gcc/libgfortran/generated/maxloc1_8_r10.c
Thomas Koenig dfb55fdcdb re PR fortran/37577 ([meta-bug] change internal array descriptor format for better syntax, C interop TR, rank 15)
2009-06-21  Thomas Koenig  <tkoenig@gcc.gnu.org>

	PR fortran/37577
	Port from fortran-dev
	* runtime/in_pack_generic (internal_pack):  Remove unnecessary
	test for stride == 0.
	* runtime/in_unpack_generic.c (internal_unpack):  Likewise.
	* intrinsics/iso_c_binding.c (c_f_pointer_u0):  Take care
	of stride in "shape" argument.  Use array access macros for
	accessing array descriptors.
	* libgfortran.h (struct descriptor_dimension):  Change stride
	to _stride, lbound to _lbound and ubound to _ubound.
	(GFC_DIMENSION_LBOUND):  Use new name(s) in struct
	descriptor_dimension.
	(GFC_DIMENSION_UBOUND):  Likewise.
	(GFC_DIMENSION_STRIDE):  Likewise.
	(GFC_DIMENSION_EXTENT):  Likewise.
	(GFC_DIMENSION_SET):  Likewise.
	(GFC_DESCRIPTOR_LBOUND):  Likewise.
	(GFC_DESCRIPTOR_UBOUND):  Likewise.
	(GFC_DESCRIPTOR_EXTENT):  Likewise.
	(GFC_DESCRIPTOR_STRIDE):  Likewise.
	* io/transfer.c (transfer_array):  Use array access macros.
	Use byte-sized strides.
	* intrinsics/eoshift0.c (eoshift0):  Use array access
	macros everywhere.
	* m4/in_pack.m4 (internal_pack_'rtype_ccode`):  Use
	array access macros for accessing array descriptors.
	* m4/in_unpack.m4 (internal_unpack_'rtype_ccode`):
	Likewise.
	* m4/matmull.m4 (matmul_'rtype_code`):  Likewise.
	* m4/matmul.m4 (matmul_'rtype_code`):  Likewise.
	* m4/unpack.m4 (unpack0_'rtype_code`):  Likewise.
	(unpack1_'rtype_code`):  Likewise.
	* m4/ifunction_logical.m4 (name`'rtype_qual`_'atype_code): Likewise.
	* m4/ifunction.m4 (name`'rtype_qual`_'atype_code): Use array access
	macros everywhere.
		* intrinsics/dtime.c (dtime_sub):  Use array access macros
	for accessing array descriptors.
	* intrinsics/cshift0 (cshift0):  Likewise.
	* intrinsics/etime.c:  Likewise.  Remove redundant calculation
	of rdim.
	* m4/cshift0.m4 (cshift0_'rtype_code`):  Use array access macros
	for accessing array descriptors.
	* m4/pack.m4 (pack_'rtype_code`):  Likewise.
	* m4/spread.m4 (spread_'rtype_code`):  Likewise.
	(spread_scalar_'rtype_code`):  Likewise.
	* m4/transpose.m4 (transpose_'rtype_code`):  Likewise.
	* m4/iforeach.m4 (name`'rtype_qual`_'atype_code):  Likewise.
	* m4/eoshift1.m4 (eoshift1):  Likewise.  Remove size argument,
	calculate within function.
	(eoshift1_'atype_kind`):  Remove size argument from call
	to eoshift1.
	(eoshift1_'atype_kind`_char):  Likewise.
	(eoshift1_'atype_kind`_char4):  Likewise.
	* m4/eoshift3.m4 (eoshift3):  Remove size argument, calculate
	within function. Use array access macros for accessing array
	descriptors.
	(eoshift3_'atype_kind`):  Remove size argument from call
	to eoshift1.
	(eoshift3_'atype_kind`_char):  Likewise.
	(eoshift3_'atype_kind`_char4):  Likewise.
	* m4/shape.m4 (shape_'rtype_kind`):  Use array access macros
	for accessing array descriptors.
