
|
|
}
|
|
}
|
|
_M_reactor._M_not_interested(__fd);
|
|
}
|
|
|
|
struct __async_operation
|
|
{
|
|
__async_operation(int __fd, int __ev) : _M_fd(__fd), _M_ev(__ev) { }
|
|
|
|
virtual ~__async_operation() = default;
|
|
|
|
int _M_fd;
|
|
short _M_ev;
|
|
|
|
void cancel() { _M_fd = -1; }
|
|
bool _M_is_cancelled() const { return _M_fd == -1; }
|
|
virtual void run(io_context&) = 0;
|
|
};
|
|
|
|
template<typename _Op>
|
|
struct __async_operation_impl : __async_operation
|
|
{
|
|
__async_operation_impl(_Op&& __op, int __fd, int __ev)
|
|
: __async_operation{__fd, __ev}, _M_op(std::move(__op)) { }
|
|
|
|
_Op _M_op;
|
|
|
|
void run(io_context& __ctx)
|
|
{
|
|
if (_M_is_cancelled())
|
|
_M_op(std::make_error_code(errc::operation_canceled));
|
|
else
|
|
_M_op(error_code{});
|
|
}
|
|
};
|
|
|
|
atomic<count_type> _M_work_count;
|
|
mutable execution_context::mutex_type _M_mtx;
|
|
queue<function<void()>> _M_op;
|
|
bool _M_stopped = false;
|
|
|
|
struct __monitor
|
|
{
|
|
__monitor(io_context& __c) : _M_ctx(__c)
|
|
{
|
|
#ifdef _GLIBCXX_HAS_GTHREADS
|
|
lock_guard<execution_context::mutex_type> __lock(_M_ctx._M_mtx);
|
|
_M_ctx._M_call_stack.push_back(this_thread::get_id());
|
|
#else
|
|
_M_ctx._M_run_count++;
|
|
#endif
|
|
}
|
|
|
|
~__monitor()
|
|
{
|
|
#ifdef _GLIBCXX_HAS_GTHREADS
|
|
lock_guard<execution_context::mutex_type> __lock(_M_ctx._M_mtx);
|
|
_M_ctx._M_call_stack.pop_back();
|
|
#else
|
|
_M_ctx._M_run_count--;
|
|
#endif
|
|
if (_M_ctx._M_outstanding_work() == 0)
|
|
{
|
|
_M_ctx._M_stopped = true;
|
|
_M_ctx._M_reactor._M_notify();
|
|
}
|
|
}
|
|
|
|
__monitor(__monitor&&) = delete;
|
|
|
|
io_context& _M_ctx;
|
|
};
|
|
|
|
bool
|
|
_M_do_one(chrono::milliseconds __timeout)
|
|
{
|
|
const bool __block = __timeout != chrono::milliseconds::zero();
|
|
|
|
__reactor::__fdvec __fds;
|
|
|
|
__monitor __mon{*this};
|
|
|
|
__timer_queue_base* __timerq = nullptr;
|
|
unique_ptr<__async_operation> __async_op;
|
|
|
|
while (true)
|
|
{
|
|
if (__timerq)
|
|
{
|
|
if (__timerq->run_one())
|
|
return true;
|
|
else
|
|
__timerq = nullptr;
|
|
}
|
|
|
|
if (__async_op)
|
|
{
|
|
__async_op->run(*this);
|
|
// TODO need to unregister __async_op
|
|
return true;
|
|
}
|
|
|
|
chrono::milliseconds __ms{0};
|
|
|
|
{
|
|
lock_guard<execution_context::mutex_type> __lock(_M_mtx);
|
|
|
|
if (_M_stopped)
|
|
return false;
|
|
|
|
// find first timer with something to do
|
|
for (auto __q : _M_timers)
|
|
{
|
|
auto __next = __q->_M_next();
|
|
if (__next == __next.zero()) // ready to run immediately
|
|
{
|
|
__timerq = __q;
|
|
__ms = __next;
|
|
break;
|
|
}
|
|
else if (__next != __next.max() && __block
|
|
&& (__next < __ms || __timerq == nullptr))
|
|
{
|
|
__timerq = __q;
|
|
__ms = __next;
|
|
}
|
|
}
|
|
|
|
if (__timerq && __ms == __ms.zero())
|
|
continue; // restart loop to run a timer immediately
|
|
|
|
