gcc/libstdc++-v3/include/bits/stl_bvector.h
Paolo Carlini e6494c9434 re PR libstdc++/23632 (std::vector<bool> in combination with debug mode fails to compile code)
2005-08-31  Paolo Carlini  <pcarlini@suse.de>
	    Kaspar Fischer <fischerk@inf.ethz.ch>

	PR libstdc++/23632
	* include/bits/stl_bvector.h (_Bit_iterator::operator[],
	_Bit_const_iterator::operator[]): Const-ify.
	* testsuite/23_containers/vector/bool/23632.cc: New.

Co-Authored-By: Kaspar Fischer <fischerk@inf.ethz.ch>

From-SVN: r103686
2005-08-31 17:01:57 +00:00

959 lines
24 KiB
C++

// vector<bool> specialization -*- C++ -*-
// Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996-1999
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file stl_bvector.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef _BVECTOR_H
#define _BVECTOR_H 1
namespace _GLIBCXX_STD
{
typedef unsigned long _Bit_type;
enum { _S_word_bit = int(CHAR_BIT * sizeof(_Bit_type)) };
struct _Bit_reference
{
_Bit_type * _M_p;
_Bit_type _M_mask;
_Bit_reference(_Bit_type * __x, _Bit_type __y)
: _M_p(__x), _M_mask(__y) { }
_Bit_reference() : _M_p(0), _M_mask(0) { }
operator bool() const
{ return !!(*_M_p & _M_mask); }
_Bit_reference&
operator=(bool __x)
{
if (__x)
*_M_p |= _M_mask;
else
*_M_p &= ~_M_mask;
return *this;
}
_Bit_reference&
operator=(const _Bit_reference& __x)
{ return *this = bool(__x); }
bool
operator==(const _Bit_reference& __x) const
{ return bool(*this) == bool(__x); }
bool
operator<(const _Bit_reference& __x) const
{ return !bool(*this) && bool(__x); }
void
flip()
{ *_M_p ^= _M_mask; }
};
struct _Bit_iterator_base
: public std::iterator<std::random_access_iterator_tag, bool>
{
_Bit_type * _M_p;
unsigned int _M_offset;
_Bit_iterator_base(_Bit_type * __x, unsigned int __y)
: _M_p(__x), _M_offset(__y) { }
void
_M_bump_up()
{
if (_M_offset++ == int(_S_word_bit) - 1)
{
_M_offset = 0;
++_M_p;
}
}
void
_M_bump_down()
{
if (_M_offset-- == 0)
{
_M_offset = int(_S_word_bit) - 1;
--_M_p;
}
}
void
_M_incr(ptrdiff_t __i)
{
difference_type __n = __i + _M_offset;
_M_p += __n / int(_S_word_bit);
__n = __n % int(_S_word_bit);
if (__n < 0)
{
_M_offset = static_cast<unsigned int>(__n + int(_S_word_bit));
--_M_p;
}
else
_M_offset = static_cast<unsigned int>(__n);
}
bool
operator==(const _Bit_iterator_base& __i) const
{ return _M_p == __i._M_p && _M_offset == __i._M_offset; }
bool
operator<(const _Bit_iterator_base& __i) const
{
return _M_p < __i._M_p
|| (_M_p == __i._M_p && _M_offset < __i._M_offset);
}
bool
operator!=(const _Bit_iterator_base& __i) const
{ return !(*this == __i); }
bool
operator>(const _Bit_iterator_base& __i) const
{ return __i < *this; }
bool
operator<=(const _Bit_iterator_base& __i) const
{ return !(__i < *this); }
bool
operator>=(const _Bit_iterator_base& __i) const
{ return !(*this < __i); }
};
inline ptrdiff_t
operator-(const _Bit_iterator_base& __x, const _Bit_iterator_base& __y)
{
return (int(_S_word_bit) * (__x._M_p - __y._M_p)
+ __x._M_offset - __y._M_offset);
}
struct _Bit_iterator : public _Bit_iterator_base
{
typedef _Bit_reference reference;
typedef _Bit_reference* pointer;
typedef _Bit_iterator iterator;
_Bit_iterator() : _Bit_iterator_base(0, 0) { }
_Bit_iterator(_Bit_type * __x, unsigned int __y)
: _Bit_iterator_base(__x, __y) { }
reference
operator*() const
{ return reference(_M_p, 1UL << _M_offset); }
iterator&
operator++()
{
_M_bump_up();
return *this;
}
iterator
operator++(int)
{
iterator __tmp = *this;
_M_bump_up();