	* m4/cshift1.m4 (cshift1): Remove size argument, calculate
	within function. Use array access macros for accessing array
	descriptors.
	(cshift1_'atype_kind`):  Remove size argument from call to
	cshift1.
	(cshift1_'atype_kind`_char):  Remove size argument from call to
	cshift1.
	(cshift1_'atype_kind`_char4):  Remove size argument from call to
	cshift1.
	* m4/reshape.m4 (reshape_'rtype_ccode`):  Use array access macros
	for accessing array descriptors.
	* m4/ifunction.m4 (name`'rtype_qual`_'atype_code):  Likewise.
	* intrinsics/pack_generic.c (pack_internal):  Use array access
	macros for accessing array descriptors.
	(pack_s_internal):  Likewise.
	* intrinsics/transpose_generic.c (transpose_internal):  Remove
	size argument, calculate from array descriptor. Use array
	access macros for accessing array descriptors.
	(transpose):  Remove size argument from call.
	(transpoe_char):  Likewise.
	(transpose_char4):  Likewise.
	* intrinsics/move_alloc.c (move_alloc):  Use array access macros
	for accessing array descriptors.
	* intrinsics/spread_generic.c (spread_internal):  Remove size
	argument, calculate from array descriptor.  Use array access
	macros for accessing array descriptors.
	(spread_internal_scalar):  Likewise.
	(spread):  Remove size argument from call to spread_internal.
	(spread_char):  Mark argument source_length as unused.
	Remove size argument from call to spread_internal.
	(spread_char4):  Likewise.
	(spread_char_scalar):  Likewise.
	(spread_char4_scalar):  Likewise.
	* intrinsics/unpack_generic.c (unpack_internal):  Use array access
	macros for accessing array descriptors.
	* intrinsics/eoshift2.c (eoshift2):  Remove size argument, calculate
	from array descriptor instead.  Use array access macros for
	accessing array descriptors.
	(eoshift2_##N):  Remove size argument from call to eoshift2.
	(eoshift2_##N_##char):  Likewise.
	(eoshift2_##N_##char4):  Likewise.
	* intrinsics/reshape_generic.c (reshape_internal):  Use array
	access macross for accessing array descriptors.
	* libgfortran.h:  Introduce new macros GFC_DIMENSION_LBOUND,
	GFC_DIMENSION_UBOUND,GFC_DIMENSION_STRIDE, GFC_DIMENSION_EXTENT,
	GFC_DIMENSION_SET, GFC_DESCRIPTOR_LBOUND, GFC_DESCRIPTOR_UBOUND,
	GFC_DESCRIPTOR_EXTENT, GFC_DESCRIPTOR_EXTENT_BYTES,
	GFC_DESCRIPTOR_STRIDE, GFC_DESCRIPTOR_STRIDE_BYTES
	* runtime/in_pack_generic.c (internal_pack):  Use new macros
	for array descriptor access.
	* runtime/in_unpack_generic.c (internal_unpack):  Likewise.
	* intrinsics/dtime.c (dtime_sub):  Likewise.
	* intrinsics/cshift0 (cshift0):  Remove argument size,
	calculate directly from the array descriptor.  Use new macros
	for array descriptor access.
	* cshift0_##N:  Remove shift argument in call to cshift0.
	* cshift0_##N_char:  Mark array_length as unused.  Remove
	array_length in call to cshift0.
	* cshift0_##N_char4:  Likewise.
	* intrisics/etime.c:  Use new macros for array descriptor access.
	* intrinsics/stat.c (stat_i4_sub_0):  Likewise.
	(stat_i8_sub_0):  Likewise.
	(fstat_i4_sub):  Likewise.
	(fstat_i8_sub):  Likewise.
	* intrinsics/date_and_time.c (date_and_time):  Likewise.
	(secnds):  Likewise.
	(itime_i4):  Likewise.
	(itime_i8):  Likewise.
	(idate_i4):  Likewise.
	(idate_i8):  Likewise.
	(gmtime_i4):  Likewise.
	(gmtime_i8):  Likewise.
	(ltime_i4):  Likewise.
	(litme_i8):  Likewise.