if (!_M_ops.empty() && _M_ops.front()->_M_is_cancelled())
|
|
{
|
|
_M_ops.front().swap(__async_op);
|
|
_M_ops.pop_front();
|
|
continue;
|
|
}
|
|
|
|
// TODO run any posted items
|
|
|
|
if (__block)
|
|
{
|
|
if (__timerq == nullptr)
|
|
__ms = __timeout;
|
|
else if (__ms.zero() <= __timeout && __timeout < __ms)
|
|
__ms = __timeout;
|
|
else if (__ms.count() > numeric_limits<int>::max())
|
|
__ms = chrono::milliseconds{numeric_limits<int>::max()};
|
|
}
|
|
// else __ms == 0 and poll() will return immediately
|
|
|
|
}
|
|
|
|
auto __res = _M_reactor.wait(__fds, __ms);
|
|
|
|
if (__res == __reactor::_S_retry)
|
|
continue;
|
|
|
|
if (__res == __reactor::_S_timeout)
|
|
if (__timerq == nullptr)
|
|
return false;
|
|
else
|
|
continue; // timed out, so restart loop and process the timer
|
|
|
|
__timerq = nullptr;
|
|
|
|
if (__fds.empty()) // nothing to do
|
|
return false;
|
|
|
|
lock_guard<execution_context::mutex_type> __lock(_M_mtx);
|
|
for (auto __it = _M_ops.begin(), __end = _M_ops.end(),
|
|
__prev = _M_ops.before_begin(); __it != __end; ++__it, ++__prev)
|
|
{
|
|
auto& __op = **__it;
|
|
auto __pos = std::lower_bound(__fds.begin(), __fds.end(),
|
|
__op._M_fd,
|
|
[](const auto& __p, int __fd) { return __p.fd < __fd; });
|
|
if (__pos != __fds.end() && __pos->fd == __op._M_fd
|
|
&& __pos->revents & __op._M_ev)
|
|
{
|
|
__it->swap(__async_op);
|
|
_M_ops.erase_after(__prev);
|
|
break; // restart loop and run op
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct __reactor
|
|
{
|
|
__reactor() : _M_fds(1)
|
|
{
|
|
int __pipe[2];
|
|
if (::pipe(__pipe) == -1)
|
|
__throw_system_error(errno);
|
|
if (::fcntl(__pipe[0], F_SETFL, O_NONBLOCK) == -1
|
|
|| ::fcntl(__pipe[1], F_SETFL, O_NONBLOCK) == -1)
|
|
{
|
|
int __e = errno;
|
|
::close(__pipe[0]);
|
|
::close(__pipe[1]);
|
|
__throw_system_error(__e);
|
|
}
|
|
_M_fds.back().events = POLLIN;
|
|
_M_fds.back().fd = __pipe[0];
|
|
_M_notify_wr = __pipe[1];
|
|
}
|
|
|
|
~__reactor()
|
|
{
|
|
::close(_M_fds.back().fd);
|
|
::close(_M_notify_wr);
|
|
}
|
|
|
|
// write a notification byte to the pipe (ignoring errors)
|
|
void _M_notify()
|
|
{
|
|
int __n;
|
|
do {
|
|
__n = ::write(_M_notify_wr, "", 1);
|
|
} while (__n == -1 && errno == EINTR);
|
|
}
|
|
|
|
// read all notification bytes from the pipe
|
|
void _M_on_notify()
|
|
{
|
|
// Drain the pipe.
|
|
char __buf[64];
|
|
ssize_t __n;
|
|
do {
|
|
__n = ::read(_M_fds.back().fd, __buf, sizeof(__buf));
|
|
} while (__n != -1 || errno == EINTR);
|
|
}
|
|
|
|
void
|
|
_M_add_fd(int __fd)
|
|
{
|
|
auto __pos = _M_lower_bound(__fd);
|
|
if (__pos->fd == __fd)
|
|
__throw_system_error((int)errc::invalid_argument);
|
|
_M_fds.insert(__pos, __fdvec::value_type{})->fd = __fd;
|
|
_M_notify();
|
|
}
|
|
|
|
void
|
|
_M_remove_fd(int __fd)
|
|
{
|
|
auto __pos = _M_lower_bound(__fd);
|
|
if (__pos->fd == __fd)
|
|
_M_fds.erase(__pos);
|
|
// else bug!