return __tmp;
}
iterator&
operator--()
{
_M_bump_down();
return *this;
}
iterator
operator--(int)
{
iterator __tmp = *this;
_M_bump_down();
return __tmp;
}
iterator&
operator+=(difference_type __i)
{
_M_incr(__i);
return *this;
}
iterator&
operator-=(difference_type __i)
{
*this += -__i;
return *this;
}
iterator
operator+(difference_type __i) const
{
iterator __tmp = *this;
return __tmp += __i;
}
iterator
operator-(difference_type __i) const
{
iterator __tmp = *this;
return __tmp -= __i;
}
reference
operator[](difference_type __i) const
{ return *(*this + __i); }
};
inline _Bit_iterator
operator+(ptrdiff_t __n, const _Bit_iterator& __x)
{ return __x + __n; }
struct _Bit_const_iterator : public _Bit_iterator_base
{
typedef bool reference;
typedef bool const_reference;
typedef const bool* pointer;
typedef _Bit_const_iterator const_iterator;
_Bit_const_iterator() : _Bit_iterator_base(0, 0) { }
_Bit_const_iterator(_Bit_type * __x, unsigned int __y)
: _Bit_iterator_base(__x, __y) { }
_Bit_const_iterator(const _Bit_iterator& __x)
: _Bit_iterator_base(__x._M_p, __x._M_offset) { }
const_reference
operator*() const
{ return _Bit_reference(_M_p, 1UL << _M_offset); }
const_iterator&
operator++()
{
_M_bump_up();
return *this;
}
const_iterator
operator++(int)
{
const_iterator __tmp = *this;
_M_bump_up();
return __tmp;
}
const_iterator&
operator--()
{
_M_bump_down();
return *this;
}
const_iterator
operator--(int)
{
const_iterator __tmp = *this;
_M_bump_down();
return __tmp;
}
const_iterator&
operator+=(difference_type __i)
{
_M_incr(__i);
return *this;
}
const_iterator&
operator-=(difference_type __i)
{
*this += -__i;
return *this;
}
const_iterator
operator+(difference_type __i) const
{
const_iterator __tmp = *this;
return __tmp += __i;
}
const_iterator
operator-(difference_type __i) const
{
const_iterator __tmp = *this;
return __tmp -= __i;
}
const_reference
operator[](difference_type __i) const
{ return *(*this + __i); }
};
inline _Bit_const_iterator
operator+(ptrdiff_t __n, const _Bit_const_iterator& __x)
{ return __x + __n; }
template<class _Alloc>
class _Bvector_base
{
typedef typename _Alloc::template rebind<_Bit_type>::other
_Bit_alloc_type;
struct _Bvector_impl : public _Bit_alloc_type
{
_Bit_iterator _M_start;
_Bit_iterator _M_finish;
_Bit_type* _M_end_of_storage;
_Bvector_impl(const _Bit_alloc_type& __a)
: _Bit_alloc_type(__a), _M_start(), _M_finish(), _M_end_of_storage(0)
{ }
};
public:
typedef _Alloc allocator_type;
allocator_type
get_allocator() const
{ return *static_cast<const _Bit_alloc_type*>(&this->_M_impl); }
_Bvector_base(const allocator_type& __a) : _M_impl(__a) { }
~_Bvector_base()
{ this->_M_deallocate(); }
protected:
_Bvector_impl _M_impl;
_Bit_type*
_M_allocate(size_t __n)
{ return _M_impl.allocate((__n + int(_S_word_bit) - 1)
/ int(_S_word_bit)); }
void
_M_deallocate()
{
if (_M_impl._M_start._M_p)
_M_impl.deallocate(_M_impl._M_start._M_p,
_M_impl._M_end_of_storage - _M_impl._M_start._M_p);
}
};
} // namespace std
// Declare a partial specialization of vector<T, Alloc>.
#include <bits/stl_vector.h>
namespace _GLIBCXX_STD
{
/**
* @brief A specialization of vector for booleans which offers fixed time
* access to individual elements in any order.
*
* Note that vector<bool> does not actually meet the requirements for being
* a container. This is because the reference and pointer types are not
* really references and pointers to bool. See DR96 for details. @see
* vector for function documentation.