	* intrinsics/associated.c (associated):  Likewise.
	* intrinsics/eoshift0.c (eoshift0):  Likewise.
	* intriniscs/size.c (size0):  Likewise.
	* intrinsics/random.c (arandom_r4):  Likewise.
	(arandom_r8):  Likewise.
	(arandom_r10):  Likewise.
	(arandom_r16):  Likewise.
	(random_seed_i4):  Likewise.
	(random_seed_i8):  Likewise.
	* io/list_read.c (nml_parse_qualifier):  Likewise.
	(nml_touch_nodes):  Likewise.
	(nml_read_obj):  Likewise.
	(get_name):  Likewise.
	* io/transfer.c (transfer_array):  Likewise.
	(init_loop_spec):  Likewise.
	(st_set_nml_var_dim):  Likewise.
	* io/write.c (nml_write_obj):  Likewise.
	(obj_loop):  Likewise.
	* generated/all_l1.c: Regenerated.
	* generated/all_l16.c: Regenerated.
	* generated/all_l2.c: Regenerated.
	* generated/all_l4.c: Regenerated.
	* generated/all_l8.c: Regenerated.
	* generated/any_l1.c: Regenerated.
	* generated/any_l16.c: Regenerated.
	* generated/any_l2.c: Regenerated.
	* generated/any_l4.c: Regenerated.
	* generated/any_l8.c: Regenerated.
	* generated/count_16_l.c: Regenerated.
	* generated/count_1_l.c: Regenerated.
	* generated/count_2_l.c: Regenerated.
	* generated/count_4_l.c: Regenerated.
	* generated/count_8_l.c: Regenerated.
	* generated/cshift0_c10.c: Regenerated.
	* generated/cshift0_c16.c: Regenerated.
	* generated/cshift0_c4.c: Regenerated.
	* generated/cshift0_c8.c: Regenerated.
	* generated/cshift0_i1.c: Regenerated.
	* generated/cshift0_i16.c: Regenerated.
	* generated/cshift0_i2.c: Regenerated.
	* generated/cshift0_i4.c: Regenerated.
	* generated/cshift0_i8.c: Regenerated.
	* generated/cshift0_r10.c: Regenerated.
	* generated/cshift0_r16.c: Regenerated.
	* generated/cshift0_r4.c: Regenerated.
	* generated/cshift0_r8.c: Regenerated.
	* generated/cshift1_16.c: Regenerated.
	* generated/cshift1_4.c: Regenerated.
	* generated/cshift1_8.c: Regenerated.
	* generated/eoshift1_16.c: Regenerated.
	* generated/eoshift1_4.c: Regenerated.
	* generated/eoshift1_8.c: Regenerated.
	* generated/eoshift3_16.c: Regenerated.
	* generated/eoshift3_4.c: Regenerated.
	* generated/eoshift3_8.c: Regenerated.
	* generated/in_pack_c10.c: Regenerated.
	* generated/in_pack_c16.c: Regenerated.
	* generated/in_pack_c4.c: Regenerated.
	* generated/in_pack_c8.c: Regenerated.
	* generated/in_pack_i1.c: Regenerated.
	* generated/in_pack_i16.c: Regenerated.
	* generated/in_pack_i2.c: Regenerated.
	* generated/in_pack_i4.c: Regenerated.
	* generated/in_pack_i8.c: Regenerated.
	* generated/in_pack_r10.c: Regenerated.
	* generated/in_pack_r16.c: Regenerated.
	* generated/in_pack_r4.c: Regenerated.
	* generated/in_pack_r8.c: Regenerated.
	* generated/in_unpack_c10.c: Regenerated.
	* generated/in_unpack_c16.c: Regenerated.
	* generated/in_unpack_c4.c: Regenerated.
	* generated/in_unpack_c8.c: Regenerated.
	* generated/in_unpack_i1.c: Regenerated.
	* generated/in_unpack_i16.c: Regenerated.
	* generated/in_unpack_i2.c: Regenerated.
	* generated/in_unpack_i4.c: Regenerated.
