gcc/libstdc++-v3/include/bits/stl_tree.h
Paolo Carlini 046d30f4e0 stl_list.h: Rename guard macro consistently with file name.
2007-06-18  Paolo Carlini  <pcarlini@suse.de>

	* include/bits/stl_list.h: Rename guard macro consistently with
	file name.
	* include/bits/stl_algobase.h: Likewise.
	* include/bits/stl_map.h: Likewise.
	* include/bits/stl_queue.h: Likewise.
	* include/bits/stl_set.h: Likewise.
	* include/bits/stl_stack.h: Likewise.
	* include/bits/stl_iterator_base_types.h: Likewise.
	* include/bits/stl_multimap.h: Likewise.
	* include/bits/stl_pair.h: Likewise.
	* include/bits/stl_vector.h: Likewise.
	* include/bits/stl_deque.h: Likewise.
	* include/bits/stl_multiset.h: Likewise.
	* include/bits/stl_iterator_base_funcs.h: Likewise.
	* include/bits/stl_algo.h: Likewise.
	* include/bits/stl_iterator.h: Likewise.
	* include/bits/stl_tempbuf.h: Likewise.
	* include/bits/stl_bvector.h: Likewise.
	* include/bits/stl_function.h: Likewise.
	* include/bits/stl_tree.h: Likewise.

From-SVN: r125815
2007-06-18 17:22:53 +00:00

1448 lines
42 KiB
C++

// RB tree implementation -*- C++ -*-
// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
*/
/** @file stl_tree.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef _STL_TREE_H
#define _STL_TREE_H 1
#include <bits/stl_algobase.h>
#include <bits/allocator.h>
#include <bits/stl_function.h>
#include <bits/cpp_type_traits.h>
_GLIBCXX_BEGIN_NAMESPACE(std)
// Red-black tree class, designed for use in implementing STL
// associative containers (set, multiset, map, and multimap). The
// insertion and deletion algorithms are based on those in Cormen,
// Leiserson, and Rivest, Introduction to Algorithms (MIT Press,
// 1990), except that
//
// (1) the header cell is maintained with links not only to the root
// but also to the leftmost node of the tree, to enable constant
// time begin(), and to the rightmost node of the tree, to enable
// linear time performance when used with the generic set algorithms
// (set_union, etc.)
//
// (2) when a node being deleted has two children its successor node
// is relinked into its place, rather than copied, so that the only
// iterators invalidated are those referring to the deleted node.
enum _Rb_tree_color { _S_red = false, _S_black = true };
struct _Rb_tree_node_base
{
typedef _Rb_tree_node_base* _Base_ptr;
typedef const _Rb_tree_node_base* _Const_Base_ptr;
_Rb_tree_color _M_color;
_Base_ptr _M_parent;
_Base_ptr _M_left;
_Base_ptr _M_right;
static _Base_ptr
_S_minimum(_Base_ptr __x)
{
while (__x->_M_left != 0) __x = __x->_M_left;
return __x;
}
static _Const_Base_ptr
_S_minimum(_Const_Base_ptr __x)
{
while (__x->_M_left != 0) __x = __x->_M_left;
return __x;
}
static _Base_ptr
_S_maximum(_Base_ptr __x)
{
while (__x->_M_right != 0) __x = __x->_M_right;
return __x;
}
static _Const_Base_ptr
_S_maximum(_Const_Base_ptr __x)
{
while (__x->_M_right != 0) __x = __x->_M_right;
return __x;
}
};
template<typename _Val>
struct _Rb_tree_node : public _Rb_tree_node_base
{
typedef _Rb_tree_node<_Val>* _Link_type;
_Val _M_value_field;
};
_Rb_tree_node_base*
_Rb_tree_increment(_Rb_tree_node_base* __x);
const _Rb_tree_node_base*
_Rb_tree_increment(const _Rb_tree_node_base* __x);
_Rb_tree_node_base*
_Rb_tree_decrement(_Rb_tree_node_base* __x);
const _Rb_tree_node_base*
_Rb_tree_decrement(const _Rb_tree_node_base* __x);
template<typename _Tp>
struct _Rb_tree_iterator
{
typedef _Tp value_type;
typedef _Tp& reference;
typedef _Tp* pointer;
typedef bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef _Rb_tree_iterator<_Tp> _Self;
typedef _Rb_tree_node_base::_Base_ptr _Base_ptr;
typedef _Rb_tree_node<_Tp>* _Link_type;
_Rb_tree_iterator()
: _M_node() { }
explicit
_Rb_tree_iterator(_Link_type __x)
: _M_node(__x) { }