*
* @ingroup Containers
* @ingroup Sequences
*
* In some terminology a %vector can be described as a dynamic
* C-style array, it offers fast and efficient access to individual
* elements in any order and saves the user from worrying about
* memory and size allocation. Subscripting ( @c [] ) access is
* also provided as with C-style arrays.
*/
template<typename _Alloc>
class vector<bool, _Alloc> : public _Bvector_base<_Alloc>
{
public:
typedef bool value_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Bit_reference reference;
typedef bool const_reference;
typedef _Bit_reference* pointer;
typedef const bool* const_pointer;
typedef _Bit_iterator iterator;
typedef _Bit_const_iterator const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef typename _Bvector_base<_Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const
{ return _Bvector_base<_Alloc>::get_allocator(); }
protected:
using _Bvector_base<_Alloc>::_M_allocate;
using _Bvector_base<_Alloc>::_M_deallocate;
protected:
void
_M_initialize(size_type __n)
{
_Bit_type* __q = this->_M_allocate(__n);
this->_M_impl._M_end_of_storage = (__q
+ ((__n + int(_S_word_bit) - 1)
/ int(_S_word_bit)));
this->_M_impl._M_start = iterator(__q, 0);
this->_M_impl._M_finish = this->_M_impl._M_start + difference_type(__n);
}
void
_M_insert_aux(iterator __position, bool __x)
{
if (this->_M_impl._M_finish._M_p != this->_M_impl._M_end_of_storage)
{
std::copy_backward(__position, this->_M_impl._M_finish,
this->_M_impl._M_finish + 1);
*__position = __x;
++this->_M_impl._M_finish;
}
else
{
const size_type __len = size() ? 2 * size()
: static_cast<size_type>(_S_word_bit);
_Bit_type * __q = this->_M_allocate(__len);
iterator __i = std::copy(begin(), __position, iterator(__q, 0));
*__i++ = __x;
this->_M_impl._M_finish = std::copy(__position, end(), __i);
this->_M_deallocate();
this->_M_impl._M_end_of_storage = (__q + ((__len
+ int(_S_word_bit) - 1)
/ int(_S_word_bit)));
this->_M_impl._M_start = iterator(__q, 0);
}
}
template<class _InputIterator>
void
_M_initialize_range(_InputIterator __first, _InputIterator __last,
std::input_iterator_tag)
{
this->_M_impl._M_start = iterator();
this->_M_impl._M_finish = iterator();
this->_M_impl._M_end_of_storage = 0;
for (; __first != __last; ++__first)
push_back(*__first);
}
template<class _ForwardIterator>
void
_M_initialize_range(_ForwardIterator __first, _ForwardIterator __last,
std::forward_iterator_tag)
{
const size_type __n = std::distance(__first, __last);
_M_initialize(__n);
std::copy(__first, __last, this->_M_impl._M_start);
}
template<class _InputIterator>
void
_M_insert_range(iterator __pos, _InputIterator __first,
_InputIterator __last, std::input_iterator_tag)
{
for (; __first != __last; ++__first)
{
__pos = insert(__pos, *__first);
++__pos;
}
}
template<class _ForwardIterator>
void
_M_insert_range(iterator __position, _ForwardIterator __first,
_ForwardIterator __last, std::forward_iterator_tag)
{
if (__first != __last)
{
size_type __n = std::distance(__first, __last);
if (capacity() - size() >= __n)
{
std::copy_backward(__position, end(),
this->_M_impl._M_finish
+ difference_type(__n));
std::copy(__first, __last, __position);
this->_M_impl._M_finish += difference_type(__n);
}
else
{
const size_type __len = size() + std::max(size(), __n);
_Bit_type * __q = this->_M_allocate(__len);
iterator __i = std::copy(begin(), __position,
iterator(__q, 0));
__i = std::copy(__first, __last, __i);
this->_M_impl._M_finish = std::copy(__position, end(), __i);
this->_M_deallocate();
this->_M_impl._M_end_of_storage = (__q
+ ((__len
+ int(_S_word_bit) - 1)
/ int(_S_word_bit)));
this->_M_impl._M_start = iterator(__q, 0);
}
}
}
public:
iterator
begin()
{ return this->_M_impl._M_start; }
const_iterator
begin() const
{ return this->_M_impl._M_start; }
iterator
end()
{ return this->_M_impl._M_finish; }
const_iterator
end() const
{ return this->_M_impl._M_finish; }
reverse_iterator
rbegin()
{ return reverse_iterator(end()); }
const_reverse_iterator
rbegin() const
{ return const_reverse_iterator(end()); }
reverse_iterator
rend()
{ return reverse_iterator(begin()); }
const_reverse_iterator
rend() const
{ return const_reverse_iterator(begin()); }
size_type
size() const
{ return size_type(end() - begin()); }
size_type
max_size() const
{ return size_type(-1); }
size_type
capacity() const