	* generated/in_unpack_i8.c: Regenerated.
	* generated/in_unpack_r10.c: Regenerated.
	* generated/in_unpack_r16.c: Regenerated.
	* generated/in_unpack_r4.c: Regenerated.
	* generated/in_unpack_r8.c: Regenerated.
	* generated/matmul_c10.c: Regenerated.
	* generated/matmul_c16.c: Regenerated.
	* generated/matmul_c4.c: Regenerated.
	* generated/matmul_c8.c: Regenerated.
	* generated/matmul_i1.c: Regenerated.
	* generated/matmul_i16.c: Regenerated.
	* generated/matmul_i2.c: Regenerated.
	* generated/matmul_i4.c: Regenerated.
	* generated/matmul_i8.c: Regenerated.
	* generated/matmul_l16.c: Regenerated.
	* generated/matmul_l4.c: Regenerated.
	* generated/matmul_l8.c: Regenerated.
	* generated/matmul_r10.c: Regenerated.
	* generated/matmul_r16.c: Regenerated.
	* generated/matmul_r4.c: Regenerated.
	* generated/matmul_r8.c: Regenerated.
	* generated/maxloc0_16_i1.c: Regenerated.
	* generated/maxloc0_16_i16.c: Regenerated.
	* generated/maxloc0_16_i2.c: Regenerated.
	* generated/maxloc0_16_i4.c: Regenerated.
	* generated/maxloc0_16_i8.c: Regenerated.
	* generated/maxloc0_16_r10.c: Regenerated.
	* generated/maxloc0_16_r16.c: Regenerated.
	* generated/maxloc0_16_r4.c: Regenerated.
	* generated/maxloc0_16_r8.c: Regenerated.
	* generated/maxloc0_4_i1.c: Regenerated.
	* generated/maxloc0_4_i16.c: Regenerated.
	* generated/maxloc0_4_i2.c: Regenerated.
	* generated/maxloc0_4_i4.c: Regenerated.
	* generated/maxloc0_4_i8.c: Regenerated.
	* generated/maxloc0_4_r10.c: Regenerated.
	* generated/maxloc0_4_r16.c: Regenerated.
	* generated/maxloc0_4_r4.c: Regenerated.
	* generated/maxloc0_4_r8.c: Regenerated.
	* generated/maxloc0_8_i1.c: Regenerated.
	* generated/maxloc0_8_i16.c: Regenerated.
	* generated/maxloc0_8_i2.c: Regenerated.
	* generated/maxloc0_8_i4.c: Regenerated.
	* generated/maxloc0_8_i8.c: Regenerated.
	* generated/maxloc0_8_r10.c: Regenerated.
	* generated/maxloc0_8_r16.c: Regenerated.
	* generated/maxloc0_8_r4.c: Regenerated.
	* generated/maxloc0_8_r8.c: Regenerated.
	* generated/maxloc1_16_i1.c: Regenerated.
	* generated/maxloc1_16_i16.c: Regenerated.
	* generated/maxloc1_16_i2.c: Regenerated.
	* generated/maxloc1_16_i4.c: Regenerated.
	* generated/maxloc1_16_i8.c: Regenerated.
	* generated/maxloc1_16_r10.c: Regenerated.
	* generated/maxloc1_16_r16.c: Regenerated.
	* generated/maxloc1_16_r4.c: Regenerated.
	* generated/maxloc1_16_r8.c: Regenerated.
	* generated/maxloc1_4_i1.c: Regenerated.
	* generated/maxloc1_4_i16.c: Regenerated.
	* generated/maxloc1_4_i2.c: Regenerated.
	* generated/maxloc1_4_i4.c: Regenerated.
	* generated/maxloc1_4_i8.c: Regenerated.
	* generated/maxloc1_4_r10.c: Regenerated.
	* generated/maxloc1_4_r16.c: Regenerated.
	* generated/maxloc1_4_r4.c: Regenerated.
	* generated/maxloc1_4_r8.c: Regenerated.
	* generated/maxloc1_8_i1.c: Regenerated.