reference
operator*() const
{ return static_cast<_Link_type>(_M_node)->_M_value_field; }
pointer
operator->() const
{ return &static_cast<_Link_type>(_M_node)->_M_value_field; }
_Self&
operator++()
{
_M_node = _Rb_tree_increment(_M_node);
return *this;
}
_Self
operator++(int)
{
_Self __tmp = *this;
_M_node = _Rb_tree_increment(_M_node);
return __tmp;
}
_Self&
operator--()
{
_M_node = _Rb_tree_decrement(_M_node);
return *this;
}
_Self
operator--(int)
{
_Self __tmp = *this;
_M_node = _Rb_tree_decrement(_M_node);
return __tmp;
}
bool
operator==(const _Self& __x) const
{ return _M_node == __x._M_node; }
bool
operator!=(const _Self& __x) const
{ return _M_node != __x._M_node; }
_Base_ptr _M_node;
};
template<typename _Tp>
struct _Rb_tree_const_iterator
{
typedef _Tp value_type;
typedef const _Tp& reference;
typedef const _Tp* pointer;
typedef _Rb_tree_iterator<_Tp> iterator;
typedef bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef _Rb_tree_const_iterator<_Tp> _Self;
typedef _Rb_tree_node_base::_Const_Base_ptr _Base_ptr;
typedef const _Rb_tree_node<_Tp>* _Link_type;
_Rb_tree_const_iterator()
: _M_node() { }
explicit
_Rb_tree_const_iterator(_Link_type __x)
: _M_node(__x) { }
_Rb_tree_const_iterator(const iterator& __it)
: _M_node(__it._M_node) { }
reference
operator*() const
{ return static_cast<_Link_type>(_M_node)->_M_value_field; }
pointer
operator->() const
{ return &static_cast<_Link_type>(_M_node)->_M_value_field; }
_Self&
operator++()
{
_M_node = _Rb_tree_increment(_M_node);
return *this;
}
_Self
operator++(int)
{
_Self __tmp = *this;
_M_node = _Rb_tree_increment(_M_node);
return __tmp;
}
_Self&
operator--()
{
_M_node = _Rb_tree_decrement(_M_node);
return *this;
}
_Self
operator--(int)
{
_Self __tmp = *this;
_M_node = _Rb_tree_decrement(_M_node);
return __tmp;
}
bool
operator==(const _Self& __x) const
{ return _M_node == __x._M_node; }
bool
operator!=(const _Self& __x) const
{ return _M_node != __x._M_node; }
_Base_ptr _M_node;
};
template<typename _Val>
inline bool
operator==(const _Rb_tree_iterator<_Val>& __x,
const _Rb_tree_const_iterator<_Val>& __y)
{ return __x._M_node == __y._M_node; }
template<typename _Val>
inline bool
operator!=(const _Rb_tree_iterator<_Val>& __x,
const _Rb_tree_const_iterator<_Val>& __y)
{ return __x._M_node != __y._M_node; }
void
_Rb_tree_insert_and_rebalance(const bool __insert_left,
_Rb_tree_node_base* __x,
_Rb_tree_node_base* __p,
_Rb_tree_node_base& __header);
_Rb_tree_node_base*
_Rb_tree_rebalance_for_erase(_Rb_tree_node_base* const __z,
_Rb_tree_node_base& __header);
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc = allocator<_Val> >
class _Rb_tree
{
typedef typename _Alloc::template rebind<_Rb_tree_node<_Val> >::other
_Node_allocator;
protected:
typedef _Rb_tree_node_base* _Base_ptr;
typedef const _Rb_tree_node_base* _Const_Base_ptr;
public:
typedef _Key key_type;
typedef _Val value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef _Rb_tree_node<_Val>* _Link_type;
typedef const _Rb_tree_node<_Val>* _Const_Link_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Alloc allocator_type;
_Node_allocator&
_M_get_Node_allocator()
{ return *static_cast<_Node_allocator*>(&this->_M_impl); }
const _Node_allocator&
_M_get_Node_allocator() const
{ return *static_cast<const _Node_allocator*>(&this->_M_impl); }
allocator_type
get_allocator() const
{ return allocator_type(_M_get_Node_allocator()); }
protected:
_Link_type
_M_get_node()
{ return _M_impl._Node_allocator::allocate(1); }
void
_M_put_node(_Link_type __p)
{ _M_impl._Node_allocator::deallocate(__p, 1); }
_Link_type
_M_create_node(const value_type& __x)
{
_Link_type __tmp = _M_get_node();
try
{ get_allocator().construct(&__tmp->_M_value_field, __x); }
catch(...)