|
|
_M_notify();
|
|
}
|
|
|
|
void
|
|
_M_fd_interest(int __fd, int __w)
|
|
{
|
|
auto __pos = _M_lower_bound(__fd);
|
|
if (__pos->fd == __fd)
|
|
__pos->events |= __w;
|
|
// else bug!
|
|
_M_notify();
|
|
}
|
|
|
|
void
|
|
_M_not_interested(int __fd)
|
|
{
|
|
auto __pos = _M_lower_bound(__fd);
|
|
if (__pos->fd == __fd)
|
|
__pos->events = 0;
|
|
_M_notify();
|
|
}
|
|
|
|
# ifdef _GLIBCXX_HAVE_POLL_H
|
|
using __fdvec = vector<::pollfd>;
|
|
|
|
// Find first element p such that !(p.fd < __fd)
|
|
// N.B. always returns a dereferencable iterator.
|
|
__fdvec::iterator
|
|
_M_lower_bound(int __fd)
|
|
{
|
|
return std::lower_bound(_M_fds.begin(), _M_fds.end() - 1,
|
|
__fd, [](const auto& __p, int __fd) { return __p.fd < __fd; });
|
|
}
|
|
|
|
enum __status { _S_retry, _S_timeout, _S_ok, _S_error };
|
|
|
|
__status
|
|
wait(__fdvec& __fds, chrono::milliseconds __timeout)
|
|
{
|
|
// XXX not thread-safe!
|
|
__fds = _M_fds; // take snapshot to pass to poll()
|
|
|
|
int __res = ::poll(__fds.data(), __fds.size(), __timeout.count());
|
|
|
|
if (__res == -1)
|
|
{
|
|
__fds.clear();
|
|
if (errno == EINTR)
|
|
return _S_retry;
|
|
return _S_error; // XXX ???
|
|
}
|
|
else if (__res == 0)
|
|
{
|
|
__fds.clear();
|
|
return _S_timeout;
|
|
}
|
|
else if (__fds.back().revents != 0) // something changed, restart
|
|
{
|
|
__fds.clear();
|
|
_M_on_notify();
|
|
return _S_retry;
|
|
}
|
|
|
|
auto __part = std::stable_partition(__fds.begin(), __fds.end() - 1,
|
|
[](const __fdvec::value_type& __p) { return __p.revents != 0; });
|
|
__fds.erase(__part, __fds.end());
|
|
|
|
return _S_ok;
|
|
}
|
|
|
|
__fdvec _M_fds; // _M_fds.back() is the read end of the self-pipe
|
|
#endif
|
|
int _M_notify_wr; // write end of the self-pipe
|
|
};
|
|
|
|
__reactor _M_reactor;
|
|
|
|
vector<__timer_queue_base*> _M_timers;
|
|
forward_list<unique_ptr<__async_operation>> _M_ops;
|
|
|
|
#ifdef _GLIBCXX_HAS_GTHREADS
|
|
vector<thread::id> _M_call_stack;
|
|
#else
|
|
int _M_run_count = 0;
|
|
#endif
|
|
};
|
|
|
|
inline bool
|
|
operator==(const io_context::executor_type& __a,
|
|
const io_context::executor_type& __b) noexcept
|
|
{
|
|
// https://github.com/chriskohlhoff/asio-tr2/issues/201
|
|
using executor_type = io_context::executor_type;
|
|
return std::addressof(executor_type(__a).context())
|
|
== std::addressof(executor_type(__b).context());
|
|
}
|
|
|
|
inline bool
|
|
operator!=(const io_context::executor_type& __a,
|
|
const io_context::executor_type& __b) noexcept
|
|
{ return !(__a == __b); }
|
|
|
|
template<> struct is_executor<io_context::executor_type> : true_type {};
|
|
|
|
/// @}
|
|
|
|
} // namespace v1
|
|
} // namespace net
|
|
} // namespace experimental
|
|
_GLIBCXX_END_NAMESPACE_VERSION
|
|
} // namespace std
|
|
|
|
#endif // C++14
|
|
|
|
#endif // _GLIBCXX_EXPERIMENTAL_IO_SERVICE
|