	* generated/maxloc1_8_i16.c: Regenerated.
	* generated/maxloc1_8_i2.c: Regenerated.
	* generated/maxloc1_8_i4.c: Regenerated.
	* generated/maxloc1_8_i8.c: Regenerated.
	* generated/maxloc1_8_r10.c: Regenerated.
	* generated/maxloc1_8_r16.c: Regenerated.
	* generated/maxloc1_8_r4.c: Regenerated.
	* generated/maxloc1_8_r8.c: Regenerated.
	* generated/maxval_i1.c: Regenerated.
	* generated/maxval_i16.c: Regenerated.
	* generated/maxval_i2.c: Regenerated.
	* generated/maxval_i4.c: Regenerated.
	* generated/maxval_i8.c: Regenerated.
	* generated/maxval_r10.c: Regenerated.
	* generated/maxval_r16.c: Regenerated.
	* generated/maxval_r4.c: Regenerated.
	* generated/maxval_r8.c: Regenerated.
	* generated/minloc0_16_i1.c: Regenerated.
	* generated/minloc0_16_i16.c: Regenerated.
	* generated/minloc0_16_i2.c: Regenerated.
	* generated/minloc0_16_i4.c: Regenerated.
	* generated/minloc0_16_i8.c: Regenerated.
	* generated/minloc0_16_r10.c: Regenerated.
	* generated/minloc0_16_r16.c: Regenerated.
	* generated/minloc0_16_r4.c: Regenerated.
	* generated/minloc0_16_r8.c: Regenerated.
	* generated/minloc0_4_i1.c: Regenerated.
	* generated/minloc0_4_i16.c: Regenerated.
	* generated/minloc0_4_i2.c: Regenerated.
	* generated/minloc0_4_i4.c: Regenerated.
	* generated/minloc0_4_i8.c: Regenerated.
	* generated/minloc0_4_r10.c: Regenerated.
	* generated/minloc0_4_r16.c: Regenerated.
	* generated/minloc0_4_r4.c: Regenerated.
	* generated/minloc0_4_r8.c: Regenerated.
	* generated/minloc0_8_i1.c: Regenerated.
	* generated/minloc0_8_i16.c: Regenerated.
	* generated/minloc0_8_i2.c: Regenerated.
	* generated/minloc0_8_i4.c: Regenerated.
	* generated/minloc0_8_i8.c: Regenerated.
	* generated/minloc0_8_r10.c: Regenerated.
	* generated/minloc0_8_r16.c: Regenerated.
	* generated/minloc0_8_r4.c: Regenerated.
	* generated/minloc0_8_r8.c: Regenerated.
	* generated/minloc1_16_i1.c: Regenerated.
	* generated/minloc1_16_i16.c: Regenerated.
	* generated/minloc1_16_i2.c: Regenerated.
	* generated/minloc1_16_i4.c: Regenerated.
	* generated/minloc1_16_i8.c: Regenerated.
	* generated/minloc1_16_r10.c: Regenerated.
	* generated/minloc1_16_r16.c: Regenerated.
	* generated/minloc1_16_r4.c: Regenerated.
	* generated/minloc1_16_r8.c: Regenerated.
	* generated/minloc1_4_i1.c: Regenerated.
	* generated/minloc1_4_i16.c: Regenerated.
	* generated/minloc1_4_i2.c: Regenerated.
	* generated/minloc1_4_i4.c: Regenerated.
	* generated/minloc1_4_i8.c: Regenerated.
	* generated/minloc1_4_r10.c: Regenerated.
	* generated/minloc1_4_r16.c: Regenerated.
	* generated/minloc1_4_r4.c: Regenerated.
	* generated/minloc1_4_r8.c: Regenerated.
	* generated/minloc1_8_i1.c: Regenerated.
	* generated/minloc1_8_i16.c: Regenerated.
	* generated/minloc1_8_i2.c: Regenerated.
	* generated/minloc1_8_i4.c: Regenerated.
	* generated/minloc1_8_i8.c: Regenerated.
	* generated/minloc1_8_r10.c: Regenerated.