{
_M_put_node(__tmp);
__throw_exception_again;
}
return __tmp;
}
_Link_type
_M_clone_node(_Const_Link_type __x)
{
_Link_type __tmp = _M_create_node(__x->_M_value_field);
__tmp->_M_color = __x->_M_color;
__tmp->_M_left = 0;
__tmp->_M_right = 0;
return __tmp;
}
void
_M_destroy_node(_Link_type __p)
{
get_allocator().destroy(&__p->_M_value_field);
_M_put_node(__p);
}
protected:
template<typename _Key_compare,
bool _Is_pod_comparator = __is_pod(_Key_compare)>
struct _Rb_tree_impl : public _Node_allocator
{
_Key_compare _M_key_compare;
_Rb_tree_node_base _M_header;
size_type _M_node_count; // Keeps track of size of tree.
_Rb_tree_impl(const _Node_allocator& __a = _Node_allocator(),
const _Key_compare& __comp = _Key_compare())
: _Node_allocator(__a), _M_key_compare(__comp), _M_header(),
_M_node_count(0)
{
this->_M_header._M_color = _S_red;
this->_M_header._M_parent = 0;
this->_M_header._M_left = &this->_M_header;
this->_M_header._M_right = &this->_M_header;
}
};
// Specialization for _Comparison types that are not capable of
// being base classes / super classes.
template<typename _Key_compare>
struct _Rb_tree_impl<_Key_compare, true> : public _Node_allocator
{
_Key_compare _M_key_compare;
_Rb_tree_node_base _M_header;
size_type _M_node_count; // Keeps track of size of tree.
_Rb_tree_impl(const _Node_allocator& __a = _Node_allocator(),
const _Key_compare& __comp = _Key_compare())
: _Node_allocator(__a), _M_key_compare(__comp), _M_header(),
_M_node_count(0)
{
this->_M_header._M_color = _S_red;
this->_M_header._M_parent = 0;
this->_M_header._M_left = &this->_M_header;
this->_M_header._M_right = &this->_M_header;
}
};
_Rb_tree_impl<_Compare> _M_impl;
protected:
_Base_ptr&
_M_root()
{ return this->_M_impl._M_header._M_parent; }
_Const_Base_ptr
_M_root() const
{ return this->_M_impl._M_header._M_parent; }
_Base_ptr&
_M_leftmost()
{ return this->_M_impl._M_header._M_left; }
_Const_Base_ptr
_M_leftmost() const
{ return this->_M_impl._M_header._M_left; }
_Base_ptr&
_M_rightmost()
{ return this->_M_impl._M_header._M_right; }
_Const_Base_ptr
_M_rightmost() const
{ return this->_M_impl._M_header._M_right; }
_Link_type
_M_begin()
{ return static_cast<_Link_type>(this->_M_impl._M_header._M_parent); }
_Const_Link_type
_M_begin() const
{
return static_cast<_Const_Link_type>
(this->_M_impl._M_header._M_parent);
}
_Link_type
_M_end()
{ return static_cast<_Link_type>(&this->_M_impl._M_header); }
_Const_Link_type
_M_end() const
{ return static_cast<_Const_Link_type>(&this->_M_impl._M_header); }
static const_reference
_S_value(_Const_Link_type __x)
{ return __x->_M_value_field; }
static const _Key&
_S_key(_Const_Link_type __x)
{ return _KeyOfValue()(_S_value(__x)); }
static _Link_type
_S_left(_Base_ptr __x)
{ return static_cast<_Link_type>(__x->_M_left); }
static _Const_Link_type
_S_left(_Const_Base_ptr __x)
{ return static_cast<_Const_Link_type>(__x->_M_left); }
static _Link_type
_S_right(_Base_ptr __x)
{ return static_cast<_Link_type>(__x->_M_right); }
static _Const_Link_type
_S_right(_Const_Base_ptr __x)
{ return static_cast<_Const_Link_type>(__x->_M_right); }
static const_reference
_S_value(_Const_Base_ptr __x)
{ return static_cast<_Const_Link_type>(__x)->_M_value_field; }
