gcc/gcc/rust/typecheck/rust-hir-type-check-base.cc

400 lines
11 KiB
C++

// Copyright (C) 2020-2022 Free Software Foundation, Inc.
// This file is part of GCC.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
#include "rust-hir-type-check-base.h"
#include "rust-hir-type-check-type.h"
#include "rust-hir-type-check-expr.h"
#include "rust-coercion.h"
namespace Rust {
namespace Resolver {
bool
TypeCheckBase::check_for_unconstrained (
const std::vector<TyTy::SubstitutionParamMapping> &params_to_constrain,
const TyTy::SubstitutionArgumentMappings &constraint_a,
const TyTy::SubstitutionArgumentMappings &constraint_b,
const TyTy::BaseType *reference)
{
std::set<HirId> symbols_to_constrain;
std::map<HirId, Location> symbol_to_location;
for (const auto &p : params_to_constrain)
{
HirId ref = p.get_param_ty ()->get_ref ();
symbols_to_constrain.insert (ref);
symbol_to_location.insert ({ref, p.get_param_locus ()});
}
// set up the set of constrained symbols
std::set<HirId> constrained_symbols;
for (const auto &c : constraint_a.get_mappings ())
{
const TyTy::BaseType *arg = c.get_tyty ();
if (arg != nullptr)
{
const TyTy::BaseType *p = arg->get_root ();
constrained_symbols.insert (p->get_ty_ref ());
}
}
for (const auto &c : constraint_b.get_mappings ())
{
const TyTy::BaseType *arg = c.get_tyty ();
if (arg != nullptr)
{
const TyTy::BaseType *p = arg->get_root ();
constrained_symbols.insert (p->get_ty_ref ());
}
}
const auto root = reference->get_root ();
if (root->get_kind () == TyTy::TypeKind::PARAM)
{
const TyTy::ParamType *p = static_cast<const TyTy::ParamType *> (root);
constrained_symbols.insert (p->get_ty_ref ());
}
// check for unconstrained
bool unconstrained = false;
for (auto &sym : symbols_to_constrain)
{
bool used = constrained_symbols.find (sym) != constrained_symbols.end ();
if (!used)
{
Location locus = symbol_to_location.at (sym);
rust_error_at (locus, "unconstrained type parameter");
unconstrained = true;
}
}
return unconstrained;
}
TyTy::BaseType *
TypeCheckBase::resolve_literal (const Analysis::NodeMapping &expr_mappings,
HIR::Literal &literal, Location locus)
{
TyTy::BaseType *infered = nullptr;
switch (literal.get_lit_type ())
{
case HIR::Literal::LitType::INT: {
bool ok = false;
switch (literal.get_type_hint ())
{
case CORETYPE_I8:
ok = context->lookup_builtin ("i8", &infered);
break;
case CORETYPE_I16:
ok = context->lookup_builtin ("i16", &infered);
break;
case CORETYPE_I32:
ok = context->lookup_builtin ("i32", &infered);
break;
case CORETYPE_I64:
ok = context->lookup_builtin ("i64", &infered);
break;
case CORETYPE_I128:
ok = context->lookup_builtin ("i128", &infered);
break;
case CORETYPE_U8:
ok = context->lookup_builtin ("u8", &infered);
break;
case CORETYPE_U16:
ok = context->lookup_builtin ("u16", &infered);
break;
case CORETYPE_U32:
ok = context->lookup_builtin ("u32", &infered);
break;
case CORETYPE_U64:
ok = context->lookup_builtin ("u64", &infered);
break;
case CORETYPE_U128:
ok = context->lookup_builtin ("u128", &infered);
break;
case CORETYPE_F32:
literal.set_lit_type (HIR::Literal::LitType::FLOAT);
ok = context->lookup_builtin ("f32", &infered);
break;
case CORETYPE_F64:
literal.set_lit_type (HIR::Literal::LitType::FLOAT);
ok = context->lookup_builtin ("f64", &infered);
break;
case CORETYPE_ISIZE:
ok = context->lookup_builtin ("isize", &infered);
break;
case CORETYPE_USIZE:
ok = context->lookup_builtin ("usize", &infered);
break;
default:
ok = true;
infered
= new TyTy::InferType (expr_mappings.get_hirid (),
TyTy::InferType::InferTypeKind::INTEGRAL,
locus);
break;
}
rust_assert (ok);
}
break;
case HIR::Literal::LitType::FLOAT: {
bool ok = false;
switch (literal.get_type_hint ())
{
case CORETYPE_F32:
ok = context->lookup_builtin ("f32", &infered);
break;
case CORETYPE_F64:
ok = context->lookup_builtin ("f64", &infered);
break;
default:
ok = true;
infered
= new TyTy::InferType (expr_mappings.get_hirid (),
TyTy::InferType::InferTypeKind::FLOAT,
locus);
break;
}
rust_assert (ok);
}
break;
case HIR::Literal::LitType::BOOL: {
auto ok = context->lookup_builtin ("bool", &infered);
rust_assert (ok);
}
break;
case HIR::Literal::LitType::CHAR: {
auto ok = context->lookup_builtin ("char", &infered);
rust_assert (ok);
}
break;
case HIR::Literal::LitType::BYTE: {
auto ok = context->lookup_builtin ("u8", &infered);
rust_assert (ok);
}
break;
case HIR::Literal::LitType::STRING: {
TyTy::BaseType *base = nullptr;
auto ok = context->lookup_builtin ("str", &base);
rust_assert (ok);
infered = new TyTy::ReferenceType (expr_mappings.get_hirid (),
TyTy::TyVar (base->get_ref ()),
Mutability::Imm);
}
break;
case HIR::Literal::LitType::BYTE_STRING: {
/* This is an arraytype of u8 reference (&[u8;size]). It isn't in
UTF-8, but really just a byte array. Code to construct the array
reference copied from ArrayElemsValues and ArrayType. */
TyTy::BaseType *u8;
auto ok = context->lookup_builtin ("u8", &u8);
rust_assert (ok);
auto crate_num = mappings->get_current_crate ();
Analysis::NodeMapping capacity_mapping (crate_num, UNKNOWN_NODEID,
mappings->get_next_hir_id (
crate_num),
UNKNOWN_LOCAL_DEFID);
/* Capacity is the size of the string (number of chars).