{ return size_type(const_iterator(this->_M_impl._M_end_of_storage, 0)
- begin()); }
bool
empty() const
{ return begin() == end(); }
reference
operator[](size_type __n)
{ return *(begin() + difference_type(__n)); }
const_reference
operator[](size_type __n) const
{ return *(begin() + difference_type(__n)); }
void
_M_range_check(size_type __n) const
{
if (__n >= this->size())
__throw_out_of_range(__N("vector<bool>::_M_range_check"));
}
reference
at(size_type __n)
{ _M_range_check(__n); return (*this)[__n]; }
const_reference
at(size_type __n) const
{ _M_range_check(__n); return (*this)[__n]; }
explicit
vector(const allocator_type& __a = allocator_type())
: _Bvector_base<_Alloc>(__a) { }
vector(size_type __n, bool __value,
const allocator_type& __a = allocator_type())
: _Bvector_base<_Alloc>(__a)
{
_M_initialize(__n);
std::fill(this->_M_impl._M_start._M_p, this->_M_impl._M_end_of_storage,
__value ? ~0 : 0);
}
explicit
vector(size_type __n)
: _Bvector_base<_Alloc>(allocator_type())
{
_M_initialize(__n);
std::fill(this->_M_impl._M_start._M_p,
this->_M_impl._M_end_of_storage, 0);
}
vector(const vector& __x)
: _Bvector_base<_Alloc>(__x.get_allocator())
{
_M_initialize(__x.size());
std::copy(__x.begin(), __x.end(), this->_M_impl._M_start);
}
// Check whether it's an integral type. If so, it's not an iterator.
template<class _Integer>
void
_M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
{
_M_initialize(__n);
std::fill(this->_M_impl._M_start._M_p,
this->_M_impl._M_end_of_storage, __x ? ~0 : 0);
}
template<class _InputIterator>
void
_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
__false_type)
{ _M_initialize_range(__first, __last,
std::__iterator_category(__first)); }
template<class _InputIterator>
vector(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Bvector_base<_Alloc>(__a)
{
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
~vector() { }
vector&
operator=(const vector& __x)
{
if (&__x == this)
return *this;
if (__x.size() > capacity())
{
this->_M_deallocate();
_M_initialize(__x.size());
}
std::copy(__x.begin(), __x.end(), begin());
this->_M_impl._M_finish = begin() + difference_type(__x.size());
return *this;
}
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
void
_M_fill_assign(size_t __n, bool __x)
{
if (__n > size())
{
std::fill(this->_M_impl._M_start._M_p,
this->_M_impl._M_end_of_storage, __x ? ~0 : 0);
insert(end(), __n - size(), __x);
}
else
{
erase(begin() + __n, end());
std::fill(this->_M_impl._M_start._M_p,
this->_M_impl._M_end_of_storage, __x ? ~0 : 0);
}
}
void
assign(size_t __n, bool __x)
{ _M_fill_assign(__n, __x); }
template<class _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
template<class _Integer>
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_t) __n, (bool) __val); }
template<class _InputIterator>
void
_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type)
{ _M_assign_aux(__first, __last, std::__iterator_category(__first)); }
template<class _InputIterator>
void
_M_assign_aux(_InputIterator __first, _InputIterator __last,
std::input_iterator_tag)
{
iterator __cur = begin();
for (; __first != __last && __cur != end(); ++__cur, ++__first)
*__cur = *__first;
if (__first == __last)
erase(__cur, end());
else
insert(end(), __first, __last);
}
template<class _ForwardIterator>
void
_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
std::forward_iterator_tag)
{
const size_type __len = std::distance(__first, __last);
if (__len < size())
erase(std::copy(__first, __last, begin()), end());
else
{
_ForwardIterator __mid = __first;
std::advance(__mid, size());
std::copy(__first, __mid, begin());
insert(end(), __mid, __last);
}
}
void
reserve(size_type __n)
{
if (__n > this->max_size())
__throw_length_error(__N("vector::reserve"));
if (this->capacity() < __n)
{
_Bit_type* __q = this->_M_allocate(__n);
this->_M_impl._M_finish = std::copy(begin(), end(),
iterator(__q, 0));
this->_M_deallocate();
this->_M_impl._M_start = iterator(__q, 0);
this->_M_impl._M_end_of_storage = (__q + (__n + int(_S_word_bit) - 1)
/ int(_S_word_bit));
}
}
reference
front()
{ return *begin(); }
const_reference
front() const
{ return *begin(); }
reference
back()
{ return *(end() - 1); }
const_reference
back() const
{ return *(end() - 1); }
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 464. Suggestion for new member functions in standard containers.