static const _Key&
_S_key(_Const_Base_ptr __x)
{ return _KeyOfValue()(_S_value(__x)); }
static _Base_ptr
_S_minimum(_Base_ptr __x)
{ return _Rb_tree_node_base::_S_minimum(__x); }
static _Const_Base_ptr
_S_minimum(_Const_Base_ptr __x)
{ return _Rb_tree_node_base::_S_minimum(__x); }
static _Base_ptr
_S_maximum(_Base_ptr __x)
{ return _Rb_tree_node_base::_S_maximum(__x); }
static _Const_Base_ptr
_S_maximum(_Const_Base_ptr __x)
{ return _Rb_tree_node_base::_S_maximum(__x); }
public:
typedef _Rb_tree_iterator<value_type> iterator;
typedef _Rb_tree_const_iterator<value_type> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
private:
iterator
_M_insert_(_Const_Base_ptr __x, _Const_Base_ptr __y,
const value_type& __v);
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 233. Insertion hints in associative containers.
iterator
_M_insert_lower(_Base_ptr __x, _Base_ptr __y, const value_type& __v);
iterator
_M_insert_equal_lower(const value_type& __x);
_Link_type
_M_copy(_Const_Link_type __x, _Link_type __p);
void
_M_erase(_Link_type __x);
iterator
_M_lower_bound(_Link_type __x, _Link_type __y,
const _Key& __k);
const_iterator
_M_lower_bound(_Const_Link_type __x, _Const_Link_type __y,
const _Key& __k) const;
iterator
_M_upper_bound(_Link_type __x, _Link_type __y,
const _Key& __k);
const_iterator
_M_upper_bound(_Const_Link_type __x, _Const_Link_type __y,
const _Key& __k) const;
public:
// allocation/deallocation
_Rb_tree()
{ }
_Rb_tree(const _Compare& __comp)
: _M_impl(allocator_type(), __comp)
{ }
_Rb_tree(const _Compare& __comp, const allocator_type& __a)
: _M_impl(__a, __comp)
{ }
_Rb_tree(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x)
: _M_impl(__x._M_get_Node_allocator(), __x._M_impl._M_key_compare)
{
if (__x._M_root() != 0)
{
_M_root() = _M_copy(__x._M_begin(), _M_end());
_M_leftmost() = _S_minimum(_M_root());
_M_rightmost() = _S_maximum(_M_root());
_M_impl._M_node_count = __x._M_impl._M_node_count;
}
}
~_Rb_tree()
{ _M_erase(_M_begin()); }
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>&
operator=(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x);
// Accessors.
_Compare
key_comp() const
{ return _M_impl._M_key_compare; }
iterator
begin()
{
return iterator(static_cast<_Link_type>
(this->_M_impl._M_header._M_left));
}
const_iterator
begin() const
{
return const_iterator(static_cast<_Const_Link_type>
(this->_M_impl._M_header._M_left));
}
iterator
end()
{ return iterator(static_cast<_Link_type>(&this->_M_impl._M_header)); }
const_iterator
end() const
{
return const_iterator(static_cast<_Const_Link_type>
(&this->_M_impl._M_header));
}
reverse_iterator
rbegin()
{ return reverse_iterator(end()); }
const_reverse_iterator
rbegin() const
{ return const_reverse_iterator(end()); }
reverse_iterator
rend()
{ return reverse_iterator(begin()); }
const_reverse_iterator
rend() const
{ return const_reverse_iterator(begin()); }
bool
empty() const
{ return _M_impl._M_node_count == 0; }
size_type
size() const
{ return _M_impl._M_node_count; }
size_type
max_size() const
{ return get_allocator().max_size(); }
void
swap(_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __t);
// Insert/erase.