It is a constant, but for fold it to get a tree. */
std::string capacity_str
= std::to_string (literal.as_string ().size ());
HIR::LiteralExpr *literal_capacity
= new HIR::LiteralExpr (capacity_mapping, capacity_str,
HIR::Literal::LitType::INT,
PrimitiveCoreType::CORETYPE_USIZE, locus, {});
// mark the type for this implicit node
TyTy::BaseType *expected_ty = nullptr;
ok = context->lookup_builtin ("usize", &expected_ty);
rust_assert (ok);
context->insert_type (capacity_mapping, expected_ty);
Analysis::NodeMapping array_mapping (crate_num, UNKNOWN_NODEID,
mappings->get_next_hir_id (
crate_num),
UNKNOWN_LOCAL_DEFID);
TyTy::ArrayType *array
= new TyTy::ArrayType (array_mapping.get_hirid (), locus,
*literal_capacity,
TyTy::TyVar (u8->get_ref ()));
context->insert_type (array_mapping, array);
infered = new TyTy::ReferenceType (expr_mappings.get_hirid (),
TyTy::TyVar (array->get_ref ()),
Mutability::Imm);
}
break;
default:
gcc_unreachable ();
break;
}
return infered;
}
TyTy::ADTType::ReprOptions
TypeCheckBase::parse_repr_options (const AST::AttrVec &attrs, Location locus)
{
TyTy::ADTType::ReprOptions repr;
repr.pack = 0;
repr.align = 0;
for (const auto &attr : attrs)
{
bool is_repr = attr.get_path ().as_string ().compare ("repr") == 0;
if (is_repr)
{
const AST::AttrInput &input = attr.get_attr_input ();
bool is_token_tree = input.get_attr_input_type ()
== AST::AttrInput::AttrInputType::TOKEN_TREE;
rust_assert (is_token_tree);
const auto &option = static_cast<const AST::DelimTokenTree &> (input);
AST::AttrInputMetaItemContainer *meta_items
= option.parse_to_meta_item ();
const std::string inline_option
= meta_items->get_items ().at (0)->as_string ();
// TODO: it would probably be better to make the MetaItems more aware
// of constructs with nesting like #[repr(packed(2))] rather than
// manually parsing the string "packed(2)" here.
size_t oparen = inline_option.find ('(', 0);
bool is_pack = false, is_align = false;
unsigned char value = 1;
if (oparen == std::string::npos)
{
is_pack = inline_option.compare ("packed") == 0;
is_align = inline_option.compare ("align") == 0;
}
else
{
std::string rep = inline_option.substr (0, oparen);
is_pack = rep.compare ("packed") == 0;
is_align = rep.compare ("align") == 0;
size_t cparen = inline_option.find (')', oparen);
if (cparen == std::string::npos)
{
rust_error_at (locus, "malformed attribute");
}
std::string value_str = inline_option.substr (oparen, cparen);
value = strtoul (value_str.c_str () + 1, NULL, 10);
}
if (is_pack)
repr.pack = value;
else if (is_align)
repr.align = value;
// Multiple repr options must be specified with e.g. #[repr(C,
// packed(2))].
break;
}
}
return repr;
}
TyTy::BaseType *
TypeCheckBase::coercion_site (HirId id, TyTy::BaseType *expected,
TyTy::BaseType *expr, Location locus)
{
auto context = TypeCheckContext::get ();
if (expected->get_kind () == TyTy::TypeKind::ERROR
|| expr->get_kind () == TyTy::TypeKind::ERROR)
return expr;
// can we autoderef it?
auto result = AutoderefTypeCoercion::Coerce (expr, expected, locus);
if (!result.is_error ())
{
// save any adjustments
context->insert_autoderef_mappings (id, std::move (result.adjustments));
return expected->coerce (result.tyty);
}
return expected->coerce (expr);
}
void
TypeCheckBase::resolve_generic_params (
const std::vector<std::unique_ptr<HIR::GenericParam>> &generic_params,
std::vector<TyTy::SubstitutionParamMapping> &substitutions)
{
for (auto &generic_param : generic_params)
{
switch (generic_param.get ()->get_kind ())
{
case HIR::GenericParam::GenericKind::LIFETIME:
// FIXME: Skipping Lifetime completely until better
// handling.
break;
case HIR::GenericParam::GenericKind::CONST: {
auto param
= static_cast<HIR::ConstGenericParam *> (generic_param.get ());
auto specified_type
= TypeCheckType::Resolve (param->get_type ().get ());
if (param->has_default_expression ())
{
auto expr_type = TypeCheckExpr::Resolve (
param->get_default_expression ().get ());
specified_type->coerce (expr_type);
}
context->insert_type (generic_param->get_mappings (),
specified_type);
}
break;
case HIR::GenericParam::GenericKind::TYPE: {
auto param_type
= TypeResolveGenericParam::Resolve (generic_param.get ());
context->insert_type (generic_param->get_mappings (), param_type);
substitutions.push_back (TyTy::SubstitutionParamMapping (
static_cast<HIR::TypeParam &> (*generic_param), param_type));
}
break;
}
}
}
} // namespace Resolver
} // namespace Rust