// N.B. DR 464 says nothing about vector<bool> but we need something
// here due to the way we are implementing DR 464 in the debug-mode
// vector class.
void
data() { }
void
push_back(bool __x)
{
if (this->_M_impl._M_finish._M_p != this->_M_impl._M_end_of_storage)
*this->_M_impl._M_finish++ = __x;
else
_M_insert_aux(end(), __x);
}
void
swap(vector<bool, _Alloc>& __x)
{
std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
std::swap(this->_M_impl._M_end_of_storage,
__x._M_impl._M_end_of_storage);
}
// [23.2.5]/1, third-to-last entry in synopsis listing
static void
swap(reference __x, reference __y)
{
bool __tmp = __x;
__x = __y;
__y = __tmp;
}
iterator
insert(iterator __position, bool __x = bool())
{
const difference_type __n = __position - begin();
if (this->_M_impl._M_finish._M_p != this->_M_impl._M_end_of_storage
&& __position == end())
*this->_M_impl._M_finish++ = __x;
else
_M_insert_aux(__position, __x);
return begin() + __n;
}
// Check whether it's an integral type. If so, it's not an iterator.
template<class _Integer>
void
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
__true_type)
{ _M_fill_insert(__pos, __n, __x); }
template<class _InputIterator>
void
_M_insert_dispatch(iterator __pos,
_InputIterator __first, _InputIterator __last,
__false_type)
{ _M_insert_range(__pos, __first, __last,
std::__iterator_category(__first)); }
template<class _InputIterator>
void
insert(iterator __position,
_InputIterator __first, _InputIterator __last)
{
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
_M_insert_dispatch(__position, __first, __last, _Integral());
}
void
_M_fill_insert(iterator __position, size_type __n, bool __x)
{
if (__n == 0)
return;
if (capacity() - size() >= __n)
{
std::copy_backward(__position, end(),
this->_M_impl._M_finish + difference_type(__n));
std::fill(__position, __position + difference_type(__n), __x);
this->_M_impl._M_finish += difference_type(__n);
}
else
{
const size_type __len = size() + std::max(size(), __n);
_Bit_type * __q = this->_M_allocate(__len);
iterator __i = std::copy(begin(), __position, iterator(__q, 0));
std::fill_n(__i, __n, __x);
this->_M_impl._M_finish = std::copy(__position, end(),
__i + difference_type(__n));
this->_M_deallocate();
this->_M_impl._M_end_of_storage = (__q + ((__len
+ int(_S_word_bit) - 1)
/ int(_S_word_bit)));
this->_M_impl._M_start = iterator(__q, 0);
}
}
void
insert(iterator __position, size_type __n, bool __x)
{ _M_fill_insert(__position, __n, __x); }
void
pop_back()
{ --this->_M_impl._M_finish; }
iterator
erase(iterator __position)
{
if (__position + 1 != end())
std::copy(__position + 1, end(), __position);
--this->_M_impl._M_finish;
return __position;
}
iterator
erase(iterator __first, iterator __last)
{
this->_M_impl._M_finish = std::copy(__last, end(), __first);
return __first;
}
void
resize(size_type __new_size, bool __x = bool())
{
if (__new_size < size())
erase(begin() + difference_type(__new_size), end());
else
insert(end(), __new_size - size(), __x);
}
void
flip()
{
for (_Bit_type * __p = this->_M_impl._M_start._M_p;
__p != this->_M_impl._M_end_of_storage; ++__p)
*__p = ~*__p;
}
void
clear()
{ erase(begin(), end()); }
};
} // namespace std
#endif