pair<iterator, bool>
_M_insert_unique(const value_type& __x);
iterator
_M_insert_equal(const value_type& __x);
iterator
_M_insert_unique_(const_iterator __position, const value_type& __x);
iterator
_M_insert_equal_(const_iterator __position, const value_type& __x);
template<typename _InputIterator>
void
_M_insert_unique(_InputIterator __first, _InputIterator __last);
template<typename _InputIterator>
void
_M_insert_equal(_InputIterator __first, _InputIterator __last);
void
erase(iterator __position);
void
erase(const_iterator __position);
size_type
erase(const key_type& __x);
void
erase(iterator __first, iterator __last);
void
erase(const_iterator __first, const_iterator __last);
void
erase(const key_type* __first, const key_type* __last);
void
clear()
{
_M_erase(_M_begin());
_M_leftmost() = _M_end();
_M_root() = 0;
_M_rightmost() = _M_end();
_M_impl._M_node_count = 0;
}
// Set operations.
iterator
find(const key_type& __k);
const_iterator
find(const key_type& __k) const;
size_type
count(const key_type& __k) const;
iterator
lower_bound(const key_type& __k)
{ return _M_lower_bound(_M_begin(), _M_end(), __k); }
const_iterator
lower_bound(const key_type& __k) const
{ return _M_lower_bound(_M_begin(), _M_end(), __k); }
iterator
upper_bound(const key_type& __k)
{ return _M_upper_bound(_M_begin(), _M_end(), __k); }
const_iterator
upper_bound(const key_type& __k) const
{ return _M_upper_bound(_M_begin(), _M_end(), __k); }
pair<iterator, iterator>
equal_range(const key_type& __k);
pair<const_iterator, const_iterator>
equal_range(const key_type& __k) const;
// Debugging.
bool
__rb_verify() const;
};
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline bool
operator==(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x,
const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y)
{
return __x.size() == __y.size()
&& std::equal(__x.begin(), __x.end(), __y.begin());
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline bool
operator<(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x,
const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y)
{
return std::lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline bool
operator!=(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x,
const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y)
{ return !(__x == __y); }
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline bool
operator>(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x,
const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y)
{ return __y < __x; }
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline bool
operator<=(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x,
const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y)
{ return !(__y < __x); }
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline bool
operator>=(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x,
const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y)
{ return !(__x < __y); }
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline void
swap(_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x,
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y)
{ __x.swap(__y); }
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>&
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
operator=(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x)
{
if (this != &__x)
{
// Note that _Key may be a constant type.
clear();
_M_impl._M_key_compare = __x._M_impl._M_key_compare;
if (__x._M_root() != 0)
{
_M_root() = _M_copy(__x._M_begin(), _M_end());
_M_leftmost() = _S_minimum(_M_root());
_M_rightmost() = _S_maximum(_M_root());
_M_impl._M_node_count = __x._M_impl._M_node_count;
}
}
return *this;
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_(_Const_Base_ptr __x, _Const_Base_ptr __p, const _Val& __v)
{
bool __insert_left = (__x != 0 || __p == _M_end()
|| _M_impl._M_key_compare(_KeyOfValue()(__v),
_S_key(__p)));
_Link_type __z = _M_create_node(__v);
_Rb_tree_insert_and_rebalance(__insert_left, __z,
const_cast<_Base_ptr>(__p),
this->_M_impl._M_header);
++_M_impl._M_node_count;
return iterator(__z);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_lower(_Base_ptr __x, _Base_ptr __p, const _Val& __v)
{
bool __insert_left = (__x != 0 || __p == _M_end()
|| !_M_impl._M_key_compare(_S_key(__p),
_KeyOfValue()(__v)));
_Link_type __z = _M_create_node(__v);
_Rb_tree_insert_and_rebalance(__insert_left, __z, __p,
this->_M_impl._M_header);
++_M_impl._M_node_count;
return iterator(__z);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_equal_lower(const _Val& __v)
{
_Link_type __x = _M_begin();
_Link_type __y = _M_end();
while (__x != 0)
{
__y = __x;
__x = !_M_impl._M_key_compare(_S_key(__x), _KeyOfValue()(__v)) ?
_S_left(__x) : _S_right(__x);
}
return _M_insert_lower(__x, __y, __v);
}
template<typename _Key, typename _Val, typename _KoV,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::_Link_type
_Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::
_M_copy(_Const_Link_type __x, _Link_type __p)
{
// Structural copy. __x and __p must be non-null.