	* generated/minloc1_8_r16.c: Regenerated.
	* generated/minloc1_8_r4.c: Regenerated.
	* generated/minloc1_8_r8.c: Regenerated.
	* generated/minval_i1.c: Regenerated.
	* generated/minval_i16.c: Regenerated.
	* generated/minval_i2.c: Regenerated.
	* generated/minval_i4.c: Regenerated.
	* generated/minval_i8.c: Regenerated.
	* generated/minval_r10.c: Regenerated.
	* generated/minval_r16.c: Regenerated.
	* generated/minval_r4.c: Regenerated.
	* generated/minval_r8.c: Regenerated.
	* generated/pack_c10.c: Regenerated.
	* generated/pack_c16.c: Regenerated.
	* generated/pack_c4.c: Regenerated.
	* generated/pack_c8.c: Regenerated.
	* generated/pack_i1.c: Regenerated.
	* generated/pack_i16.c: Regenerated.
	* generated/pack_i2.c: Regenerated.
	* generated/pack_i4.c: Regenerated.
	* generated/pack_i8.c: Regenerated.
	* generated/pack_r10.c: Regenerated.
	* generated/pack_r16.c: Regenerated.
	* generated/pack_r4.c: Regenerated.
	* generated/pack_r8.c: Regenerated.
	* generated/product_c10.c: Regenerated.
	* generated/product_c16.c: Regenerated.
	* generated/product_c4.c: Regenerated.
	* generated/product_c8.c: Regenerated.
	* generated/product_i1.c: Regenerated.
	* generated/product_i16.c: Regenerated.
	* generated/product_i2.c: Regenerated.
	* generated/product_i4.c: Regenerated.
	* generated/product_i8.c: Regenerated.
	* generated/product_r10.c: Regenerated.
	* generated/product_r16.c: Regenerated.
	* generated/product_r4.c: Regenerated.
	* generated/product_r8.c: Regenerated.
	* generated/reshape_c10.c: Regenerated.
	* generated/reshape_c16.c: Regenerated.
	* generated/reshape_c4.c: Regenerated.
	* generated/reshape_c8.c: Regenerated.
	* generated/reshape_i16.c: Regenerated.
	* generated/reshape_i4.c: Regenerated.
	* generated/reshape_i8.c: Regenerated.
	* generated/reshape_r10.c: Regenerated.
	* generated/reshape_r16.c: Regenerated.
	* generated/reshape_r4.c: Regenerated.
	* generated/reshape_r8.c: Regenerated.
	* generated/shape_i16.c: Regenerated.
	* generated/shape_i4.c: Regenerated.
	* generated/shape_i8.c: Regenerated.
	* generated/spread_c10.c: Regenerated.
	* generated/spread_c16.c: Regenerated.
	* generated/spread_c4.c: Regenerated.
	* generated/spread_c8.c: Regenerated.
	* generated/spread_i1.c: Regenerated.
	* generated/spread_i16.c: Regenerated.
	* generated/spread_i2.c: Regenerated.
	* generated/spread_i4.c: Regenerated.
	* generated/spread_i8.c: Regenerated.
	* generated/spread_r10.c: Regenerated.
	* generated/spread_r16.c: Regenerated.
	* generated/spread_r4.c: Regenerated.
	* generated/spread_r8.c: Regenerated.
	* generated/sum_c10.c: Regenerated.
	* generated/sum_c16.c: Regenerated.
	* generated/sum_c4.c: Regenerated.
	* generated/sum_c8.c: Regenerated.
	* generated/sum_i1.c: Regenerated.
	* generated/sum_i16.c: Regenerated.
	* generated/sum_i2.c: Regenerated.
	* generated/sum_i4.c: Regenerated.
	* generated/sum_i8.c: Regenerated.
	* generated/sum_r10.c: Regenerated.
	* generated/sum_r16.c: Regenerated.
	* generated/sum_r4.c: Regenerated.
	* generated/sum_r8.c: Regenerated.
	* generated/transpose_c10.c: Regenerated.
	* generated/transpose_c16.c: Regenerated.