_Link_type __top = _M_clone_node(__x);
__top->_M_parent = __p;
try
{
if (__x->_M_right)
__top->_M_right = _M_copy(_S_right(__x), __top);
__p = __top;
__x = _S_left(__x);
while (__x != 0)
{
_Link_type __y = _M_clone_node(__x);
__p->_M_left = __y;
__y->_M_parent = __p;
if (__x->_M_right)
__y->_M_right = _M_copy(_S_right(__x), __y);
__p = __y;
__x = _S_left(__x);
}
}
catch(...)
{
_M_erase(__top);
__throw_exception_again;
}
return __top;
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_erase(_Link_type __x)
{
// Erase without rebalancing.
while (__x != 0)
{
_M_erase(_S_right(__x));
_Link_type __y = _S_left(__x);
_M_destroy_node(__x);
__x = __y;
}
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_lower_bound(_Link_type __x, _Link_type __y,
const _Key& __k)
{
while (__x != 0)
if (!_M_impl._M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return iterator(__y);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::const_iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_lower_bound(_Const_Link_type __x, _Const_Link_type __y,
const _Key& __k) const
{
while (__x != 0)
if (!_M_impl._M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return const_iterator(__y);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_upper_bound(_Link_type __x, _Link_type __y,
const _Key& __k)
{
while (__x != 0)
if (_M_impl._M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return iterator(__y);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::const_iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_upper_bound(_Const_Link_type __x, _Const_Link_type __y,
const _Key& __k) const
{
while (__x != 0)
if (_M_impl._M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return const_iterator(__y);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
pair<typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator,
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
equal_range(const _Key& __k)
{
_Link_type __x = _M_begin();
_Link_type __y = _M_end();
while (__x != 0)
{
if (_M_impl._M_key_compare(_S_key(__x), __k))
__x = _S_right(__x);
else if (_M_impl._M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
{
_Link_type __xu(__x), __yu(__y);
__y = __x, __x = _S_left(__x);
__xu = _S_right(__xu);
return pair<iterator,
iterator>(_M_lower_bound(__x, __y, __k),
_M_upper_bound(__xu, __yu, __k));
}
}
return pair<iterator, iterator>(iterator(__y),
iterator(__y));
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
pair<typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::const_iterator,
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::const_iterator>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
equal_range(const _Key& __k) const
{
_Const_Link_type __x = _M_begin();
_Const_Link_type __y = _M_end();
while (__x != 0)
{
if (_M_impl._M_key_compare(_S_key(__x), __k))
__x = _S_right(__x);
else if (_M_impl._M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
{
_Const_Link_type __xu(__x), __yu(__y);
__y = __x, __x = _S_left(__x);
__xu = _S_right(__xu);
return pair<const_iterator,
const_iterator>(_M_lower_bound(__x, __y, __k),
_M_upper_bound(__xu, __yu, __k));
}
}
return pair<const_iterator, const_iterator>(const_iterator(__y),
const_iterator(__y));
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
swap(_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __t)
{
if (_M_root() == 0)
{
if (__t._M_root() != 0)
{
_M_root() = __t._M_root();
_M_leftmost() = __t._M_leftmost();
_M_rightmost() = __t._M_rightmost();
_M_root()->_M_parent = _M_end();
__t._M_root() = 0;
__t._M_leftmost() = __t._M_end();
__t._M_rightmost() = __t._M_end();
}
}
else if (__t._M_root() == 0)
{
__t._M_root() = _M_root();
__t._M_leftmost() = _M_leftmost();
__t._M_rightmost() = _M_rightmost();
__t._M_root()->_M_parent = __t._M_end();
_M_root() = 0;
_M_leftmost() = _M_end();
_M_rightmost() = _M_end();
}
else
{
std::swap(_M_root(),__t._M_root());
std::swap(_M_leftmost(),__t._M_leftmost());
std::swap(_M_rightmost(),__t._M_rightmost());
_M_root()->_M_parent = _M_end();
__t._M_root()->_M_parent = __t._M_end();
}
// No need to swap header's color as it does not change.
std::swap(this->_M_impl._M_node_count, __t._M_impl._M_node_count);
std::swap(this->_M_impl._M_key_compare, __t._M_impl._M_key_compare);
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 431. Swapping containers with unequal allocators.
std::__alloc_swap<_Node_allocator>::
_S_do_it(_M_get_Node_allocator(), __t._M_get_Node_allocator());
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
pair<typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator, bool>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_unique(const _Val& __v)
{
_Link_type __x = _M_begin();
_Link_type __y = _M_end();
bool __comp = true;
while (__x != 0)
{
__y = __x;
__comp = _M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__x));
__x = __comp ? _S_left(__x) : _S_right(__x);
}
iterator __j = iterator(__y);
if (__comp)
{
if (__j == begin())
return pair<iterator, bool>(_M_insert_(__x, __y, __v), true);
else
--__j;
}
if (_M_impl._M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v)))
return pair<iterator, bool>(_M_insert_(__x, __y, __v), true);
return pair<iterator, bool>(__j, false);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_equal(const _Val& __v)
{
_Link_type __x = _M_begin();
_Link_type __y = _M_end();
while (__x != 0)
{
__y = __x;
__x = _M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ?
_S_left(__x) : _S_right(__x);
}
return _M_insert_(__x, __y, __v);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_unique_(const_iterator __position, const _Val& __v)
{
// end()
if (__position._M_node == _M_end())
{
if (size() > 0
&& _M_impl._M_key_compare(_S_key(_M_rightmost()),
_KeyOfValue()(__v)))
return _M_insert_(0, _M_rightmost(), __v);
else
return _M_insert_unique(__v).first;
}
else if (_M_impl._M_key_compare(_KeyOfValue()(__v),
_S_key(__position._M_node)))
{
// First, try before...
const_iterator __before = __position;
if (__position._M_node == _M_leftmost()) // begin()
return _M_insert_(_M_leftmost(), _M_leftmost(), __v);
else if (_M_impl._M_key_compare(_S_key((--__before)._M_node),
_KeyOfValue()(__v)))
{
if (_S_right(__before._M_node) == 0)
return _M_insert_(0, __before._M_node, __v);
else
return _M_insert_(__position._M_node,
__position._M_node, __v);
}
else
return _M_insert_unique(__v).first;
}
else if (_M_impl._M_key_compare(_S_key(__position._M_node),
_KeyOfValue()(__v)))
{
// ... then try after.
const_iterator __after = __position;
if (__position._M_node == _M_rightmost())
return _M_insert_(0, _M_rightmost(), __v);
else if (_M_impl._M_key_compare(_KeyOfValue()(__v),
_S_key((++__after)._M_node)))
{
if (_S_right(__position._M_node) == 0)
return _M_insert_(0, __position._M_node, __v);
else
return _M_insert_(__after._M_node, __after._M_node, __v);
}
else
return _M_insert_unique(__v).first;
}
else
// Equivalent keys.
return iterator(static_cast<_Link_type>
(const_cast<_Base_ptr>(__position._M_node)));
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_equal_(const_iterator __position, const _Val& __v)
{
// end()
if (__position._M_node == _M_end())
{
if (size() > 0
&& !_M_impl._M_key_compare(_KeyOfValue()(__v),
_S_key(_M_rightmost())))
return _M_insert_(0, _M_rightmost(), __v);
else
return _M_insert_equal(__v);
}
else if (!_M_impl._M_key_compare(_S_key(__position._M_node),
_KeyOfValue()(__v)))
{
// First, try before...
const_iterator __before = __position;
if (__position._M_node == _M_leftmost()) // begin()
return _M_insert_(_M_leftmost(), _M_leftmost(), __v);
else if (!_M_impl._M_key_compare(_KeyOfValue()(__v),
_S_key((--__before)._M_node)))
{
if (_S_right(__before._M_node) == 0)
return _M_insert_(0, __before._M_node, __v);
else
return _M_insert_(__position._M_node,
__position._M_node, __v);
}
else
return _M_insert_equal(__v);
}
else
{
// ... then try after.