	* generated/transpose_c4.c: Regenerated.
	* generated/transpose_c8.c: Regenerated.
	* generated/transpose_i16.c: Regenerated.
	* generated/transpose_i4.c: Regenerated.
	* generated/transpose_i8.c: Regenerated.
	* generated/transpose_r10.c: Regenerated.
	* generated/transpose_r16.c: Regenerated.
	* generated/transpose_r4.c: Regenerated.
	* generated/transpose_r8.c: Regenerated.
	* generated/unpack_c10.c: Regenerated.
	* generated/unpack_c16.c: Regenerated.
	* generated/unpack_c4.c: Regenerated.
	* generated/unpack_c8.c: Regenerated.
	* generated/unpack_i1.c: Regenerated.
	* generated/unpack_i16.c: Regenerated.
	* generated/unpack_i2.c: Regenerated.
	* generated/unpack_i4.c: Regenerated.
	* generated/unpack_i8.c: Regenerated.
	* generated/unpack_r10.c: Regenerated.
	* generated/unpack_r16.c: Regenerated.
	* generated/unpack_r4.c: Regenerated.
	* generated/unpack_r8.c: Regenerated.

From-SVN: r148769
2009-06-21 19:24:55 +00:00

554 lines
14 KiB
C

/* Implementation of the MAXLOC intrinsic
Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_INTEGER_8)
extern void maxloc1_8_r10 (gfc_array_i8 * const restrict,
gfc_array_r10 * const restrict, const index_type * const restrict);
export_proto(maxloc1_8_r10);
void
maxloc1_8_r10 (gfc_array_i8 * const restrict retarray,
gfc_array_r10 * const restrict array,
const index_type * const restrict pdim)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
const GFC_REAL_10 * restrict base;
GFC_INTEGER_8 * restrict dest;
index_type rank;
index_type n;
index_type len;
index_type delta;
index_type dim;
int continue_loop;
/* Make dim zero based to avoid confusion. */
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
len = GFC_DESCRIPTOR_EXTENT(array,dim);
if (len < 0)
len = 0;
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
for (n = 0; n < dim; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->data == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
alloc_size = sizeof (GFC_INTEGER_8) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
* extent[rank-1];
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
else
retarray->data = internal_malloc_size (alloc_size);
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in"
" MAXLOC intrinsic: is %ld, should be %ld",
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
(long int) rank);
if (unlikely (compile_options.bounds_check))
{
for (n=0; n < rank; n++)
{
index_type ret_extent;
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
if (extent[n] != ret_extent)
runtime_error ("Incorrect extent in return value of"
" MAXLOC intrinsic in dimension %ld:"
" is %ld, should be %ld", (long int) n + 1,
(long int) ret_extent, (long int) extent[n]);
}
}
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
if (extent[n] <= 0)
len = 0;
}
base = array->data;
dest = retarray->data;
continue_loop = 1;
while (continue_loop)
{
const GFC_REAL_10 * restrict src;
GFC_INTEGER_8 result;
src = base;
{
GFC_REAL_10 maxval;
maxval = -GFC_REAL_10_HUGE;
result = 0;
if (len <= 0)
*dest = 0;
else
{
for (n = 0; n < len; n++, src += delta)
{
if (*src > maxval || !result)
{
maxval = *src;
result = (GFC_INTEGER_8)n + 1;
}
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
continue_loop = 0;
break;
}
else
{
count[n]++;
base += sstride[n];
dest += dstride[n];
}
}
}
}
extern void mmaxloc1_8_r10 (gfc_array_i8 * const restrict,
gfc_array_r10 * const restrict, const index_type * const restrict,
gfc_array_l1 * const restrict);
export_proto(mmaxloc1_8_r10);
void
mmaxloc1_8_r10 (gfc_array_i8 * const restrict retarray,
gfc_array_r10 * const restrict array,
const index_type * const restrict pdim,
gfc_array_l1 * const restrict mask)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
index_type mstride[GFC_MAX_DIMENSIONS];
GFC_INTEGER_8 * restrict dest;
const GFC_REAL_10 * restrict base;
const GFC_LOGICAL_1 * restrict mbase;
int rank;
int dim;
index_type n;
index_type len;
index_type delta;
index_type mdelta;
int mask_kind;
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
len = GFC_DESCRIPTOR_EXTENT(array,dim);