const_iterator __after = __position;
if (__position._M_node == _M_rightmost())
return _M_insert_(0, _M_rightmost(), __v);
else if (!_M_impl._M_key_compare(_S_key((++__after)._M_node),
_KeyOfValue()(__v)))
{
if (_S_right(__position._M_node) == 0)
return _M_insert_(0, __position._M_node, __v);
else
return _M_insert_(__after._M_node, __after._M_node, __v);
}
else
return _M_insert_equal_lower(__v);
}
}
template<typename _Key, typename _Val, typename _KoV,
typename _Cmp, typename _Alloc>
template<class _II>
void
_Rb_tree<_Key, _Val, _KoV, _Cmp, _Alloc>::
_M_insert_unique(_II __first, _II __last)
{
for (; __first != __last; ++__first)
_M_insert_unique_(end(), *__first);
}
template<typename _Key, typename _Val, typename _KoV,
typename _Cmp, typename _Alloc>
template<class _II>
void
_Rb_tree<_Key, _Val, _KoV, _Cmp, _Alloc>::
_M_insert_equal(_II __first, _II __last)
{
for (; __first != __last; ++__first)
_M_insert_equal_(end(), *__first);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
erase(iterator __position)
{
_Link_type __y =
static_cast<_Link_type>(_Rb_tree_rebalance_for_erase
(__position._M_node,
this->_M_impl._M_header));
_M_destroy_node(__y);
--_M_impl._M_node_count;
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
erase(const_iterator __position)
{
_Link_type __y =
static_cast<_Link_type>(_Rb_tree_rebalance_for_erase
(const_cast<_Base_ptr>(__position._M_node),
this->_M_impl._M_header));
_M_destroy_node(__y);
--_M_impl._M_node_count;
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::size_type
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
erase(const _Key& __x)
{
pair<iterator, iterator> __p = equal_range(__x);
const size_type __old_size = size();
erase(__p.first, __p.second);
return __old_size - size();
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
erase(iterator __first, iterator __last)
{
if (__first == begin() && __last == end())
clear();
else
while (__first != __last)
erase(__first++);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
erase(const_iterator __first, const_iterator __last)
{
if (__first == begin() && __last == end())
clear();
else
while (__first != __last)
erase(__first++);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
erase(const _Key* __first, const _Key* __last)
{
while (__first != __last)
erase(*__first++);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
find(const _Key& __k)
{
iterator __j = _M_lower_bound(_M_begin(), _M_end(), __k);
return (__j == end()
|| _M_impl._M_key_compare(__k,
_S_key(__j._M_node))) ? end() : __j;
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::const_iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
find(const _Key& __k) const
{
const_iterator __j = _M_lower_bound(_M_begin(), _M_end(), __k);
return (__j == end()
|| _M_impl._M_key_compare(__k,
_S_key(__j._M_node))) ? end() : __j;
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::size_type
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
count(const _Key& __k) const
{
pair<const_iterator, const_iterator> __p = equal_range(__k);
const size_type __n = std::distance(__p.first, __p.second);
return __n;
}
unsigned int
_Rb_tree_black_count(const _Rb_tree_node_base* __node,
const _Rb_tree_node_base* __root);
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
bool
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const
{
if (_M_impl._M_node_count == 0 || begin() == end())
return _M_impl._M_node_count == 0 && begin() == end()
&& this->_M_impl._M_header._M_left == _M_end()
&& this->_M_impl._M_header._M_right == _M_end();
unsigned int __len = _Rb_tree_black_count(_M_leftmost(), _M_root());
for (const_iterator __it = begin(); __it != end(); ++__it)
{
_Const_Link_type __x = static_cast<_Const_Link_type>(__it._M_node);
_Const_Link_type __L = _S_left(__x);
_Const_Link_type __R = _S_right(__x);
if (__x->_M_color == _S_red)
if ((__L && __L->_M_color == _S_red)
|| (__R && __R->_M_color == _S_red))
return false;
if (__L && _M_impl._M_key_compare(_S_key(__x), _S_key(__L)))
return false;
if (__R && _M_impl._M_key_compare(_S_key(__R), _S_key(__x)))
return false;
if (!__L && !__R && _Rb_tree_black_count(__x, _M_root()) != __len)
return false;
}
if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root()))
return false;
if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root()))
return false;
return true;
}
_GLIBCXX_END_NAMESPACE
#endif