if (len <= 0)
return;
mbase = mask->data;
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
else
runtime_error ("Funny sized logical array");
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
for (n = 0; n < dim; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->data == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
alloc_size = sizeof (GFC_INTEGER_8) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
* extent[rank-1];
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
else
retarray->data = internal_malloc_size (alloc_size);
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in MAXLOC intrinsic");
if (unlikely (compile_options.bounds_check))
{
for (n=0; n < rank; n++)
{
index_type ret_extent;
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
if (extent[n] != ret_extent)
runtime_error ("Incorrect extent in return value of"
" MAXLOC intrinsic in dimension %ld:"
" is %ld, should be %ld", (long int) n + 1,
(long int) ret_extent, (long int) extent[n]);
}
for (n=0; n<= rank; n++)
{
index_type mask_extent, array_extent;
array_extent = GFC_DESCRIPTOR_EXTENT(array,n);
mask_extent = GFC_DESCRIPTOR_EXTENT(mask,n);
if (array_extent != mask_extent)
runtime_error ("Incorrect extent in MASK argument of"
" MAXLOC intrinsic in dimension %ld:"
" is %ld, should be %ld", (long int) n + 1,
(long int) mask_extent, (long int) array_extent);
}
}
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
if (extent[n] <= 0)
return;
}
dest = retarray->data;
base = array->data;
while (base)
{
const GFC_REAL_10 * restrict src;
const GFC_LOGICAL_1 * restrict msrc;
GFC_INTEGER_8 result;
src = base;
msrc = mbase;
{
GFC_REAL_10 maxval;
maxval = -GFC_REAL_10_HUGE;
result = 0;
if (len <= 0)
*dest = 0;
else
{
for (n = 0; n < len; n++, src += delta, msrc += mdelta)
{
if (*msrc && (*src > maxval || !result))
{
maxval = *src;
result = (GFC_INTEGER_8)n + 1;
}
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
mbase += mstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
mbase -= mstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
mbase += mstride[n];
dest += dstride[n];
}
}
}
}
extern void smaxloc1_8_r10 (gfc_array_i8 * const restrict,
gfc_array_r10 * const restrict, const index_type * const restrict,
GFC_LOGICAL_4 *);
export_proto(smaxloc1_8_r10);
void
smaxloc1_8_r10 (gfc_array_i8 * const restrict retarray,
gfc_array_r10 * const restrict array,
const index_type * const restrict pdim,
GFC_LOGICAL_4 * mask)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
GFC_INTEGER_8 * restrict dest;
index_type rank;
index_type n;
index_type dim;
if (*mask)
{
maxloc1_8_r10 (retarray, array, pdim);
return;
}
/* Make dim zero based to avoid confusion. */
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
for (n = 0; n < dim; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] <= 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
extent[n] =
GFC_DESCRIPTOR_EXTENT(array,n + 1);
if (extent[n] <= 0)
extent[n] = 0;
}
if (retarray->data == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
alloc_size = sizeof (GFC_INTEGER_8) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
* extent[rank-1];
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
else
retarray->data = internal_malloc_size (alloc_size);
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in"
" MAXLOC intrinsic: is %ld, should be %ld",
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
(long int) rank);
if (unlikely (compile_options.bounds_check))
{
for (n=0; n < rank; n++)
{
index_type ret_extent;
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
if (extent[n] != ret_extent)
runtime_error ("Incorrect extent in return value of"
" MAXLOC intrinsic in dimension %ld:"
" is %ld, should be %ld", (long int) n + 1,
(long int) ret_extent, (long int) extent[n]);
}
}
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
}
dest = retarray->data;
while(1)
{
*dest = 0;
count[0]++;
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
return;
else
{
count[n]++;
dest += dstride[n];
}
}
}
}
#endif